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Tutorial 4 Solutions

1. Non-holonomic constraints: Consider the catenary problem again. In lectures we
rearranged the problem thus

Wp{y} =

∫ L

0

m(s)gy(s)ds = mg

∫ x1

x0

y
√

1 + y′2dx,

However, we assumed that the mass function was constant (i.e., the cable had uni-
form density). If we use an alternative approach of incorporating a non-holonomic
constraint we can do better. Firstly note that if we specify the shape of the curve by
(x(s), y(s)) then for a small enough triangle

δx2 + δy2 = δs2.

Dividing by δs2 and takingδs → 0 we get

dx

ds

2

+
dy

ds

2

=
.
x
2
+

.
y
2
= 1,

which was the starting point for rearranging the functionalabove. However, here,
we will use it as a constraint in the original form of the functional. Use a Lagrange
multiplier functionλ(s) to solve the catenary problem, and the notation thatdy/dx =
y′ and

.
x = dx/ds,

.
y = dy/ds.

Solution:

Incorporating the Lagrange multiplier we get

F{x, y, λ} =

∫ L

0

ρ(s)y(s) + λ(x)
(.
x
2
+

.
y
2 − 1

)

ds,

Note this is a functional of three dependent variables, so weget three E-L equations

d

ds

∂f

∂
.
x
− ∂f

∂x
= 0

d

ds

∂f

∂
.
y
− ∂f

∂y
= 0

d

ds

∂f

∂
.
λ
− ∂f

∂λ
= 0

where
.
x = dx/ds,

.
y = dy/ds andy′ = dx/dy. which gives us

d

ds
2λ(x)

.
x = 0

d

ds
2λ(x)

.
y = ρ(s)

.
x
2
+

.
y
2

= 1
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The first equation means that2λ(x)
.
x = c1 a constant. Nowx′ 6= 0 so

λ(x) =
c1

2
.
x
.

Substituteλ into d
ds
2λ(x)

.
y = ρ(s), and we get

d

ds

.
y.
x

=
ρ(s)

c1

d

ds

dy

ds

ds

dx
=

ρ(s)

c1
d

ds

dy

dx
=

ρ(s)

c1
d2y

dx2

dx

ds
=

ρ(s)

c1

Note that if the cable density is constant so we scale to takeρ(s) = 1, and from our
prior study of the catenary we know thatds

dx
=

√

1 + y′2, so the above reduces to

c1
y′′

√

1 + y′2
= 1

which can be integrated with respect tox to get

c1 sinh
−1 y′ = x− c2.

Inverting we get

y′ = sinh

(

x− c2
c1

)

,

which can be integrated again to get

y = c1 cosh

(

x− c2
c1

)

.

Now we have the density along the cable parameterized bys, but we need to know the
density with respect toρ(x)x. The constraint

.
x
2
+

.
y
2
= 1 helps. We can go back to

the triangle we used on the original catenary to get

ds = ρ(x)
√

1 + y′2 dx.

So we get

d2y

dx2

dx

ds
=

ρ(s)

c1
d2y

dx2

dx

ds
=

ρ(x)

c1

dx

ds
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and
.
x > 0 so

y′′ =
ρ(x)

c1
.

If we know the density of the cable with respect tox, this problem is easy to solve by
integrating twice. For instance, if the density with respect to x is constant, then the
resulting curve is a parabola.

This result is particularly relevant to the design of a suspension bridge where the cable
weight is small in comparison to the weight of the road deck, which has constant
density with respectx.

2. Isoperimetric constraints: Consider the catenary problem again. In lectures we
solved the problem

Wp{y} =

∫ L

0

mgy(s)ds = mg

∫ x1

x0

y
√

1 + y′2dx,

where the mass of the cable dominated the problem, but now we consider the problem
of the design of a suspension bridge. In this case, the cable’s weight is negligable
compared to the weight of the roadway (or railway) across thebridge, and the cables
that join the bridge to the main suspension cable. Here, the problem can be written

Wp{y} = g

∫ 1

0

c1 + c2y(x)dx,

wherec1 is the density of the bridge platform, andc2 the average density of the cables
between bridge and main cable. Obviously the termc1 has no affect on the optimiza-
tion, and we drop this from further consideration.

If we just consider the function as is, then it is degenerate,and we cannot solve to find
the shape of the extremal curves, but when we include the isoperimetric constraint we
get a functional of the form

Wp{y} =

∫ 1

0

my(x) + λ
√

1 + y′2dx,

Solve this to find the shape of the suspension cable in a suspension bridge.

Solution In fact we don’t need to solve these, except by recognizing that this is Dido’s
problem. We can seeking an extremal of a functional describing area under a curve
my(x) subject to a distance constraint. The solution is a circulararc as before. How-
ever, in this case it should be facing downwards, not upwards.

What’s the difference. Consider the Golden Gate bridge. Itsmain span is 1,280 meters,
and the height of the towers above the bridge is 152 meters. The following equations
and figure illustrates the optimal catenary, circular arc and parabola. We can see that
they are nearly identical at this scale.
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Take the end-towers to be at±640 meters, andy0 = y1 = 152.

ycatenary = c1 cosh

(

x

c1

)

− λ

yparabola = Ax2 +B

ycirle = y0 −
√
r2 − x2

Note that in each case, the middle of the curve is close to the road bed so we want
y(0) ≃ 0, and I use this constraint rather than the somewhat harder isoperimetric
constraint to derive the constants. So

ycatenary = c1

[

cosh

(

x

c1

)

− cosh 0

]

yparabola = 152(x/640)2

ycirle = r −
√
r2 − x2

Remaining constants are determined by the end points, e.g.,y(640) = 152, so that
r = 1423 andc1 = 1372.
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3. Natural boundary conditions: Consider the following catenary-like problem. We
have two boats (perhaps towing a net between them). However,only the first boat has
a motor. The second towed boat is using its rudder to allow it to maintain a constant
horizontal distance1 from the tow boat. See the figure for an illustration:

towed
boat

y1

tow
boat

x

yo

tow rope

y

0 1

The tow rope is being pulled through the water, and the force on a section of tow rope
is proportional to the length of that section, so its potential energy is similar to that of
a hanging cable plus the potential related to the towed boat,hwich is justRy1 where
R is the “resistance” of the boat to being pulled through the water. The length of the
net isL, and we fixy(0) = y0, but we don’t knowy(1) = y1.

Derive the shape of tow rope (seen from above), and the natural boundary conditions
that apply at the towed boat.

Solutions: Given the form of the forces on the cable, the functional of interest will be
the same as that of the catenary plus , i.e.,

F{y} = Ry1 +

∫ x1

x0

(y + λ)
√

1 + y′2dx,

hence the same Euler-Lagrange equations apply, and so the shape will still be a cate-
nary, as we might expect.

y = c1 cosh

(

x− c2
c1

)

− λ. (1)

However, we cannot solve to find the constants because we don’t know y1 and must
derive a natural boundary condition. Asx1 = 1 is fixed, the natural boundary condition
is

∂f

∂y′
+

∂φ

∂y
=

(y + λ)y′
√

1 + y′2

∣

∣

∣

∣

∣

x=1

+R = 0.
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Now

y + λ = c1 cosh

(

x− c2
c1

)

y′ = sinh

(

x− c2
c1

)

.

√

1 + y′2 = cosh

(

x− c2
c1

)

.

so the condition reduces to

c1 sinh

(

x− c2
c1

)
∣

∣

∣

∣

x=1

= c1 sinh

(

1− c2
c1

)

= −R.

Notes: Remember we have two other conditions that must be satisfied

L{y} =

∫ 1

0

√

1 + y′2 dx

=

∫ 1

0

cosh

(

x− c2
c1

)

dx

= c1

[

sinh

(

x− c2
c1

)]1

−1

= 2c1

[

sinh

(

1− c2
c1

)

− sinh

(−c2
c1

)]

and
y(0) = y0.

and from these we could (numerically) determine the three constantsc1, c2 andλ.

Also note that ifR = 0, i.e., the towed boat has no resistance, then the condition
becomes

sinh

(

1− c2
c1

)

= 0.

Now sinh is only zero at zero, so this condition reverts to saying thatc1 = 1, or that
the “middle” of the caternary is at the towed boat. At this point y′ = 0, so if the only
resistance comes from the tow rope, then the rope will join the towed boat at right
angles.
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4. Isoperimetric constraints:

It is a little known fact that the real-estate laws of
ancient Carthage, like those of present-day South
Australia, allow a “cooling-off” period before
any transaction is finalized. Lucky for Queen
Dido that this was true, for no sonner had she
figured out that the curve she needed was acir-
clular arc, but one of her slaves discovered that
the ground she had purchased was not flat at all
but had a (constant) slope. Houses, palaces an
so on have to be built on level ground, so how
should she select her curve now to get the best
deal. i.e., to maximize the enclosed horizontal
area?

z=  yα
z

y

x

a

b

That is, find the curvey(x) such that

F{y} =

∫ b

a

y(x) dx

is maximized, subject to the length constraint

∫ b

a

√

1 + y′2 + z′2 dx = L

for b−a < L < π(b−a), and where the curve is constrained to lie in the planez = αy,
and the fixed end conditions are

y(a) = y(b) = z(a) = z(b) = 0

[Note: don’t try to solve for the integration constants, or Lagrange multiplier, explain
the shape of the curve]

Solution:

Given the problem has constraints, we should include Lagrange multipliersλ, so that
we look for extremals of

H{y} =

∫ b

a

y(x) + λ
√

1 + y′2 + z′2 dx =

∫ b

a

y(x) + λ
√

1 + y′2(1 + α2) dx

given the constraint thatz = αy. The functionh(y, y′) does not depend explicitly on
x, so we can form the functionH(y, y′) [Hint: Don’t confuse the functionH(y, y′)
with the functionalH{y}] such that
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H(y, y′) = y′
∂h

∂y′
− f =

λ(1 + α2)y′2
√

1 + y′2(1 + α2)
− y − λ

√

1 + y′2(1 + α2) = c1 = const

⇒ λ(1 + α2)y′2 − λ− λy′2(1 + α2)
√

1 + y′2(1 + α2)
− y = c1

⇒ −λ
√

1 + y′2(1 + α2)
= y + c1

⇒ λ2 = (y + c1)
2(1 + y

⇒ y′2(1 + α2)(y + c1)
2 = λ2 − (y + c1)

2

⇒ y′2 =
λ2 − (y + c1)

(1 + α2)(y + c

⇒ dy

dx
=

√

λ2 − (y + c
√

(1 + α2)(y +

⇒ dx =

√

(1 + α2)(y +
√

λ2 − (y + c

Integrating, we use two changes of variables, to get

x+ c2 =

∫

√

(1 + α2)(y + c1)
√

λ2 − (y + c1)2
dy

=
√

(1 + α2)

∫

w√
λ2 − w2

dw

=
√

(1 + α2)

∫

1/2√
λ2 − s

ds

=
√

(1 + α2)
√
λ2 − s

=
√

(1 + α2)
√

λ2 − (y + c1)2

Squaring both sides, and rearranging we get

(x+ c2)
2 + (1 + α2)(y + c1)

2 = λ2

which is the equation of anellipse. Notice that this ellipse is just the projection of a
circular arc on the surfacez = αy onto the planez = 0. So, Dido is safe, just get
her servants to draw up a circular arc on the sloped surface, and it will automatically
encompass the largest possible horizontal area (but this area will then be elliptical, and
somewhat smaller than the sloped region encompasses).


