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Tutorial 6 Solutions

1 Maximize the range of a missile: Take a missile which has a rocket motor that gen-
erates constant thrustf for a fixed time interval[0, t1]. We can control the angle of
the thrustθ(t) (relative to the horizontal). Ignoring drag, the curve of the Earth’s sur-
face (and its rotation), determine the angle profile that will maximize the range of the
missile.

Hints: choose a co-ordinates(x, y), and(u, v) = (
.
x,

.
y), then the DEs describing the

system under thrust will be

.
x = u.
y = v.
u = f cos θ.
v = f sin θ − g

After the rocket stops firing, the missile will continue on a ballistic trajectory, i.e., the
remaining motion will be a parabola, resulting in a total firing distance of

R(x, y, u, v) = x+
u

g

[

v +
√

v2 + 2gy
]

wherex, y, u, v are given at the time at which balistic motion commences.

Solutions:

(A). Firstly, note that the problem is of the form maximize

F{θ} = R(x, y, u, v) +

∫ t1

0

0 dt,

i.e., the term inside the integral is zero. The only integrand we will get comes from the
Lagrange multipliers that describe the system, i.e.,

H{θ, x, y, u, v, λx, λy, λu, λv} = R(x, y, u, v)

+

∫ t1

0

λx(
.
x− u) + λy(

.
y − v) + λu(

.
u− f cos θ) + λv(

.
v − f sin θ − g) dt,

We get 9 E-L equations, but those with respect to the Lagrangemultipliers trivially
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give us back the system constraints, so focus on the others, i.e.,

θ :
∂h

∂θ
−

d

dt

∂h

∂
.
θ

= 0 ⇒ λuf sin θ − λvf cos θ = 0

x :
∂h

∂x
−

d

dt

∂h

∂
.
x

= 0 ⇒
.
λx = 0

y :
∂h

∂y
−

d

dt

∂h

∂
.
y

= 0 ⇒
.
λy = 0

u :
∂h

∂u
−

d

dt

∂h

∂
.
u

= 0 ⇒
.
λu = −λx

v :
∂h

∂v
−

d

dt

∂h

∂
.
v

= 0 ⇒
.
λv = −λy

The first equation simplifies to give

tan θ =
λv

λu

.

The next two give

λx = cx

λy = cy

wherecx andcy are constant. The last two equations then give

λu = −cxt + cu

λv = −cyt+ cv

We need to find the constants of integration, so we determine the natural boundary
conditions att = t1. The terminal cost isR, so these take the form (for the non-trivial
cases)

x :
∂h

∂
.
x
+

∂R

∂x

∣

∣

∣

∣

t=t1

= 0 ⇒ λx(t1) = −1

y :
∂h

∂
.
y
+

∂R

∂y

∣

∣

∣

∣

t=t1

= 0 ⇒ λy(t1) = −
u

√

v2 + 2gy

∣

∣

∣

∣

∣

t=t1

u :
∂h

∂
.
u
+

∂R

∂u

∣

∣

∣

∣

t=t1

= 0 ⇒ λu(t1) = −
1

g

[

v +
√

v2 + 2gy
]

∣

∣

∣

∣

t=t1

v :
∂h

∂
.
v
+

∂R

∂v

∣

∣

∣

∣

t=t1

= 0 ⇒ λv(t1) = −
u

g

[

1 +
v

√

v2 + 2gy

]
∣

∣

∣

∣

∣

t=t1

The first equation givescx = −1, and combined with the third this gives

λu(t1) = t1 + cu = −
1

g

[

v +
√

v2 + 2gy
]



Variational Methods and Optimal Control (VMOC): 2012 3

which we can rearrange to give

cu = −t1 −
1

g

[

v +
√

v2 + 2gy
]

Likewise

cy = −
u

√

v2 + 2gy

∣

∣

∣

∣

∣

t=t1

cv = −
ut1

√

v2 + 2gy
−

u

g

[

1 +
v

√

v2 + 2gy

]
∣

∣

∣

∣

∣

t=t1

Now

tan θ =
λv

λu

=
−cyt+ cv
−cxt + cu

=
t− t1 −

1

g

[

v +
√

v2 + 2gy
]

t− t1 −
1

g

[

v +
√

v2 + 2gy
] ×

u
√

v2 + 2gy

∣

∣

∣

∣

∣

∣

t=t1

=
u

√

v2 + 2gy

∣

∣

∣

∣

∣

t=t1

which is a constant! Henceθ = const, to be determined by solving the above equa-
tions.

The thrust profile has played no part in the above. It only comes into the solution
when we have to calculateθ. Calculatingθ simply requires us to substitute constantθ
into the system DEs and solve, e.g., for constant thrustf , the system DEs (along with
x(0) = y(0) = u(0) = v(0) = 0)

.
x = u.
y = v.
u = f cos θ.
v = f sin θ − g

give the behaviour of the rocket under thrust as

u = [f cos θ] t

v = [f sin θ − g] t

x = [f cos θ] t2/2

y = [f sin θ − g] t2/2
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Note thaty can only be positive forf > g, i.e., the thrust is greater than gravity. From

thetan θ = u/
√

v2 + 2gy
∣

∣

∣

t=t1

which we need to solve forθ, so rearrange thus

sin θ

cos θ
=

u(t1)
√

v(t1)2 + 2gy(t1)

=
ft1 cos θ

t1

√

[f sin θ − g]2 + g [f sin θ − g]

=
f cos θ

√

[f sin θ − g] [f sin θ − g + g]

=
cos θ

√

[sin θ − g/f ] sin θ

sin2 θ

cos2 θ
=

cos2 θ

[sin θ − g/f ] sin θ

sin3 θ [sin θ − g/f ] = cos4 θ

sin4 θ − g/f sin3 θ = (1− sin2 θ)2

= 1− 2 sin2 θ + sin4 θ

−g/f sin3 θ = 1− 2 sin2 θ

−g/f sin3 θ = cos 2θ

sin3 θ +
f

g
cos 2θ = 0

There could be more than one solution to the above, we will choose the one which gives
the maximum range. Solve it usingfzero in Matlab and the following two figures
show examples (forg = 9.8, f = 14). Dots show position during thrust (arrows show
thrust direction) at one second intervals, and+ signs show the parabolic arc. The two
dashed lines on the right-hand side show the arcs obtained ifthe angle of thrust is
slightly different, and we can see that the best case is our extremal curve.
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Note that the trajectory angle is also constant but a different constant from the thrust an-
gle because of gravitational acceleration. We can calculate this angle fromarctan y/x,
just as we can now calculate all of the quantities including the rangeR.
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2 Conservation laws: Consider the simple 2D harmonic oscillator, i.e, an oscillator
whose kinetic and potential energies are described by

T =
1

2

(.
q
2

1
+

.
q
2

2

)

V =
ω2

2

(

q2
1
+ q2

2

)

.

(a) Consider whether this system has translation and/or rotational symmetries, and
using Noether’s theorem describe the conservation laws that apply.

Solutions: The functional of interest is

J{q} =

∫ t1

t0

L(t,q,
.
q), dt,

L = T − V

=
1

2

(.
q
2

1
+

.
q
2

2

)

−
ω2

2

(

q2
1
+ q2

2

)

.

Out of interest, the resulting E-L equations of motion are

d

dt

∂L

∂
.
qi

−
∂L

∂qi
=

..
q i − ω2qi = 0,

and as the solutions to this are simple (independent) sinusoids in each co-ordinate,
the reason for naming the system the 2D oscillator should be obvious.

The LagrangianL is invariant under

• time translations⇒ energy is conserved,

• rotations⇒ angular momentum is conserved.

as shown using Noether’s theorem in the notes. The system is not invariant under
translations inqi, and so momentum is not conserved.

(b) Now transform the system using the transform

x1 =
1

2
(q1 − iq2)

x2 =
1

2
(q1 + iq2) .

Show the the resulting system is invariant under the continuous familiy of “squeeze”
transforms

X1 = eεx1

X2 = e−εx2

and derive the corresponding conservation law.
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Solutions: Inverting the transform we get

q1 = (x1 + x2)

q2 = i (x1 − x2) .

Applying the transform to the Lagrangian we get

L = 2
.
x
1

.
x
2
− 2ω2x1x2.

The obvious point to note is that this Lagrangian is invariant under the transform,
because the exponential factors cancel.

This is a relatively little known form for describing the 2D oscillator, but it is
interesting to note that the E-L equations are

d

dt

∂L

∂
.
xi

−
∂L

∂xi

= 2
..
x i − 2ω2xi = 0,

which gives thexi as sinusoids, and which can be transformed back into the
original coordinates giving the same solutions.

The transform described, expanded as a Taylor series is

X1 = x1 + εx1 + . . .

X2 = x2 − εx1 + . . .

i.e., it has generators

η1 = x1

η2 = −x2

Noether’s theorem states that ifL(t,q,
.
q) is variationally invariant on[t0, t1] un-

der a transform with infinitesimal generatorsξ andηk, then

n
∑

k=1

pkηk −Hξ = const,

along any extremal of

F{x} =

∫ t1

t0

L(t,x,
.
x) dt,

where

pk =
∂L

∂
.
xk

, H =
n

∑

k=1

pk
.
xk − L

Hereξ = 0, and so the convervation law in question is

x1p1 − x2p2 = C, a constant.
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(c) Have we discovered a new conservation law for the system?Explain.

Solutions: On the face of it this might seem like a new conservation law. After
all, the motions in the new co-ordinate system are still independent sinusoids,
and so the above is not angular momentum, or is it?

Note that from the definitionpk = ∂L

∂
.
x
k

so

p1 = 2
.
x
2

p2 = 2
.
x
1
,

and so the conserved quantity is actually

x1

.
x
2
− x2

.
x
1
= C/2, a constant.

This looks much more like conventional angular momentum.

Furthermore, if we transform back to the original co-ordinates of the system we
have

x1 =
1

2
(q1 − iq2)

x2 =
1

2
(q1 + iq2)

.
x
1

=
1

2

(.
q
1
− i

.
q
2

)

.
x
2

=
1

2

(.
q
1
+ i

.
q
2

)

.

and hence

4
[

x1

.
x
2
− x2

.
x
1

]

= (q1 − iq2)
(.
q
1
+ i

.
q
2

)

− (q1 + iq2)
(.
q
1
− i

.
q
2

)

= q1
.
q
1
+ q2

.
q
2
− iq2

.
q
1
+ iq1

.
q
2
− q1

.
q
1
− q2

.
q
2
− iq2

.
q
1
+ iq1

.
q
2

= −2i
[

q2
.
q
1
+ q1

.
q
2

]

,

which is just2i× the angular momentum in the original co-ordinates. Hence, the
conservation law identified is just conservation of angularmomentum.

Note that it is interesting that in an alterantive co-ordinate system, the transform,
and resulting symmetry may appear different, but as we mightintuitively ex-
pect, no new symmetries/conservation laws of the physical system are created
by co-ordinate transformation. On the other hand, care mustbe taken because
symmetries that were otherwise unseen may be revealed by a new co-ordinate
system, such as the Laplace-Runge-Lenz vector in the orbit of a planet under the
inverse square law of gravity.
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3. Solve the following optimal control problem: find the control 0 ≤ u(t) ≤ 1 that
minimizes

F{u} =

∫ T

0

x1u− x2u dt

subject to the system DEs

.
x1 = 1− u.
x2 = x1 + 1

Given starting point(x1, x2) = (0, 0) at time0, and end-point(x1, x2) = (1, 2) derive
the timeT at which we reach the end-point.

Solution:

The Hamiltonian is

H = −x1u+ x2u+ p1(1− u) + p2(x1 + 1).

The Hamiltonian is clearly linear inu, and so the control will be a bang-bang con-
troller, with switching function

σ = −x1 + x2 − p1.

So the control will be

u =

{

1 if − x1 + x2 − p1 > 0
0 if − x1 + x2 − p1 < 0

Considering the two possible cases we can solve the system DEs to get

(a) u = 1 the system DEs are

.
x1 = 0.
x2 = x1 + 1

so clearly the solution is

x1 = c1

x2 = (c1 + 1)t + c2

Sox1 is constant, and hence in the phase space, the paths are vertical lines with
arrows in the upwards direction.

(b) u = 0 the system DEs are

.
x1 = 1.
x2 = x1 + 1
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so clearly the solution is

x1 = t+ c3

x2 = t2/2 + (c3 + 1)t+ c4

Writing x2 as a function ofx1 we get

x2(x1) =
x2

1

2
+ x1 + c5

wherec3 = c4 − c2
3
− c3. So these are quadratic curves in the phase space, where

x2 increases withx1.

The problem is linear and autonomous, and the process hasn = 2, so it can have at
most one switch point. The phase diagram is shown below (solid arrow showu = 1
and dashed linesu = 0) from which we can see the a possible path for the given
end-points (shown as the solid line).
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Note that regardless of the starting and finishing point, once we know thatu = 0 or 1,
and the form ofx1, x2 in the later case, we can easily calculate the integral, i.e., if the
first phase isu = 0 followed byu = 1 the integral is

F{u} =

∫ T

0

x1u− x2u dt

=

∫ T

ts

x1 − x2 dt

=

∫ T

ts

c1 − ((c1 + 1)t+ c2) dt

=
[

(c1 − c2)t− (c1 + 1)t2/2
]T

ts
.
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Likewise, if the first phase isu = 1 followed byu = 0 then

F{u} =
[

(c1 − c2)t− (c1 + 1)t2/2
]ts

0

= (c1 − c2)ts − (c1 + 1)t2s/2.

In the path in the figure we see we start in the phaseu = 0, and then switch to the
phaseu = 1. It is easy to derive (from the initial point att = 0) thatc3 = c4 = 0.

The switch point must occur atx1(ts) = 1, so , we can see that it occurs atts = 1, at
which pointx2 = 1.5.

We can then derive the constants for the second phase of motion c1 = 1, andc2 =
−0.5. From this, we can determine that we will reach the end-pointat timeT such that
x2(T ) = 2T − 1/2 = 2, namelyT = 5/4.

To assess the other possible paths we would go through the same process and calculate
the integral again to see which is better (in this case this one is best).

The above omitts consideration of potential singular controls, which we could assess
by solving the canonical EL equations to obtain the conjugate momentum terms, and
checking thatσ 6= 0.


