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Abstract—Loss measurements are widely used in today’s net-
works. There are existing standards and commercial products to
perform these measurements. The missing element is a rigorous
statistical methodology for their analysis. Indeed, most existing
tools ignore the correlation between packet losses and severely
underestimate the errors in the measured loss ratios. In this
paper, we present a rigorous technique for analyzing performance
measurements, in particular, for estimating confidence intervals
of packet loss measurements. The task is challenging because
Internet packet loss ratios are typically small and the packet loss
process is bursty. Our approach, SAIL, is motivated by some
simple observations about the mechanism of packet losses. Packet
losses occur when the buffer in a switch or router fills, when there
are major routing instabilities, or when the hosts are overloaded,
and so we expect packet loss to proceed in episodes of loss, in-
terspersed with periods of successful packet transmission. This
can be modeled as a simple ON/OFF process, and in fact, empirical
measurements suggest that an alternating renewal process is a
reasonable approximation to the real underlying loss process. We
use this structure to build a hidden semi-Markov model (HSMM)
of the underlying loss process and, from this, to estimate both loss
ratios and confidence intervals on these loss ratios. We use both
simulations and a set of more than 18 000 hours of real Internet
measurements (between dedicated measurement hosts, PlanetLab
hosts, Web and DNS servers) to cross-validate our estimates and
show that they are better than any current alternative.

Index Terms—Accuracy, confidence interval, loss measurement,
hidden semi-Markov models (HSMMs).

I. INTRODUCTION

I NTERNET performance is a topic of increasing concern.
Online gaming, voice over IP, and other advanced Internet

applications require better than best-effort quality. Packet loss,
in particular, can result in serious degradation in a user’s quality
of experience.
There are many ways of improving performance, but mea-

surements are the key to ensuring ongoing quality. As in other
areas of industry, we cannot fix problems if we do not know they
exist. It is now common for network operators to perform on-
going performance measurements. The most common method
to obtain these is to inject probe packets into the network to
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sample the end-to-end performance, and there are now standards
for such measurements [1], [9], [16] and commercial devices
available to perform these tests, andmeasurements are even sup-
ported by some routers.
The missing element is a rigorous statistical methodology for

the analysis of performance results. The analysis of packet loss
may appear trivial. The loss ratio is just the number of dropped
packets divided by the total number of probes. However, we
show in this paper that calculating a loss ratio, by itself, is not
enough. Isolated estimates can be misleading unless coupled
with some measure of the accuracy of the estimate. However,
naive confidence intervals calculated using the assumption that
probe measurements are independent ignore the bursty struc-
ture of packet losses and misrepresent the accuracy of these
estimates.
In this paper, we present a rigorous technique for analyzing

performance measurements, in particular, for estimating confi-
dence intervals for packet loss measurements. The task is chal-
lenging because Internet packet loss ratios are typically small
(and estimating small probabilities is always challenging), and
the packet loss process is bursty. It is common for a particular
set of probes to miss some intervals where loss occurs, and we
need to take this into account in estimating the accuracy of our
measurements.
Our approach draws on the past experience of modeling

packet loss. Various models for packet loss processes have
been presented (for instances, see [2], [5], [8], [14], [19],
[20], [26], and [29]), usually with the aim of using these
models for simulation or for modeling application protocols.
These studies have unanimously found correlations between
packet losses, but have suggested different approaches for
modeling these losses. Our approach is motivated by some
simple observations about the mechanism of packet losses.
Packet losses occur when the buffer in a switch, router, or an
end-host fills, when there are routing instabilities, or when
there are software/hardware failures, and so we expect packet
loss to proceed in episodes of loss, interspersed with periods
of successful packet transmission. This can be modeled as a
simple ON/OFF process, and in fact, empirical measurements
suggest that an alternating renewal process is a reasonable ap-
proximation to the real underlying loss process. Note that this
model is more sophisticated than simple exponential models
and can model non-Poissonian loss behaviors that occur due to
route reconvergence, overloaded hosts, etc.
We can use this structure to build a hidden semi-Markov

model (HSMM) of the underlying loss process and, from this,
estimate both loss ratios and confidence intervals on these loss
ratios. While our approach does use simplifying assumptions
about the underlying losses, the proof is in the pudding. We use
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a set of real Internet performance measurements to cross-vali-
date our estimates and show that they are more reasonable than
any current alternative. The data and code are publicly available
at http://bandicoot.maths.adelaide.edu.au/SAIL/.
Our work provides a rigorous statistical analysis of Internet

packet loss measurements. Such an analysis is helpful to opera-
tors for ongoing networkmeasurements, but is also critical in the
specification of service level agreements (SLAs). Current SLAs
sometimes specify required packet loss ratios and punitive mea-
sures should these be exceeded. However, what we have shown
in this paper is that without some care, it is easy to write an
SLA that could not be defended in court simply because prac-
tical measurements are not accurate enough to assess whether
we are complying with the SLA. The specification of an SLA
must be done in conjunction with a specification of the measure-
ments that will be used for confirmation.
The work presented here has additional impact. A question

that is often asked is “How many probes do I need?” This ques-
tion is, formally, a statistical experimental design question. It
cannot be correctly answered without an understanding of the
correct approach for the analysis of the results, which we pro-
vide here.

II. BACKGROUND AND RELATED WORK

A. Active Probing

The typical approach to Internet performance measurement is
to actively send probe packets across the network and to mea-
sure the performance of these probes. As a result of substantial
work, tools have been developed for this type of probing [3],
[4], [15], [16], [22]. The probes provide a sample of the net-
work losses, and it is the accuracy of this sample that we wish
to assess.
The temporal pattern of probes sent has received some

interest. Throughout this work, we use Poisson probes, i.e.,
probes sent at the epochs of a Poisson process. While there
are works suggesting that other probing strategies may be
more efficient [3], [22], Poisson probes have a number of
key advantages, for instance, the Poisson Arrivals See Time
Averages (PASTA) result ensures that the sampled measure-
ments will be unbiased (for more detail, see RFC 2330 [16]).
In addition, subsamples of Poisson probes will also form a
Poisson sequence. We use this fact to cross-validate our results.
Note, however, that our HSMM does not assume the probes to
be Poisson and works with all probe patterns.
We shall assume that the probes have zero size and do not

perturb the loss process. This assumption is reasonable if care
is taken to not overload the path by having small probes and by
sending probes with low frequency.

B. Existing Loss Models

Studies of Internet packet losses (for instances, see [2], [5],
[8], [14], [19], [20], [26], and [29]) have unanimously agreed
that packet loss measurements experience correlations. Several
models have been proposed to explain these correlations, for in-
stance, the discrete -state Markov model [5], [26] where the
state represents the loss/success of the previous packets. Ob-
viously, the potentially large state space of this model limits us

to smaller values of , e.g., when , we get as a special
case the popular Gilbert model [7]. A simplemodel that captures
only the distribution of loss burst lengths is the -state extended
Gilbert model [20]. This model, however, does not provide in-
formation about the burstiness or clustering of the loss runs and
therefore does not fully specify the loss process. A more fun-
damental problem for the analysis considered here is the fact
that these are models for the observed loss process, which is
discrete. For many applications, this is what is needed. For in-
stance, when using a loss model to understand the impact of
packet loss on an application, all that is needed is knowledge
of which packets will be lost. Likewise, the extended Gilbert
model has been widely used to study performance of forward
error correction schemes [8]. However, in this paper, we are
trying to assess the accuracy of a loss sample with respect to
the real underlying loss process, which is continuous time. For
this, we need a continuous-time model to describe the state of
the underlying loss process. Moreover, we can use this model
to study the performance of applications with different packet
patterns than those observed.
Our approach draws from the Gilbert model, but extends it

to the continuous-time domain. The main idea of the extended
Gilbert model is to base the future loss probability on the pre-
vious losses but not the previous no-loss data. Several au-
thors [12], [26], [29] studied the properties the loss and success
runs. They find that in most of their traces, the loss run lengths
are short and uncorrelated. However, in many cases, the arrivals
of the loss and no-loss runs cannot bemodeled as Poisson. Given
such observations, the obvious continuous-time model for our
data is an ON/OFF alternating renewal model, which we will dis-
cuss in more detail.

III. MEASUREMENT ACCURACY

A. Estimating the Loss Ratio From the Probes

Wemodel the loss process on an Internet path as a continuous-
time binary stochastic process : if at time an
arriving packet would be dropped, and otherwise.
For estimates to be valid, we must assume that this process is
wide-sense stationary, which means that its mean, variance, and
autocovariance are all constant with respect to for all .
The mean of is just the loss ratio, which we denote as , and
can consequently be written as , and in addition, we
use the notation and

.
In practice, cannot be observed directly. We shall send
probes at times , resulting in samples

of the underlying process. Given samples, , the
standard estimator for the loss ratio is

(1)

When the loss process is stationary and ergodic, and we use
Poisson probes, the above estimator is unbiased and is guaran-
teed to converge to the true loss ratio (in fact, more
general results [10] guarantee convergence in a much wider
range of cases, but these are not needed here).
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Unfortunately, the theory of Poisson probes says little about
the rate of convergence or its variance for finite . The naive
estimate of the variance (which seems to be the basis for the
few occasions where confidence intervals are calculated for loss
measurements) can be derived from the assumption that the loss
process is a Bernoulli process, i.e., packets losses are indepen-
dent. In this case, the number of packet losses follows a Bino-
mial distribution, and the variance of is

(2)

where this would be typically estimated using itself. However,
we show in this paper that this variance estimator produces mis-
leadingly small confidence intervals for loss estimates.
The correct variance of based on samples of is

(3)

where is the autocovariance function of , and is the
time between the th and th probes. The variance of is a func-
tion of both the correlations structure of the loss process and
the structure of the sampling stream.
The formula (3) can be simplified (see [18]), which is useful

for calculating the asymptotic variance as , but that
is not needed here. We know the sample times , and so if
we knew the autocovariance function of , we could easily
compute the above sum. One approach to estimating variance
of is to empirically estimate based on our sampled
measurements, and from this derive the variance estimator.
This suffers from the same problems alluded to earlier for large
Markov models of the loss process. The function repre-
sents a large number of parameters to estimate, and thus we are
in danger of obtaining high-variance, overfitted estimates. We
show later that this approach may even fail simple sanity tests,
e.g., nonnegativity.
The standard statistical alternative to direct estimation is to

build a model of the data, estimate the model parameters, and
use this model to derive the autocovariance.

B. Alternating ON/OFF Renewal Model

The loss process can be considered to consist of alternating
periods of consecutive losses and periods without loss, i.e.,

, where is the length of the th loss
period and is the length of the th no-loss period. This
process is an alternating renewal process iff the are inde-
pendent and identically distributed (IID), the are IID, and
and are independent for all and . This assumption was

studied in [12], and we validate it on our measurement data in
Section VII-B.2 for both in-network and system induced losses.
It turns out that, despite not being perfect, it is more reason-
able than any (practical) Markov assumption as it allows for
arbitrary correlations over time (alternating renewal processes
may even display long-range dependence), but also leads to a
practical model from the point of view of estimation.

The alternating renewal process is described by the density
functions of and , which we denote by and
respectively, and we denote their respective means by

and .
In our approach, we need a parametric description of these

distributions. Here, we use the Gamma distribution. Our initial
experiments used the exponential distribution because it is the
simplest reasonable distribution one can use for such processes.
In that case, the resulting process is Markov, and so the resulting
analysis is relatively easy. However, this exponential model did
not produce satisfactory results. The Gamma distribution’s den-
sity function is given by

(4)

where is the gamma function, is the shape parameter,
and is the scale parameter (the mean value of is , and the
variance is ). It is a natural generalization of the exponen-
tial distribution to a two-parameter family that still includes the
exponential distribution as a special case (when ). As
increases, the Gamma distribution can approximate a Gaussian
distribution, or even a deterministic variable plus jitter. When

, we can obtain highly skewed distributions with rela-
tively long tails.
Using Gamma distributions, the ON/OFF model has four pa-

rameters , where are the pa-
rameters of the ON (lossy) periods and are the parame-
ters of the OFF (no loss) periods.

C. Modeling the Sampling Process

The model presented above is continuous time, but our sam-
ples are discrete, so we need to construct the sample process
from the continuous model as follows. Define the th loss run
as a sequence of consecutive lost probe packets that arrive to
the path on the time interval . Let be the length of the th
loss run. Note that the loss run can have zero length if
there are no probes on the time interval . Similarly, a success
run is the sequence of consecutive probe packets that arrive to
the path on the time interval . The length of the success run
is denoted by and is measured by the number of consecutive
successful packets. Also denote by the number of pairs of loss
and no-loss runs, and note the fact that the resulting process will
be a discrete-time alternating renewal process.
Obviously, our observations of will distort our

view of because we do not see the exact start
and end of intervals. We could easily correct for this issue if
not for the fact that we do not even observe all intervals. If we
do not have a probe during some interval (i.e., or ),
then we do not even know this interval exists. As a result, we
will actually observe an alternating process where some
(short) periods of loss and no loss are omitted, and the intervals
on either side are amalgamated.
Consider the simple example in Fig. 1 with 12 samples of the

alternating loss process shown on the top line. The sam-
ples, omit intervals and .
We ignore periods at the start and end (where we cannot tell the
true length of the sequence), so there are only two well-defined
loss runs and success runs: and
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Fig. 1. Continuous time ON/OFF process (top) sampled by probes at times .
The inferred ON/OFF process (bottom) misses some transitions and distorts the
size of others.

in the observed data. Note that in this example, even
though there are four complete transitions in the continuous time
process (i.e., ), there are only two loss and no-loss runs in
the measurements. The probes miss several state transitions and
overestimate the lengths of the loss and no-loss runs as shown
on the bottom line.
When probes are sent as Poisson process with rate , we

can analytically compute the probability that the probes miss
an ON/OFF period using the following lemma.
Lemma 1: For the alternating renewal process defined above

Proof: From (4)

The number of probes in an interval of length has
distribution

Thus

(5)

where the integral follows from the definition of the Gamma
function. Using the same approach, we can obtain a similar for-
mula for .
As we can see, many of the short loss or no-loss bursts will

be missed by the probes, especially when , which is
common in real measurements where both and are small.
The missing loss bursts create problems when estimating the
length of intervals, and even how many intervals are present.
These will impact the accuracy of the estimated loss ratios and
their confidence intervals. To overcome this problem, we use a
hidden semi-Markov model with missing observations to model
the sample process. This model is described next.

IV. HIDDEN SEMI-MARKOV MODEL

One standard approach for estimation of an underlying
process where we have incomplete samples of the process and
its transitions is to use an HSMM [17].
A Markov chain is a sequence of random variables

with the Markov property: Given the present state, the
future and past states are independent. Consider a Markov chain
with possible states . The Markov prop-
erty is formally defined as

If the states of the Markov process are not directly observed,
but rather we see some output sequence that is probabilistically
associated with the Markov chain, the process is referred to as
a hidden Markov model (HMM) [17]. An HMM is formally
defined by the quintuple:
• the set of states ;
• the set of observation symbols ;
• the initial probability

where

• the time-independent state transition probability

where

• the time-independent observation probability

where

The HMM presented above is a discrete-time model. To rep-
resent the continuous-time loss process in a discrete HMM, we
divide the measurement interval into slots of length . Ide-
ally, should be set to the length of the smallest loss period
so that the probability that a state change occurs within every
time-slot is negligible. However, this information is not avail-
able from measurements. The alternative is to make suffi-
ciently small, independent of the real loss process, so that it is
smaller than the length of any realistic loss burst with high prob-
ability. This approach, however, increases the computation time
significantly with little gain on the accuracy for two reasons.
First, making small will only help the inference if we have

enough measurements so that each discrete interval is measured
at least once. Without the measurements to provide information
about the loss process, an inference algorithm, at best, provides
the most probable estimate among all the possible outcomes for
the unobserved intervals. Increasing the number of unobserved
intervals by having small therefore will not improve the ac-
curacy of the inference.
Second, for a given measurement interval, the number of dis-

crete intervals is inversely proportional to . As HMM infer-
ence algorithms have quadratic computation time in , making
too small will quickly make the HMM infeasible for real-

time inference. Finding the optimal value for is a nontrivial
optimization problem given the underlying loss process (not
available from active measurements) and the sampling rate .
Our tool is designed to provide accurate estimates of the loss
process from any set of measurements. We therefore adopt a
pragmatic approach of setting to half the average intersample
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time, which provides a reasonable compromise between speed
and accuracy. We show in this paper that this value of works
well in simulations and a wide range of measured traces. We
shall leave the problem of finding the optimal parameter values
for future work.
In an HMM, the state durations are treated as either fixed

(one time unit) or geometrically distributed. In either case, the
state sequence is a Markov process since the
state at time , depends on its past only through the most re-
cent state . This model has already been used in the con-
text of packet loss modeling [19], but our model is not Markov.
We found that to produce useful results, our model needs to
allow nonexponential interval times, and so the process is not
memoryless. Indeed, a parametric model with Gamma distribu-
tions for the state durations was found to be useful for
modeling packet losses [12]. When the duration for state is
independent of all other durations of all other states, our process
falls into the class of semi-Markov models [27], i.e., models
whose state transitions are Markov, even if the times between
transitions are not. A hidden semi-Markov model is therefore
defined by the set of parameters .
The HSMM for Internet losses has two states ,

where state 1 means loss (ON) and state 2 means no-loss (OFF).
As we have only two states, the state transition is straightfor-
ward. Once the process finishes state , it will move to the other
state with probability 1, i.e.,

The observation set is more complex as in many time-slots
there are no probes. In any given slot, we therefore have three
possible observations: 1) a loss if the loss process is
ON and a probe is sent in that time-slot; 2) a success

if the loss process is OFF and a probe is
sent in that slot; 3) a null observation if no probe is
sent in that interval. The set of possible observations for any
time-slot is .
When the probes are Poisson with rate , the observations

probabilities are

if
if
otherwise.

(6)

In the above formula, is the probability that there is no
probe in the interval of length , i.e., is the probability
that we observe a null event in time-slot .
Our interest is to infer for the Gamma distribu-

tion of the duration of state , given the observations
. We seek the maximum likelihood estimator of

the model parameters, i.e., our goal is to find the parameters
that maximize . There are stan-

dard algorithms to infer the parameters of the above HSMM. In
this paper, we use the algorithms in [28] for this purpose. These
are extensions of the well-known Baum–Welch algorithm for
standard HMMs, though we have made a number of improve-
ments to the speed of the algorithm in our implementation.

V. SAIL: STATISTICALLY ACCURATE INTERNET LOSS
MEASUREMENTS

A. Variance and Confidence Intervals for Loss Ratio
Once the parameters , , , and of the continuous-time

ON/OFF model are estimated using the HSMM algorithm, we can
use the model to predict properties of any set of sample data (it
does not have to be Poisson sampled), for instance, the mean,
variance, and autocovariance.
The mean of the continuous-time alternating renewal process

with and
is given by [6]

(7)

and the unbiased nature of Poisson samples means that they will
see this loss rate on average. We can derive the variance of
using (3), but first we must calculate the autocovariance .
We use the following results from [11]. Recall that and

are the density of the ON and OFF period, respectively.
Denote by and by the Laplace transforms of
and , respectively, e.g.,

(8)

Then, the Laplace transform of is given by
[11, Theorem 2] to be

(9)

where is the length of the joint ON/OFF intervals,
which has density , with Laplace transform , and
mean .
When and have Gamma distributions, we can rewrite (9)

as

(10)

At this point, we have to use a numerical method to invert
the Laplace transform to find from . We use two
methods to invert the Laplace transform. We used the Week’s
method in [24], but we found thatWeek’s algorithm is somewhat
sensitive to the discretization sizes used in numerical integrals
and does not always converge. In our implementation, when the
Week’s algorithm fails to converge, we use a slightly slower but
more reliable method for computing autocovariances. Given the
model parameters, it is trivial to simulate the ON/OFF process
above for an arbitrary time period and directly measure the au-
tocovariance of this process to arbitrary accuracy. When using
this method, two parameters—themaximum lag and the number
of samples—need to be chosen carefully. In our implementa-
tion, the maximum lag for estimating is chosen to be the
maximum lag given by the real samples, i.e., the largest interar-
rival time between the samples. The simulation duration needs
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to be sufficiently large in order to compute the autocovariance
function accurately. We use a large default value of 10
samples in each simulation. This number is large enough for
most of our measurement traces with 10 or less samples. Note
that occasionally we may not get enough samples even in simu-
lation to accurately estimate for large . In these cases,
we eliminate any that has less than 30 samples in our
computation of (3).
Once we know the autocovariance function , the calcu-

lation of the variance of is straightforward based on (3). We
can then compute Gaussian confidence intervals for (we use
95th percentile intervals in our results), i.e.,

(11)

where are such that
. For example, to compute the 95% confidence intervals,

is used, and the confidence intervals would be
. In principle, we might model the dis-

tribution of measurements more accurately to refine these con-
fidence intervals, but Gaussian intervals are easy to calculate.

B. Analysis Algorithm

Our Statistically Accurate Internet Loss measurement (SAIL)
algorithm consists of three main components: measurement,
modeling, and inference. SAIL is fast and easy to use. It can be
applied to any loss trace that has probe sending times and probe
outcomes. The details of the algorithm are described as follows.
1) INPUT

a) The set of probe sending times.
b) The set of probe outcomes.

2) ALGORITHM
a) Apply the forward and backward algorithm to find

.
b) Apply the inverse Laplace transform (or simulation)
to find .

c) Compute the loss ratio and its confidence intervals.
3) OUTPUT

a) The loss ratio and its confidence interval.
b) .

VI. SIMULATION RESULTS

Simulations offer the ground truth needed to verify our anal-
ysis techniques. Of course, in simulations we lose the “richness”
of real networks, and thus the simulations in this section are only
used to show that our inference algorithm works correctly and
is essential in the computation of the errors of the estimated loss
ratio when the model assumptions are correct. We validate our
model and method in real network data in the next section.

A. Setting

We wrote our simulations in MATLAB. First, we simulate
the packet loss process as an alternating process consisting
of two Gamma random processes and according to
(4). We then sample the resulting process using a Poisson
sampler with rate to obtain samples
from which we apply our model and inference method to find

Fig. 2. Parameter estimates versus ground truth.

the following: the loss ratio, its variance, and the parameters of
the Gamma distribution of and . We compare these results
against the real values varying and
in our simulations to show that our SAIL algorithm produces
accurate results (when the underlying model is correct).

B. Results

1) Parameter Estimation: The first feature we must validate
is that we can correctly identify the parameters of our model
using the SAIL algorithm. Fig. 2 shows estimates of model pa-
rameters against the real parameters. In the top plot, we vary
, and in the lower plot, we vary (keeping other parame-

ters fixed). We repeat each simulation 10 times and report the
average values of the inferred parameters and their confidence
intervals. We have performed other experiments with other pa-
rameters with similar results (omitted due to space restrictions).
The obvious features of these plots are that the parameter

values are all estimated accurately within the limits of statistical
accuracy of our measurements. It is, however, noteworthy that
our estimates of the scale parameter have much less variability
than those of the shape parameter . The obvious question then
is “Does this significantly effect the accuracy of estimates de-
rived from these parameters?”
2) ON/OFF Durations: In order to answer the previous ques-

tion, we examine how accurately we can estimate the average
ON and OFF durations for our process. In Fig. 3, we plot the esti-
matedmean ON/OFF durations for different values of .We com-
pare our estimates to naive estimates based simply on the empir-
ical sampled ON/OFF process . Both methods generally
improve as the sample rate increases because the probes miss
fewer short ON/OFF intervals. However, for small , the naive
approach dramatically overestimates interval lengths because it
amalgamates many intervals together. On the other hand, the
performance of our SAIL algorithm is reasonable and not sys-
tematically dependent on the sample rate. The results show that
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Fig. 3. Estimated lengths of the ON/OFF intervals for different sampling rates.

Fig. 4. Inferred loss ratio and its confidence intervals for different sampling
rates.

when measuring the ON/OFF durations of a loss process, it is cer-
tainly important to compensate for the missing intervals using
methods like SAIL.
3) Comparison to Naive Methods: Is all of the above work

necessary? It would be much easier to estimate the accuracy of
using the Bernoulli estimate (assuming independent samples) or
an estimate based on direct empirical estimates of . In this
section, we show that those two methods make loss estimates
appear overly optimistic, so that we do require a method like
SAIL.
Fig. 4 shows estimates of along with 95th percentile con-

fidence intervals over a range of probing rates with ,
, , and . When we assume losses are

IID (top plot), the confidence intervals are too small—they do
not overlap the true measurement in 40% of cases (as opposed
to the 5% expected). The results demonstrate that it is critical to
incorporate correlations among the probes into the computation
of the confidence intervals.

The middle plot of Fig. 4 shows the results obtained when
we use a direct empirical estimate of to attempt to model
correlations. Surprisingly, the confidence intervals in this case
perform even worse than using the IID assumption. The reason
for this result comes from the fact that by directly estimating
the autocovariance function from the samples, we overfitted the
data, and these estimations themselves contain errors. Indeed, in
2 out of 10 cases, the empirical variance fails to produce positive
results, and we have to approximate them to 0.
Finally, the bottom plot of Fig. 4 shows that the variance com-

puted using the HSMM model and our SAIL algorithm is the
most accurate. The 95% confidence intervals contain the real
loss rate in 9 out of 10 cases (and is very close in the other case).
Certainly, these estimated confidence intervals are more useful
than the alternatives.
Note also in this bottom plot that as the sampling rate in-

creases, the length of confidence intervals grow. As the probe
rate increases, we keep the number of probes constant (

), and so the probes are more closely packed. This in-
creases the correlations between each measurements, reducing
their individual value, leading to less accurate estimates. Nei-
ther of the two previous approaches were able to duplicate this
effect.

VII. REAL INTERNET PACKET TRACES

A. Data Sources

We apply SAIL to four different datasets: 1) loss measure-
ments between dedicated measurement machines; 2) loss mea-
surements between PlanetLab hosts; 3) ping measurements to
100 Web servers in different countries; and 4) DNS server loss
measurements obtained by QUEEN [23]. The first two datasets
are used to test SAIL under network losses, whereas the other
two are used to test SAIL with losses at the DNS and Web
servers. Further details of each dataset are described below.
1) Network Losses:
1) Dedicated measurement hosts: We set up two measure-
ment hosts, one in Australia and one in Switzerland. These
are standalone, special-purposed machines. The machine
load is low, with CPU utilization always below 1% and
memory utilization below 5%. We send 10 000 Poisson
probes between the two machines with a fixed rate

packets/s. The probes are UDP packets with a
payload of 40 B. This payload is used to store the packet
sequence numbers, from which the receiver can identify
the lost packets. At the sender, we keep track of the
sending times of each of the probes. The probe outcomes
and probe sending times are used as input to the SAIL
algorithm. There are almost no other network activities in
these machines except the probes during the measurement
period. We collected in total 100 packet traces (each
with 10 000 probes) between these two machines from
March 22–27, 2009. We call these traces the dedicated
measurement traces.

2) PlanetLab data: To validate SAIL on machines in dif-
ferent locations and under different network conditions,
we also performed loss measurements between nodes on
PlanetLab [25]. We first select the source and destination
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Fig. 5. Correlation timescale of the (top) binary loss process , (middle) success run lengths , and (bottom) loss run lengths .

pair randomly among 300 hosts at different sites on Plan-
etLab, and then send Poisson probes between them sim-
ilar to the probes used in the dedicated measurements. The
traces were obtained during a one-month period between
August 7 and September 7, 2008. We call these traces
the PlanetLab traces. Note that there are several potential
problems with loss measurements on PlanetLab as shown
in [21]. Most notably, overloaded hosts can drop packets
so that losses observed by the probes may not only re-
flect network losses, but also losses that occur at the host.
Even though this artifact of PlanetLab machines affects the
ability to measure network losses, it has little impact on the
validation of our inference technique. We aim to estimate
the accuracy of end-to-end losses, regardless of the causes.

2) Web Server Losses: We test the accuracy of SAIL under
different loss mechanisms using loss measurements between
a host in Australia and the 100 most popular Web sites ac-
cording to www.alexa.com, each from a different country. We
sent 10 000 ping packets from our measurement host to the Web
servers during the 5-days period from August 23–27, 2009. To
overcome the ICMP filters that are widely used at Web servers,
we implemented our ping probes using TCP SYN packets on
port 80. The probes were sent as a Poisson process with rate

packets/s. In total, we obtained 100 web server loss
traces.
3) DNS Server Losses: We also use the dataset provided by

QUEEN [23]. These traces measure one-way losses between
146 different DNS servers all over the world. The data were
downloaded from http://cis.poly.edu/~angelawang/projects/
lossrate.htm on July 20, 2009. Overall, we obtained 511 DNS
server loss traces.

B. Validating the ON/OFF Model

1) Stationarity Test: We first test the traces for stationarity.
There is no completely rigorous way to test for stationarity, so
we use a simple heuristic test similar to the one used in [26] of
checking whether the loss ratio varies significantly in the trace.

We first smooth the loss ratio of the trace using a finite moving
average filter with a window size of 1000 packets.We then apply
two tests to the smoothed trace to test for stationarity. First, if
there is any abrupt increase or decrease of greater than 0.05, the
trace is classified as nonstationary. Second, to test the gradual
trend in the loss ratio, we fit a straight line to the data using
least-squares. If there is a total change in the average loss ratio
of 0.15 or greater, over a 1-hour trace segment, the trace then is
considered to be nonstationary.
In total, we obtain 5346 stationary traces for network

losses (combining both dedicated measurement and PlanetLab
datasets). We also remove traces with negligible loss for ob-
vious reasons, leaving 1090 PlanetLab traces and 10 dedicated
measurement traces with loss rates between 0.01% and 10%.
We obtain 23 stationary Web server traces with nonnegligible
loss ratios (between 0.01% and 20%) and 42 stationary DNS
traces with loss ratios between 0.01% and 50%.
2) Correlation Timescale of the Binary Losses, the Success,

and Loss Runs: Testing for ON/OFF renewal properties has been
done extensively in previous studies of Internet losses [26], [29].
It requires testing to see if the ON/OFF periods are independent.
In this section, we employed the autocorrelation function (ACF)
test used in [26] and [29] to test for the renewal properties of our
traces. For a sequence of numbers, e.g., ( , , or ),
the ACF test can be used to find the correlation timescale ,
which is the smallest time lag such that there is no significant
statistical evidence to conclude that samples of distance or
more are correlated. When the samples are completely uncorre-
lated, .
We first apply the ACF test to compute the correlation

timescale of the binary data. In Fig. 5 (top), we plot the corre-
lation timescale for the 1100 stationary traces in our network
loss data (10 from the dedicated measurements and 1090 from
PlanetLab). Only 25% of the traces have correlation timescale

, which means that the samples are uncorrelated. The
samples in the other traces exhibit correlation at different
timescales. Some are correlated up to a lag of 200 packets.
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Fig. 6. Cross validation for loss ratio estimated using SAIL for network losses.

These results are consistent with the findings in [26] and [29],
but the maximum correlation timescale in our traces is higher
than those in [26].
We also plot the correlation timescale of the observed

loss run lengths and success (or no-loss) run lengths
in Fig. 5. We observe that loss run lengths in Fig. 5 (bottom)
are uncorrelated in all but a small fraction of our traces. The
correlation timescale of the success run lengths are plotted in
Fig. 5 (middle). Success run lengths are uncorrelated
in about 60% of the traces.
Most significantly, in most of the traces where the bi-

nary losses have high correlation timescales, the correlation
timescales of the loss and success runs remain very small.
Therefore, most of the significant correlation in the binary
losses is caused by nearby losses in the same loss run rather
than interrun correlation.
Finally, we look at the correlation between loss run

lengths and success run lengths . Again
in about 80% of the traces, the cross correlation of the pair

is very weak (the correlation coefficient between
and is between 0.2 and 0.2), indicating that the lengths

of adjacent loss runs and successful runs bear little relationship
to each other. Hence, even though the binary losses are far from
independent, an alternating renewal process is reasonable for
the majority of our traces.
The Web server and DNS server loss traces have similar cor-

relation structure, but with higher correlation timescale for the
binary losses. We omit the details of these results.

C. Cross Validation of the SAIL Algorithm

Unlike simulations where real loss ratios are known, in packet
traces we do not know the underlying loss process. In this case,
the best method to test our SAIL algorithm is to use cross val-
idation. For each of the traces, we break the trace into two
subsamples: one called the inference trace and the other the
cross-validation trace. We divide the trace into two parts ran-
domly so that each sample has an even probability of being put
into either subsample. The subsampling property of the Poisson
process means that each of these subsamples forms a Poisson

process as well, with rate , so we can apply all of our tech-
niques to the traces. The PASTA property suggests that the two
traces should (on average) report the same loss ratio, and that
the loss ratio of one trace should lie in the 95% confidence in-
terval of the other trace roughly 95% of times. We use this fact
to test the accuracy of our estimates for the loss ratio variances.
We apply the SAIL algorithm to the inference trace to com-

pute the loss rate and its variance with the length of the discrete
time interval . We then compute the empirical loss
ratio of the cross-validation trace. We plot in Fig. 6 the loss ratio
and its 95% confidence interval provided by the SAIL algorithm
for the inference trace. We also plot on the same figure the em-
pirical loss ratio of the validation trace. In order to make the
figure comprehensible, we report on 69 randomly chosen sta-
tionary traces (similar results are seen in the other traces).
Two important observations can be made. First, the figure

clearly shows that our model gives very accurate estimates of
the loss ratio variance. In 65 out of 69 traces (94%), the valida-
tion loss ratio falls in the 95% confidence interval derived using
SAIL. In the complete dataset, 1012 out of 1100 (92%) fall in
the interval. Note that the datasets used for inference and val-
idation are completely separate, so we have satisfied our chief
goal of being able to estimate the errors of loss estimates to a
reasonable degree of fidelity. Note, however, that the results do
not reveal anything about the accuracy of the estimates for the
loss ratios.
Second, note that the width of the confidence intervals is

large. In many of the traces, the interval is larger than the loss
ratio itself. This is a fundamental property of loss ratio measure-
ments, not a failure of SAIL (a fact also supported by results
shown in Fig. 11). The intervals must be this wide to encom-
pass the intrinsic variation of loss ratio estimates. The impli-
cation is that there is a large uncertainty involved in loss ratio
measurements and extreme care needs to be taken in their in-
terpretation. In fact, it is not overstating the case to say that
loss ratio measurements are much less useful than typically as-
sumed. Without accurate confidence intervals, it would be easy
to come to erroneous conclusions, and this could have dramatic
consequences if these measurements were, for instance, used as
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Fig. 7. Cross validation for the Web server losses.

Fig. 8. Cross validation for DNS server losses.

evidence in contractual litigation (say for purported failure to
satisfy an SLA).
Similar observations can be made for the Web server and

DNS server traces as shown in Figs. 7 and 8. Again, to make
the figures comprehensible, we plot the results for all the Web
server traces in Fig. 7, but only 1/4 of the DNS server traces
(randomly selected) in Fig. 8. In these figures, we also plot the
confidence intervals when assuming that losses are IID. It can be
observed that the confidence intervals under the IID assumption
are too small—they do not overlap the cross-validation loss ra-
tios in 9 out of 23 Web server traces and 5 out of 13 DNS server
traces (shown in Fig. 8) (or 15 out of all 42 DNS server traces).
We also observe that as the loss ratio increases, the confidence
intervals grow larger (where needed) to capture the stronger cor-
relation among the packet losses. Only the SAIL algorithm can
capture this effect.
The variance can be computed either directly from the probes

(empirical variance) or using the HSMM model. We plot in
Fig. 9 the variance computed using these two different methods
for the inference and cross-validation traces. In Fig. 9 (left), we
compare the empirical variances of the two subtraces (for the
69 1-hour-long traces used in Fig. 6). We observed that the em-
pirical variances are almost completely unrelated to each other.
By this measure, the two subtraces (from the same path, during
the same time interval) appear completely unrelated. In contrast,
the variances estimated by the SAIL algorithm using the HSMM
model of the inference and cross-validation traces largely agree

Fig. 9. Cross validation of the variance.

[see Fig. 9 (right)]. The figures illustrate that while it is impor-
tant to take the correlations between the probes into account
when computing the variance of the loss ratio, it is equally im-
portant to use an appropriate method, such as SAIL, to compute
this variance.

D. Loss Ratio Prediction

Loss measurements are often used to predict future behavior.
In this section, we test that ability. The ability that SAIL gives
us to estimate accurate confidence intervals for our estimates
means that our results are the first that can rigorously detect the
difference between natural statistical variation in estimates and
errors in prediction.
We apply the technique to our 1100 stationary network

loss traces (prediction can be performed on nonstationary
traces, but requires more sophisticated estimators than we
have space to develop here). Note that if these traces were
truly stationary, then our predictions would be guaranteed to
work, but our method for testing stationarity is crude. It uses
arbitrary thresholds and cannot detect changes in higher-order
moments. Hence, the traces we examine might be considered
“stationary to the naked eye.” The question is, “Can we make
valid predictions on such crudely stationary traces, much as an
operator might in practice?”
For each of the 1100 stationary network loss traces, we divide

the traces into two subtraces. The first subtrace consists of the
first 5000 samples of the original trace, and the second subtrace
consists of the next 5000 samples of the original traces. We use
the first segment to infer the loss ratio and its variance using the
SAIL algorithm. We then compute the loss ratio of the second
segment and plot the results in Fig. 10 for the 69 traces that are
used in Fig. 6.
We observe that the loss ratio falls within the 95% confidence

interval of the computed loss ratio in 54 out of 69 traces (860
out of 1100 stationary network loss traces). Clearly, there are
some deviations in the loss ratio predictions beyond normal sta-
tistical variations, however the results suggest that prediction is
not impractical.

E. Parameter Values for Measurement Traces

We have shown in the previous sections that SAIL can ac-
curately estimate the parameters of an alternating loss process
whose durations follow Gamma distributions. In this section,
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Fig. 10. Cross validation for the predictive power of SAIL. Measurements in
the first 5000 samples are used for inference; measurements in the next 5000
samples are used for cross validation.

TABLE I
MEAN (VARIANCE) OF THE PARAMETER VALUES FOR REAL PACKET TRACES.
THE LENGTH OF THE DISCRETE TIME-SLOT IS , WHERE
DEPENDS ON THE PACKET TRACES AS DESCRIBED IN SECTION VII-A

we apply SAIL to the measurement traces in Section VII-A to
find the Gamma parameters for their loss and no-loss durations.
These values are useful in generating realistic loss processes.
We provide in Table I the mean and the variance of the parame-
ters for each of the datasets. Recall that the parameters are scaled
by . As the traces have different sampling rates,
the parameters may be scaled differently between traces.
In all of our datasets, the parameters have large variances

showing that the underlying loss process varies significantly be-
tween traces in the same dataset. These variations are expected
as the datasets span several days and are between hosts in dif-
ferent geographical locations. The mean values of the parame-
ters also vary between different datasets, reflecting the fact that
the actual causes of the losses are not the same (in-network
losses, hosts induced, etc.). All traces except the DNS traces
have large and . Thus, the loss and no-loss runs in these
traces have Gaussian-like distribution. The length of the loss
burst for the DNS traces, however, follows an exponential dis-
tribution ( ). The DNS traces also have large variances
for .

F. How Many Probes?

The final question we seek to answer is that of “How many
probes?” Formally, this is a (statistical) experimental design
question. The inputs should be the desired accuracy of the esti-
mates and the model parameters. However, we have observed a
wide range of model parameters, and it is not obvious, a priori,
how we should set these. Hence, we seek practical guidance as
to how to choose probes rates.
We explore this question by once again subsampling from our

traces with probability to obtain a new Poisson probe sample

Fig. 11. Variation in loss ratio estimate for different number of samples.

with rate . We repeat the resampling procedure 1000 times
for each resampling rate to obtain 1000 (Poisson) subsam-
ples of the same probe sequence. We then look at the empirical
distribution of loss estimates for this sequence and measure the
width of the distribution by finding the difference between the
2.5th and 97.5th quantile. The width stands in as a proxy for the
accuracy of the measurements. Note that it is not dependent on
SAIL, but only on the empirical distribution observed for the
1000 subsamples of our original data.
Fig. 11 shows the results for one trace where the loss is mod-

erate (about 1%) from our dedicated measurement dataset. The
width is shown as a function of . We also show the expected
width of the distribution for Bernoulli (independent) loss with
the same loss rate. We once again see that the width is large, so
the natural variability of loss ratio measurements is large. How-
ever, the feature of particular interest in this plot is the slow
decrease in the width as the sample rate increases (note the log
-axis). The width decreases significantly more slowly than for
the Bernoulli process. The intuitive explanation is that as we
probe at higher rates, the probes are closer together, and so they
become more correlated. More correlated data give less infor-
mation, and so the value of these extra probes is smaller than we
might hope. It is likely that there is a fundamental bound here,
similar to that in [18], below which we cannot go.
The implication is that one should accept that loss measure-

ments are (intrinsically) inaccurate and then one should probe at
a low rate. Extra probes should only be done if there is a com-
pelling case for accuracy, and the probes are undertaken with
the understanding that their cost/benefit ratio will be large.

VIII. CONCLUSION AND FUTURE WORK

We have developed SAIL, a statistically accurate Internet loss
measurement technique. SAIL employs sophisticated modeling
methods from the hidden Markov model literature to overcome
the missing intervals problem that commonly occurs when sam-
pling a loss process at a low rate. SAIL first accurately infers the
parameters of the underlying loss process and then uses them to
compute the loss ratio and along with its confidence interval.We
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show that SAIL outperforms alternative methods in both simu-
lation and real packet traces. All code and data are available at
http://bandicoot.maths.adelaide.edu.au/SAIL/.
SAIL can be improved in several aspects. First, in this

paper, we use a parametric model for the ON/OFF durations.
The HSMM algorithm used in SAIL can be extended to
nonparametric distributions. Exploring the advantages and
disadvantages of the nonparametric models is an interesting fu-
ture direction. Second, the renewal assumption can be relaxed.
However, it would require a more complicated model than the
HSMM. Keeping the complexity of such a model low will be
challenging.
Finally, it would be a great advantage to be able to compute

SAIL online, continuously updating our loss ratio estimates as
new loss measurements arrive. This is possible, but will require
further implementation work.
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