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Tutorial 1 Solutions

1. See me if you have problems with any of these questions.

2. Use the multivariable chain rule to finddz/dt where

z = 2x2 + 3xy − 4y2

and
x = cos t, andy = sin t.

Solution: The multivariable chain rule states that

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt

and we can calculate

∂z

∂x
= 4x+ 3y

∂z

∂y
= 3x− 8y

dx

dt
= − sin t

dy

dt
= cos t

Substituting these into the chain rule we get

dz

dt
= − sin t(4x+ 3y) + cos t(3x− 8y).

We can further simplify by substituting the parametric formof x andy into the above
expression to get

dz

dt
= 3 cos2 t− 12 sin t cos t− 3 sin2 t = 3x2 − 12xy − 3y2.

We could also have solved the problem by substituting the parametric forms ofx and
y into the formula forz, and then taking the derivative, but often this is more compli-
cated.

3. Use Taylor’s Theorem to derive a polynomial approximation for f(x, y) = sin(x+y2).
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Solution: The first and second partial derivatives off are

∂f

∂x
= cos(x+ y2)

∂f

∂y
= 2y cos(x+ y2)

∂2f

∂x2
= − sin(x+ y2)

∂2f

∂x∂y
= −2y sin(x+ y2)

∂2f

∂y2
= 2 cos(x+ y2)− 4y2 sin(x+ y2)

At the point(x, y) = (0, 0), these partial derivatives are

∂f

∂x
= 1

∂f

∂y
= 0

∂2f

∂x2
= 0

∂2f

∂x∂y
= 0

∂2f

∂y2
= 2

So the Taylor Polynomial about(0, 0) is

f(x, y) = f(0, 0) + x
∂f

∂x

∣

∣

∣

∣

(0,0)

+ y
∂f

∂y

∣

∣

∣

∣

(0,0)

+
1

2

[

x2 ∂2f

∂x2

∣

∣

∣

∣

(0,0)

+ 2xy
∂2f

∂x∂y

∣

∣

∣

∣

(0,0)

+ y2
∂2f

∂y2

∣

∣

∣

∣

(0,0)

]

+ · · ·

simeq x+ y2

4. Find the cylinder of largest volume that can be placed insidea sphere of radius 1.

Solution: The figure below shows a cross-section of the cylinder inscribed in the
sphere. Note that there is no value in making the cylinder small than it can be, so the
the top and bottom rings of the cylinder, being circles, willsit against the surface of
the sphere. Viewed from the side, the radiusr of the circles at the top and bottom if the
cylinder is half the length of the horizontal edge of the rectangle shown. The height of
the cylinderH = 2h is also shown.
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h

r

1

We can immediately see from the figure that there is a right-angled triangle formed by
h, r and1, and so it is easy to express the optimization problem as

max
r,h

V = 2hπr2,

such that
r2 + h2 = 1.

We include the constraint in the optimization by simply taking a new objective includ-
ing a Lagrange multiplier, i.e.,

max
r,h

F = 2hπr2 + λ(r2 + h2 − 1).

We maximize by setting the partial derivatives to zero, being careful to include all three
variables:

∂F

∂r
= 0,

∂F

∂h
= 0,

∂F

∂λ
= 0.

These give

2(2hπ + λ)r = 0,

2(πr2 + λh) = 0,

r2 + h2 − 1 = 0.

As r 6= 0 for F > 0, the first equation implies that

h = − λ

2π
.

We can substitute this into the second equation to get

πr2 = −λh

=
λ2

2π

r2 =
λ2

2π2
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We take the positive root here for convenience sor = λ/π
√
2. Substituting these into

the third equation we get

r2 + h2 = 1
λ2

2π2
+

λ2

4π2
= 1

λ2

[

1

2
+

1

4

]

= π2

λ2 =
4

3
π2.

The final result is therefore

r =

√

2

3
≃ 0.82

h =

√

1

3
≃ 0.58

so the cylinder is broader than it is tall, and has volume

V = 2hπr2 ≃ 2.42.

We can argue that this must be a maximum from the fact that the minimum volume
cylinder would have volume zero, which is not the case here, however, the following
figure shows a simple numerical plot of the volume of the inscribed cylinder as a
function ofr.
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Compare this to the volume of the sphere itself

VS =
4

3
πR2 = 4.19.


