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Abstract

It has now been demonstrated in many studies that network tra�c exhibits properties consistent

with Long Range Dependence (LRD) and self-similarity. While theoretical frameworks are currently

being developed to estimate the performance of such systems, simulation will remain a valuable tool

for validating these theoretical models, and providing insight into systems which are too complicated

to e�ectively model. Furthermore, when testing real systems, it is desirable to have tra�c sources

which are realistic, and hence display self-similarity. The Fractal Renewal Process (FRP) and its

variants (including On/O� processes and superpositions thereof) have been proposed as models for

LRD processes, in particular for network tra�c. The FRP is a simple renewal point process with

heavy-tailed inter-renewal times. The long-range correlations in the process are directly introduced

by the heavy tail of the renewal times. The FRP has the great advantage that the number of

computations required to generate a time series is linear and the time series can be generated on-line,

facilitating generation of real tra�c. However, there are some problems which arise when using such

processes to generate LRD tra�c. Most notably undersampling of the heavy-tailed random variables

used to generate FRPs can lead to a truncation of the sampled autocorrelation that is not consistent

with LRD. This problem becomes clear when the processes are investigated using the wavelet based

methods of Abry and Veitch which segregate behaviour at di�erent scales. This paper will describe

the problem of undersampling, and its e�ects, and methods for avoiding the problem.

1 Introduction

It has now been demonstrated in many studies, for example [10, 14, 2, 8], that data network tra�c

exhibits properties consistent with Long Range Dependence and self-similarity. These properties have

been shown to have profound e�ects on network performance [7, 13]. While theoretical frameworks are

currently being developed to estimate the performance of such systems, simulation will remain a valuable

tool for validating these theoretical models, and providing insight into systems which are too complicated

to resolve analytically. Furthermore, when testing real telecommunications systems, it is desirable to

have tra�c sources which are realistic, and hence display self-similarity [16, 12].

The Fractal Renewal Process (FRP) [11, 15], and variants, have been proposed as models for Long-

Range Dependent (LRD) or statistically self-similar data [18, 16, 15, 7, 11, 21]. The FRP is a simple

renewal point process with heavy-tailed inter-renewal times. The long-range correlations in the process

are directly introduced by the heavy tailed renewal times { the only mechanism available because in

a renewal process there can be no connections across renewal points. This process has been proposed

as a method for generating tra�c for simulation, and for testing switching equipment, for instance by

modeling packet or cell arrival times as a FRP.

Variants of the above include renewal reward processes in which 1 or more Markov renewal processes

are simulated. At each renewal time a reward is chosen, either dependent on the state (e.g. the On/O�

processes described in [7, 21] and elsewhere), or independently (e.g. the Spatial Renewal Process (SRP)

described in [17]). The reward speci�es the tra�c rate between renewal times. There are also classes of

doubly stochastic Poisson processes driven by FRPs, for instance the Fractal Shot Noise Driven Poisson

Process, and the Fractal Binomial Noise Driven Poisson Process of [11, 15].

Superpositions of the above models may be taken to provide more complex models of tra�c, and in

fact as the number of superposed sources goes to in�nity, in a number of cases, depending on the kind of

renormalisation, the superposition approaches either the LRD Fractional Gaussian Noise (FGN) process,

or an �-stable process.
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These techniques share the important advantage that the number of computations required to generate

a time series for simulation is linear in time, and the series can be generated on-line, that is, a point at a

time, for as long as necessary. The �nal point is critical if the method is to be used to generate real test

tra�c [16].

This report outlines a problem that may be encountered when attempting to use these processes for

simulation or generation of LRD tra�c. The problem is present in all renewal based models to a greater

or lesser extent. We will focus here on the FRP in order to make the problems clear.

The problem lies in the fact that the correlations over long time scales are introduced by the heavy tail

of the inter-renewal times. Thus, in order to see correlations over a particular time scale in a particular

realisation of the process, there must be a signi�cant number of inter-renewal events of this length or

greater present. However, in many cases, the random variables involved are not sampled su�ciently often

for the larger values to occur in a typical realisation. Hence the sample autocorrelation function is in

e�ect truncated, it does not provide a valid estimate of the ensemble autocorrelation function at large

lags. In theory, the sample autocorrelation function converges to the ensemble autocorrelation function,

but in practice the convergence can occur too slowly to be useful.

This property has not, to the authors' knowledge, been understood before, though a number of

published results could be due to this e�ect (e.g. the behaviour of the variance vs. aggregation level plot

of the SRP of [17]). This new understanding has arisen through using a sharper tool for investigating self-

similar phenomena. We use the wavelet transform (and the related Abry-Veitch estimator), to investigate

the FRP. The advantage of this approach (apart from the computational bene�ts of the algorithm,

namely O(n) complexity, and on-line implementation) is that the wavelet transform separates the scaling

behaviour into approximately independent coe�cients at each scale, allowing investigation of the scaling

phenomena of a process at set scales, independent of the behaviour elsewhere.

2 The Fractal Renewal Process

The Fractal Renewal Process (FRP) and its variants described above have been adopted as a means

of modeling tra�c for two reasons. The �rst is an empirical study of real data networks [21] which

has shown that when tra�c is broken into di�erent source/destination 
ows these 
ows act as On/O�

sources which can be modeled using an alternating renewal process, which is both intuitively simple and

computationally e�cient. The second reason is that these renewal based processes can easily be made

LRD by choosing regularly varying or heavy-tailed on and/or o� times, resulting in FRPs, consistent both

with the observations of LRD in individual 
ows, and in aggregate data network tra�c measurements.

By heavy-tailed here we mean more speci�cally power-law with in�nite variance. Recall also that by

LRD we mean slow power-law decay of the autocorrelation function, as discussed later.

For the remainder of the paper we consider a FRP where the inter-renewal time distribution is heavy-

tailed with in�nite variance, in fact Pareto distributed as described below. Unless stated otherwise we

will consider the equilibrium renewal process, that is where the time of the �rst arrival or event has a

di�erent distribution from that of the rest of the events { we do not assume an arrival at time 0. By

choosing the �rst arrival time to be the residual life time of the usual distribution, the FRP becomes a

stationary process, and is thus more suitable for our purposes.

The Pareto distribution is a commonly cited example of a regularly varying, or heavy-tailed distribu-

tion. One form of the Pareto distribution has Probability Distribution Function (PDF)

F (x) = 1�

�

a+ x

a

�

�


;

and density

p(x) =




a

�

a+ x

a

�

�
�1

;

for x � 0. For 
 2 (1; 2] (the case of interest here) this distribution has mean a=(
 � 1) and in�nite

variance. We shall use this distribution for purposes of exposition. The results can be extended to other

heavy-tailed distributions, and intuitively only the slow decay of the tail is important.
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2.1 Tracking the Largest Scales

The question of critical interest to us here is, given n samples from such a distribution, what is the largest

value we can reliably hope to see? Thus we consider the survival function of the Pareto distribution:

prob(X � x) =

�

x+ a

a

�

�


: (1)

If we have n independent trials chosen from the Pareto distribution, then

prob(X � x for at least one of n trials)

= 1� prob(X � x for all n trials)

= 1� [prob(X � x for a single trial)]

n

= 1�

"

1�

�

x+ a

a

�

�


#

n

(2)

By choosing a �xed p = prob(X � x for at least one of n trials) we can compute the largest sample

which will appear in our time series with this probability (or greater), which we denote by L(n; p).

Rearrangement of Equation 2 gives

L

max

(n; p) = a:

�

1� (1� p)

1

n

�

�

1




� a

� a:

�

1� (1� p)

1

n

�

�

1




(3)

for n large, p > 0. This `largest event' determines the largest lag and scale on which the (�nite length)

realisation of the corresponding renewal process can display correlations. We de�ne this largest scale

S

max

(n; p) to be the logarithm of the size of the largest event, that is

S

max

(n; p) = log

2

(L

max

(n; p))

' log

2

(a)�

1




log

2

�

1� (1� p)

1

n

�

; (4)

for large n.

Next recall the well known limit as n!1,

�

1�

x

n

�

n

! e

�x

�

1 +

ln(1� p)

n

�

n

! (1� p);

by taking x = � ln(1� p). Taking a power of 1=n then rearranging gives

�

1 +

ln(1� p)

n

�

! (1� p)

1

n

;

�

1� (1� p)

1

n

�

! �

ln(1� p)

n

;

1

�

1� (1� p)

1

n

�

!

n

� ln(1� p)

;

The net result is that

S

max

(n; p)

n!1

� log

2

(a) +

1




log

2

�

n

� ln(1� p)

�

: (5)

Figure 1 shows S

max

vs. log

2

(n) for p = 0:99 and a number of values of 
. This largest scale gives

a measure of the maximum extent of the correlation structure of an ordinary (non-equilibrium) FRP.

Obviously, when constructing a FRP from the inter-renewal times described, the length of the time series

T =

P

n

i=1

X

i

will vary. However, we may note that in the �gure we have chosen a = 
�1 in each case so
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that the mean inter-renewal time is 1. Thus, for a long time series we can expect from standard renewal

theory that the time series will be of length T � n. Nonetheless, the central limit theorem does not

apply in this case as the distribution in question has in�nite variance, however for 
 2 (1; 2] convergence

does still occur, albeit much more slowly than we would like. To �rst order therefore, the cuto� scale

identi�ed in Figure 1 for n Pareto samples can be taken as the cuto� scale for the (ordinary) FRP up to

time T � n.

0 5 10 15 20 25 30
0

5

10

15

20

25

S
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a
x
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; 
0

.9
9

)

log
2
(n),  n = sample size

Scale appears in sample with probability p=0.99

γ = 1.2

γ = 1.5

γ = 1.8
γ = 2.0

SRD case

Figure 1: The largest scale which still has a probability p = 0:99 of appearing in n Pareto samples X

i

,

with E[X

i

] = 1, for four values of the exponent 
 (a = 
 � 1). Note that the slope of the lines is less

than 1, and is lowest for 
 = 2:0, the Short Range Dependent (SRD) case.

A key observation is that the scale of the largest event is smaller { by several orders of magnitude {

than the average length n of the data series. Thus the phenomenon of undersampling of large scales is

not due to rare extreme cases where a single inter-arrival dominates the length of the time-series, where

T would be far from n. On the contrary, even for realisations where the length T is close to n, scales well

below the size of the series are systematically under-represented. Note also that the slope of the lines is

less than 1, so that the problem becomes more noticeable for longer time series (rather than better as

one might hope).

Also, contrary to intuition, this problem becomes worse as 
 ! 2, that is as we approach the Short

Range Dependent (SRD) case. Most problems associated with LRD (slow convergence of simulations

etc.) become worse as 
 ! 1. Though the counterintuitive nature of the problem is important, the fact

that the problem appears worst in the SRD case is misleading. It is a simple re
ection of the fact that

large samples are even rarer for variables with a variance than for those without. The undersampling is

simply not noticed in the SRD case as large lags are unimportant, and also very small by de�nition, and

so easily obscured by noise.

2.2 A Re�nement Through Extreme Value Theory

Extreme value theory [9] can be used to estimate the limiting distribution of the maximum of a series of

random variables. The theory leads to three classes of limiting distributions, each with its own region of

attraction, that is classes of distributions which correspond to the di�erent extreme classes.

For instance, [9, Ex.1.7.6, p.22] shows that the Pareto distribution lies within the region of attraction

of the Extreme Value Distribution of Type II. That is, the limiting distribution for the appropriately
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scaled maximum of a series of Pareto random variables with PDF

1

F (x) = 1�

�

x

a

�

�


;

is an Extreme Value Distribution of type II. The PDF of the maximum

M

n

= max

n

fX

n

g;

of the series X

i

of n Pareto random variables, scaled by 1=(an

1




) obeys

P

�

M

n

an

1




� x

�

! e

�x

�


;

so that, setting x = �

�1=


, the maximum itself has a distribution obeying

P

�

M

n

� a

�

n

�

�

1




�

! e

��

:

Applying this result by setting constant 1� p = e

��

and thence � = � ln(1� p) we get

P

(

M

n

� a

�

n

� ln(1� p)

�

1




)

! p

Therefore in the limit as n!1 we get a similar result to before for the largest sample corresponding to

probability p, namely

L

ex

(n; p)! a

�

n

� ln(1� p)

�

1




and again, taking the logarithm to obtain the corresponding scale, we have

S

ex

(n; p) ! log

2

(a) +

1




log

2

�

n

� ln(1� p)

�

: (6)

Note that this agrees with our previous asymptotic results L

max

(n; p) and S

max

(n; p) respectively, obtained

by more heuristic arguments.

2.3 Number of events of a given scale

Extreme value theory also shows that the number of events to exceed a threshold approaches a Poisson

distribution (under the right circumstances). Thus we can easily predict the largest scale for which at

least k larger events will occur with probability p. From [9, Thm 2.1.1, p.32], we note that the probability

that S

n

out of n samples exceed the level u

n

, which in the Pareto case is given by u

n

= a

�

n

�

�

1




, has

distribution

PfS

n

= kg � e

��

�

k

k!

;

for k = 0, 1, 2 : : :, n, and the mean number of exceedances will be � .

One could set � to some value, say 10 to ensure that a reasonable number of events fall above the

threshold. The corresponding minimum value of n required to see a certain scale could be found by

inverting the expression for the level u

n

(�) given above.

2.4 Discussion

We have given the distribution of the number of Pareto samples larger than a particular scale, and in

particular, the distribution of the largest of these samples. The important fact to note is that the size of

this largest event increases more slowly than the number of events n. In the corresponding FRP the size

of these inter-arrival events, and their number, are directly related to the correlation scales in the process,

1

This is a right shifted version of the Pareto distribution used earlier. This change has no e�ect on the asymptotic

extreme value distribution, but makes the mathematics easier.
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and the length of the process respectively. Thus as the number n of renewals increases the maximum

correlation scale in the process increases more slowly than the total length of the realisation { a fact

which should be intuitively obvious but which is obscured by the details of the process.

This property is a general feature of renewal processes and is insensitive to details of the inter-arrival

distribution. Indeed, it persists, in fact is more severe, in the `light-tailed' or SRD case with 
 = 2:0.

In the light-tailed case however we do not care if these events are undersampled, because they will have

little e�ect on the overall behaviour of the process. In contrast, in the heavy-tailed case the absence of

the large events in the sample can drastically e�ect its properties. In particular we will see that their

absence prevents the sample autocorrelation function from converging to the ensemble autocorrelation

function above a cuto� scale which depends on n.

3 Long Range Dependence and the FRP

In this section we will very brie
y describe some experimental results. We have conducted other exper-

iments over a range of parameters for veri�cation, but have restricted the set of examples here to make

our point more clearly.

The experiment described here involves simulating a FRP for a set integer time t = N . In our context

the renewals might model packet arrivals from a data link. To study this process we divide time into

uniform intervals: [0; 1), [1; 2), [2; 3) : : :, [N � 1; N), and we count the number of renewal events to occur

during each, and denote them by Y

1

, Y

2

, Y

3

: : :, Y

N

. This forms our basic time series Y

k

.

3.1 Long Range Dependence

Long Range Dependence (LRD) refers to the slow decay of the process's autocorrelation function r

Y

(k) =

C

Y

(k)=C

Y

(0), where C

Y

(k) is the autocovariance function, de�ned by C

Y

(k) = E[(Y

n+k

�

�

Y )(Y

n

�

�

Y )],

and where

�

Y is the mean (note stationarity means that each of these is independent of n). In fact, we are

concerned with processes for which the autocorrelation's decay is so slow that the sum of all correlations

beyond any given lag is in�nite, and therefore signi�cant, even if individually the correlations are small.

The past therefore exerts a long term in
uence on the future, exaggerating variability and rendering

statistical estimation problematic. Commonly, a more practical de�nition is adopted { LRD is de�ned by

a power-law decay in the autocorrelation r

Y

(k) � �c

r

jkj

�(1��)

, � 2 (0; 1), or equivalently as the power-law

divergence at the origin of its power spectrum: f

Y

(�) � c

f

j�j

��

; j�j ! 0. The Hurst parameter describes

the (in practice, asymptotic) self-similarity of the cumulative or counting process

P

n

k=1

Y

k

while the LRD

parameter � describes the rate process Y

n

. It is nonetheless common practice to speak of H in relation

to LRD via the relation H = (1 + �)=2, and we follow this convention here.

3.2 The FRP and LRD

One of the principal reasons for using FRPs and their variants is that these processes are LRD, which is

consistent with data network tra�c measurements.

For FRP type models the autocorrelation function is given by [15] as

r(k) =

1

1 + T

�

0

1

2

r

2

(k

�+1

);

where the central di�erence operator is given by

r

2

�

f(k)

�

= f(k + 1)� 2f(k) + f(k � 1);

and T

0

depends on the exact distribution of the renewal times. For large k this relationship can be

approximated by

r(k) � ck

��1

;

for some constant c, agreeing with the de�nition of LRD given above.

For the speci�c case of the FRP described above � = 2 � 
, and the Hurst parameter is given by

H = (3 � 
)=2. Note that when 
 = 2 the Hurst parameter is 0:5 corresponding to the SRD case, but

that for 
 < 2 the Hurst parameter is > 0:5 leading to LRD.
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Note however, that the result above is an ensemble average! That is, the expectation in the de�nition

of the autocorrelation refers to the average over an in�nite set of realisations of the process. Typically

ensemble averages, for example the mean of the process, are estimated using a time average: the sample

mean of one realisation of a time series. Many processes, including FRPs, possess ergodicity proper-

ties which guarantee that time averages do indeed converge to ensemble averages. However, ergodicity

does not specify how quickly this convergence occurs. We shall see here that the undersampling e�ects

described above lead to the sample autocorrelations at large lags (calculated using a time average) con-

verging too slowly to be useful estimates of the ensemble autocorrelations. Therefore any property of the

process dependent on the autocorrelation at high lags (for instance LRD) will also be a�ected by this

lack of convergence.

3.3 The Abry-Veitch estimator

We now brie
y introduce the wavelet analysis tools to be used to analyse the data.

In [20, 19] a semi-parametric joint estimator of the spectral domain parameters of LRD: (�; c

f

) is

described based on the Discrete Wavelet Transform (DWT). Wavelet transforms in general can be un-

derstood as a more 
exible form of a Fourier transform, where Y (t) is transformed, not into a frequency

domain, but into a time-scale wavelet domain. The sinusoidal functions of Fourier theory are replaced

by wavelet basis functions  

a;t

(u) �  

0

(

u�t

a

)=

p

a, a 2 IR

+

, t 2 IR generated by simple translations and

dilations of the mother wavelet  

0

, a band pass function with limited spread in both time and frequency.

The wavelet transform can thus be thought of as a method of simultaneously observing a time series at

a full range of di�erent scales a, whilst retaining the time dimension of the original data. Multiresolu-

tion analysis theory shows that no information is lost if we sample the continuous wavelet coe�cients

at a sparse set of points in the time-scale plane known as the dyadic grid, de�ned by (a; t) = (2

j

; 2

j

k),

j; k 2 IN , leading to the DWT with discrete coe�cients d

Y

(j; k) known as details. Intuitively, the dyadic

grid samples the wavelet domain at a resolution appropriate to the scale. Henceforth we will deal exclu-

sively with the details of the DWT, which can be calculated in O(n) time. Scale, which can be thought

of as the inverse of frequency and similar to lag, is often measured in logarithmic units j, where a = 2

j

,

and k plays the role of time (although a time whose rate varies with j).

For �nite data of length n, j will vary from j = 1, the �nest scale in the data, up to some j

max

�

log

2

(n). The number of coe�cients available at octave j is denoted by n

j

, and approximately halves with

each increase of j.

The main feature of the wavelet approach which makes it so e�ective for the statistical analysis

of scaling phenomenon such as LRD is the fact that the wavelet basis functions themselves possess

a scaling property, and therefore constitute an optimal `co-ordinate system' from which to view such

phenomena. The main practical outcome is that the LRD in the time domain representation is reduced

to residual short range correlation in the wavelet coe�cient plane fj; kg, thus removing entirely the

special estimation di�culties. Thus for each �xed j, the series d

Y

(j; �) can be regarded as a stationary

process with weak short-range dependence, and these series can be regarded as independent of each other.

The long-range dependence now manifests itself in a statistically benign way- by controlling the way the

variances of the d

Y

(j; �) change with scale, rather than modulating the co-variance structure.

To measure the second order properties of the data we compute a set of statistics �

j

using

�

j

=

1

n

j

n

j

X

k=1

jd

Y

(j; k)j

2

: (7)

The �

j

are non-parametric, unbiased estimators of the variance of the d

Y

(j; �) (the means of the details

are zero), and can be thought of as a way of concentrating the gross second order behavior of Y at octave

j. Furthermore, the �

j

are themselves only weakly dependent, so the analysis of each scale is largely

decoupled from that at other scales. Therefore, to analyze the second order dependence of Y

n

on scale,

we are naturally lead to study �

j

as a function of j. Since we consider LRD to be essentially a power-law

behavior of second order moments, this is naturally done in a log-log plot, called the Logscale Diagram

(see Figure 2). The Logscale Diagram is a kind of spectral estimate, where frequency has been replaced

by its inverse, scale, in a discrete logarithmically spaced grid.

We can now outline the estimator for the parameters of LRD as consisting of the following four stages:

1. Wavelet decomposition: A discrete wavelet transform of the data is performed, generating the

details d

Y

(j; k) over the dyadic grid.

7



2. Detail variance estimation: At each �xed octave j the details are squared and averaged across

`time' k to produce �

j

, an excellent estimate of the variance of the details, �

j

, the average of the

squares of the details at a given j, is an estimate of the variance at that j. For LRD processes these

variances follow a power-law in j with exponent �.

3. Analysis using the Logscale Diagram: From the plot of y

j

= log

2

(�

j

) against j, the Logscale

Diagram

2

, the scaling range (j

1

; j

2

) where scaling occurs (alignment observed) is determined.

4. LRD parameters estimation: The LRD parameters H and c

f

are extracted by performing a

weighted linear regression over the scaling region

345

.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Octave j

y
(j
) 

=
 l
o
g
2
( 

m
u
j 
) 

−
 g

(j
) 

)

α̂ = 0.53

ĉf = 5.97

4 ≤ j ≤ 10

Figure 2: Stages 3 and 4: estimation from the Logscale Diagram. An example of the y

j

against

j Logscale Diagram and regression line for a LRD process with strong SRD. The vertical bars at each

octave give 95% con�dence intervals for the y

j

. The series is simulated fARIMA(0,d,2) with d = 0:25

(� = 0:50) and 	 = [�2;�1] implying c

f

= 6:38. Selecting (j

1

; j

2

) = (4; 10) allows an accurate estimation

despite the strong SRD: �̂ = 0:53� 0:07, ĉ

f

= 6:0 with 95% con�dence interval 4:5 < ĉ

f

< 7:8.

An example of the regression �t using a simulated data set is given in Figure 2. The 95% con�dence

intervals for each y

j

, shown as vertical lines at each octave j, are seen to increase with j. A plot such

as this of y

j

against j, complete with con�dence intervals about the y

j

, has been termed the Logscale

Diagram [20, 1], and constitutes an e�ective starting point for the analysis of scaling phenomenon. The

estimator, being semi-parametric, requires an analysis phase prior to estimation to determine the scaling

range where alignment is observed in the Logscale Diagram (see [1] for further details on the reading of

Logscale Diagrams).

The choice of alignment range j 2 (j

1

; j

2

) over which straight line behaviour is observed, and estima-

tion performed, is particularly relevant here. For LRD data we expect that there will be some lower scale

j = j

1

at which the power-law scaling will `begin', and the scaling will continue up to the largest scales

in the data, because LRD is de�ned as an asymptotic phenomenon valid at large scales. This is indeed

what is observed in Figure 2, the log-scale diagram of a simulated fARIMA (fractional Auto-Regressive

Integrated Moving Average) process. As we will see however, despite the sure knowledge of LRD in the

FRP series we examine, there exists an upper cuto� scale j

2

for the scaling behaviour that must be chosen

considerably smaller than j

max

� log

2

(n). This is the observation that motivated the present work.

2

In forming Logscale Diagram small corrective terms g(n

j

) are in fact subtracted from log

2

(�

j

) to compute y

j

to account

for the fact that E [log] (�) 6= log(E [�]).

3

H is related to the slope of the plot, and c

f

to a power of the intercept.

4

The weights are functions of the known variances of the y

j

and do not depend on the data.

5

Con�dence intervals for H are derived from the standard variance formulae for weighted linear regression with mutually

independent y

j

, and so again are not functions of the data.
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3.4 Numerical Results

In Figure 3 the Logscale Diagrams of four realisations of the FRP are shown with H = 0:75. The �gure

also shows the length of the time series used (N = 2

20

), the number of renewal events n, and an estimate

of the Hurst parameter, based on regression over the scales (j

1

; j

2

) between the vertical dashed lines.

In addition, superimposed over the Logscale Diagram, and sharing the same axes, is the log

10

of a

histogram h(j) of the number of events at scale j (crosses). Each Pareto sample x was binned into scale

j given by

j =

�

0; for x � 1;

dlog

2

(x)e; for x > 1:

The histograms show that there is an upper scale, around j = 13, above which samples of the Pareto

random variable do not occur in these realisations, and that this cuto� scale is far smaller than the length

of the data. Also plotted on the graph is a horizontal line at 1, corresponding to 10 events, de�ning a

related cuto� scale, around j = 10, where events become too scarce for reliable representation. Note that

the previous sections predicted scale at which this cuto� would occur is 10.9, based on the length of the

time series (and the estimated number of events the time series would include), or the actual number of

events in each of the four time series realisations considered.

As noted previously the y

j

(plotted as stars) should, up to the 95% con�dence intervals (dark vertical

lines), lie on a straight line above a lower cuto� scale j

1

where the LRD `begins'. We have chosen j

1

= 7.

The crucial issue here however is the choice of the upper cuto� scale. Rather than selecting the largest

scale available in the Logscale Diagram, j = 17, we are guided by the `largest scale' j = 10 selected above

by the cuto� corresponding to having at least 10 events. The LRD parameter estimation is therefore

performed over (j

1

; j

2

) = (7; 10), where excellent alignment is observed in each Logscale Diagram. It is

clear from the plots that the y

j

at the higher scales do not lie on the dotted extension of this plotted

regression line. In fact in each case the systematic deviation of the y

j

away from the line begins almost

as soon as the histogram values drop below the magical mark of ten, and become more severe at higher

scales.

Examining the four di�erent realisations we see that the estimates at higher scales are highly variable

as well as systematically biased. This e�ect is the result of the undersampling of events at these scales. If

these scales were used in estimation of the Hurst parameter, then a quite inaccurate estimate might result,

but more importantly, the process itself yields sample paths where correlation structure is truncated, or

at least strongly distorted.

We should note at this point that although the con�dence intervals have been calculated using Gaus-

sian assumptions, which do not hold true for this process, the results seem to indicate a systematic bias

regardless of variation.

3.5 Sample Autocorrelation Function

We have used the wavelet transform to investigate directly the properties of the process as a function of

scale. As already noted however, there is a direct link in the FRP between scale and correlation length. It

is of interest therefore to examine the autocorrelation function directly. We give only one example here,

mainly to illustrate that in fact the sample autocorrelation function is a poor tool. While the wavelet

based method separates behaviour at di�erent scales well, the sample autocorrelation function below does

not. Hence the e�ect described above is not so clear cut as the distortion does not begin at a particular

scale, but rather corrupts a large range of values. In other words, e�ects due to poor estimation are

mixed with those of the missing scales phenomenon.

The sample autocovariance [4, p.18] of a sequence of N values can be computed as

^

C(k) =

1

N

N�jkj

X

n=1

(Y

n

�

�

Y )(Y

n+jkj

�

�

Y );

for �N < k < N , where

�

Y is the sample mean of the process

�

Y =

1

N

P

N

n=1

Y

n

. The sample autocorrela-

tion function may then be estimated using

r̂(k) =

^

C(k)=

^

C(0):

Note that these two estimates are computed from time averages of a single realisation of the process.

9



0 5 10 15 20
0

2

4

6

8

10

Octave j

y
(j
)

H
true

 = 0.75 
H

est
  = 0.74 ± 0.02

λ =   1.00 
seed = 1 
no. of data = 2

20
 

no. of events= 1070901 

(a) SEED = 1
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Figure 3: The log-scale plots for the regression variables y

j

(stars) for the FRP. The vertical dashed

lines indicate j

1

and j

2

, the range of scales used to calculate the regression line, itself shown as a solid

(dotted) line within (outside) this range. Actual and estimated Hurst parameter values are shown, with

95% con�dence bounds based on Gaussian assumptions. The �gures also show as +'s the log

10

of the

number of events to occur at each scale (set to zero in the case of zero events). The horizontal dashed

line at 1 shows when the number of events at a particular scale drops below 10 - and is used to de�ne j

2

.
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Figure 4 shows an example of the sample autocorrelation for the FRP together with the theoretical

ensemble autocorrelation function. A log-log scale is used so that we can easily check for the expected

straight line of the ensemble autocorrelation. To facilitate comparison, vertical lines have been plotted

at lags which correspond to the scales (j

1

; j

2

) from the wavelet analysis.

First note that the sample autocorrelation only follows the theoretical value for a range of small

lags. At the other extreme, above scale 10 the correlations fall below the horizontal line corresponding

to the 95% con�dence interval for the sample autocorrelation of an IID Gaussian series [4, p.18]. They

therefore cannot be used to infer the shape of the correlation function. The fact that so many scales

fall in this range is a measure of the strength of the undersampling present. Below scale 10 however the

autocorrelation estimates are above this line and are therefore signi�cant, but are nonetheless far from

the theoretical values. It is clear that slopes calculated in this plot over this range, for example between

the vertical lines, would yield highly inaccurate estimates. Here the estimation is not strongly a�ected

by the undersampling, but remains poor due to the statistical di�culties of time domain estimation in

the presence of LRD. This phenomenon is well understood [3].
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X
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)|
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20

, 1 source

sample autocorrelation  
ensemble autocorrelation

Figure 4: A log-log plot of the absolute value of the sample and ensemble autocorrelation functions (at

a representative set of lags). The vertical lines show the same scales used in Hurst estimation using the

wavelet method- here estimation in this range is very poor. The horizontal line gives the 95% con�dence

interval for the sample autocorrelation of an IID Gaussian series. Points above this line indicate a

signi�cant correlation, while points below could be due to chance.

4 Implications

We have shown how the sample autocorrelations of an FRP do not re
ect the theoretical ensemble

autocorrelations at large, or even medium, timescales. This has two major implications. The �rst is

in estimation of the parameters of the process. It is obvious from the autocorrelation plot in Figure 4

that attempting to measure the LRD parameters from this plot would be di�cult. However even more

advanced estimation methods, such as the AV estimator, su�er from similar problems. The advantage

of the AV estimator is that, given an upper cuto� scale below which the truncation e�ects will have

very little e�ect (and we have shown how to estimate such a cuto�), the wavelet estimation is still good.

That is, if the correct scaling behaviour is actually present, then it can be detected cleanly in the wavelet

framework, due the scaling properties inherent in the wavelet basis itself. Thus we can still obtain an

accurate estimate, provided we know approximately how many renewal events have been measured.

The second major consequence of the work above is in simulation { an area where their use has often

be advocated. We are not saying that FRPs and their variants should never be used in simulation, but
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merely that great care be taken in their use. This is of course the case whenever simulating systems

in which heavy tails play a part. It is known for example that heavy-tails can have drastic e�ects on

the convergence of estimates [5, 6]. We have noted here that because the FRP generates correlations

through large events, we must keep track of the number of events at each scale in order to know whether

correlations on that scale are represented in the data. It follows that if we are interested in measuring

any phenomena at all on a particular time scale, we must be sure that that time scale is represented

in the data. This applies doubly when trying to measure phenomena which are the result of LRD { an

asymptotic property relating di�erent scales. In short, simulations must be run long enough to generate

enough events of the type needed, rather than just up to some �xed time, implying far longer simulations,

and more careful monitoring.

Note that for particular situations such as the FRP with Pareto inter-arrivals, it is su�cient to simply

keep track of the number of Pareto events, and the largest scales available can be computed using the

formula provided here.

The careful reader will note that when large numbers of FRP sources are superimposed the problem

is diminished because there will be a larger number of events in a simulation of �xed length. In the limit

as the number of sources goes to in�nity, with the average rate of each source going to zero, and the total

rate remaining constant, we may arrive at some limiting process, for example FGN. One could consider

generating such limit processes directly, without making use of FRPs, and thereby bypassing the missing

scale problem. Furthermore, simulation of a large but �nite number of sources requires a large amount of

computational power. Though the computations can be easily parallelised, not everyone has a MasPar

available for doing tra�c simulations (for instance see [21]). Finally, for any �nite number of sources the

undersampling problem will eventually recur for a long enough tra�c sequence, thus necessitating the

care advocated above in any case.

5 Conclusion

The problem described above, truncation of the sample correlation structure of a process through under-

sampling, occurs to a greater or lesser extent in all FRP variants. We have shown how the phenomenon

leads to the e�ective loss of a large number of scales in the estimation of second order quantities such

as the correlation function. We have pointed out that this is particularly problematic for the estimation

of LRD, which is a phenomenon de�ned at large scales, causing a di�culty even for the wavelet based

estimator of Abry and Veitch. A method for estimating a cuto� scale above which estimates fail to

capture the ensemble correlation structure is given. Wavelet based estimates using this scale as an upper

limit of the estimation range can recover the correct parameters. In contrast, even in the light of this

cuto� scale, time domain estimates are unreliable.

In future work, a more rigorous connection between the ensemble characteristics and the sample path

properties for the FRP could be made, using the ergodic theory of renewal processes and other techniques.

This could lead to methods of including the information present at larger scales, via bias and variance

correction factors which explicitly take into account the highly non-Gaussian nature of the data. More

general methods of determining the cuto� scale could be considered, based on some general considerations

of tail behaviour of the inter-arrival distribution, generalising the speci�c Pareto result.
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