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Abstract:  Overload control is critical in preventing congestion in modern
switching networks. One method, hysteretic overload control, uses two thresh-
olds, a congestion onset and a congestion abatement threshold, to detect con-
gestion. Variations of this method of overload control have been used in the Sig-
naling System Number 7 (SS7) protocol specified by the ITU-T (International
Telecommunications Union, Telecommunications Standardization Sector) and
also proposed for use in broadband networks. We provide an analytic technique
for investigating the performance of such congestion controls and thence setting
parameters such as the threshold levels. The technique relies on a martingale—
based relationship between a queueing process and an embedded renewal process.

1 Introduction

How does one protect a modern switching network from overload? Answering
this question has become critical to the reliable operation of modern switching
networks, because of the increase in services with unpredictable traffic loads.
An example is provided by the Common Channel Signaling traffic associated
with Intelligent Network services such as ‘televoting’. In essence, there are two
related questions: how to detect or measure the congestion caused by an over-
load and how to mitigate it. A simple and intuitively appealing mechanism to
detect congestion is a queue-length threshold. The purpose of this paper is to
examine the behavior of systems that use two distinct queue-length thresholds
to detect congestion. Such a technique has been recommended for the Signaling



System Number 7 (SS7) protocol [1, p. 313], [2], and proposed for application
in broadband networks [3].

Congestion is detected via a pair of queue-length thresholds, a congestion
onset K, and a congestion abatement threshold K,. For example, in the SS7
protocol, a link is considered congested if the number of messages in the Signaling
Transfer Point (STP) link transmit buffer exceeds the onset threshold, and the
link returns to the uncongested state only when the number of messages in the
buffer falls to the congestion abatement threshold or below. The two thresholds
typically are chosen so that K, < K,, leading to a hysteretic effect, described
below.

When congestion occurs the control acts to reduce the input traffic by dis-
carding some of the input packets. In broadband networks selective discard of
packets [4] discards low priority packets to minimize the impact on perceived
quality of service. The model used here for the discard strategy is Percentage
Throttling (PT), where some percentage of the originating traffic is randomly
blocked at the source. In this model we assume that blocked traffic is lost from
the system, that is, customers do not retry at a later time, or alternatively
packets are not retransmitted.

Rumsewicz and Smith [2] used simulations to compare a realistic implemen-
tation of this overload control with others used in SS7. Their results indicated
that a simple system as described above (though with more than one level of
throttling) was preferable to more complex systems that use multiple thresholds
for different priority messages.

There are a number of mathematical analyses of various overload control
systems in which K, = K,. For instance, Morrison [5] investigated a system in
which a second server is added when congestion is detected. Gong and Cassan-
dras [6] considered a system in which the arrival rate is dependent on the number
of customers in the queue. Both these examples are limited to systems in which
service times are exponentially distributed. Perry and Asmussen [7] considered a
queue with generally—distributed service times and an admission policy based on
either the workload in the queue or the sojourn time of a customer in the queue.
More recently Leung [3] considered a system with the service-time distribution
dependent on the workload in the system.

These examples do not allow for the two distinct thresholds that lead to the
hysteretic effect in which the queue exhibits different behavior when the load
increases, from that as it decreases. Hysteresis has been suggested as a mech-
anism to reduce the number of times the congestion status switches state [1],
reducing any cost associated with this switching.

The block-matrix methodology of Neuts [8] has been used by Neuts [9] and
Li [10] to derive numerical results for systems with hysteretic thresholds. In



this paper we use an analytic form for the generating function of the number of
messages in the buffer, found using an elegant martingale-based methodology.
The closed—form result requires little computation to evaluate the queue—length
distribution and thence the queue utilization and the blocking probability in the
finite-buffer case. Further, the method allows the derivation of critical features
of the overload control, such as the time between the onset and abatement of
congestion.

The buffer is modeled using a variant of the M /G /1 queue in which the queue
state is separated into two regimes, congested and uncongested, each with its
own arrival rate. The technique relies on a martingale analysis based on the
work of Rosenkrantz [11] and Baccelli and Makowski [12, 13] and extended by
Roughan in [14] and [15]. Perry and Asmussen [7] have used similar arguments.

Our main result, Theorem 3, which gives the probability generating function
for the distribution of the number of customers in the system (as seen by an
arriving customer), was conjectured in [15]. We provide a proof of this con-
jecture through Theorem 2, which demonstrates the conditions required by the
conjecture. We derive a number of quantities including

e the probability the queue is congested (in Section 3.5),

e the traffic load accepted by the system (Section 3.5) and

e the time between onset and abatement of congestion (Section 3.6).

We present examples of numerical results for each of these performance measures
which verify quantitatively the intuition about the effects of hysteretic overload
controls.

The paper is organized as follows. Section 2 describes our overload control
model and Section 3 provides a mathematical analysis of this model, including
stability results, the derivation of the generating function and the derivation of
the time spent between switching congestion status. Section 4 provides numeri-
cal results for the performance measures listed above, as well as the queue—length
distribution. Section 5 suggests some extensions to the work and summarizes
our key results. An appendix gives the derivation of a technical result useful in
calculating the generating functions used here.

2 The model

This section provides a definition of our model of a buffer which uses hysteretic
overload control. The model is a generalization of the M/G/1 queue, a simple
queue with Poisson arrivals, generally-distributed service times, a single server,
and an infinite waiting room. The queue represents customers’ messages waiting
to be processed in the buffer of some processor. The M/G/1 queue is generalized



to model the overload control by separating its behavior into two regimes of
operation, congested and uncongested. The PT source overload control changes
the uncongested arrival rate Ay to A, during the congested regime.

An alternative to source overload control is to alter the service—time distri-
bution of the process, for instance, by stripping the headers to find the message
priority and discarding those of low priority, resulting in a short service time
for these messages. If the service time for the discarded packages were zero,
this model would be essentially the same as the source control model described
above. In reality it takes some processing time even to discard a message. Fur-
thermore, in practice retrials may result in significant problems for this type of
control. Therefore source control, as considered below, is preferable.

The regime changes from uncongested to congested when, after completion
of a service (the processing of a message in the buffer), the number of messages
in the system is greater than the congestion onset threshold K,. The regime
changes from congested to uncongested when the number of messages in the
buffer falls to the congestion abatement threshold K, or below. Typically K, <
K,, resulting in hysteretic behavior. The case K, = K, is included in the
analysis described here but K, > K, makes little sense and is not.

The process is modeled as follows. Take the number of customers in the sys-
tem at time ¢ to be X (¢) and the service completion epochs to be t; <ty < ---,
where t,, is the departure time of the nth customer. We consider the process
embedded at customer departure epochs, that is, (X,), where X,, = X (¢,+),
the number of customers in the system as seen by the nth departing customer.
Cooper [16, pp. 154] shows that the arriving customers see the same queue—
length distribution as the departures. Note that, in practice the distribution
seen by the arrivals is or equal or greater importance than the stationary distri-
bution. Furthermore, in the model described above, the congestion status may
be changed only at the completion of a service and therefore depends only on
the embedded queueing process (X,,).

We assume the process begins at time zero with a dummy departure leaving
the queue empty, that is, o = 0 and Xy = 0. The assumption is convenient, and
does not effect our results as we are concerned here with equilibrium behavior.

Arrivals to the process are Poisson with rates A, and A. depending on the
current congestion status. Service times are independently and identically dis-
tributed with probability distribution function G(-) and mean 1/u. The traffic
intensities p;s are given by ps = As/u for s = u, c.

We model the arrivals using two distinct sequences of independent identi-
cally distributed random variables A} (s = u,c and n = 1,2,...). Here Al
and A¢ are respectively the numbers of customers to arrive during the nth ser-
vice given that during this service the queue is uncongested or congested. The



probability generating function for the number of arrivals during a service is
as(z) = Y2, a8z = G(\[1 — 2]) (s = u,c), where af = prob{A5 = i} and
G(-) is the Laplace-Stieltjes transform of the service-time distribution function
G (see [16]).

3 The martingale analysis

The model defined above is specified on a probability space (€2, F, P) generated
by the congestion status and number of customers in the system. We define the
filtration (F,) by

Fn=0(Xo,Al|1 <m <mn,s=u,c).

This contains the history of the queueing process, including the congestion sta-
tus, up to time n.

3.1 Phases and stopping times

The process can be modeled using the analysis of [14] by regarding each busy
cycle as a sequence of phases. We denote P, = 1,2,.... the phase at time
n € Z . A phase ends when the queue changes congestion status and the cycle
of phases restarts when the busy cycle ends, that is, when the system becomes
empty. Let C), denote the congestion status (u or c¢) at time n. We have the
following rules:

if X,, =0 then P, =1,

else if C,, =C,,_1 then P, =P, 1,

else if C, #C,_1 then P, =P, 1 +1.
Odd-numbered phases then correspond to periods when the queue status is
uncongested, even—numbered to congested periods. We may define a! for j =

1,2,... to be af for j odd and af for j even and thence define a;(z) and p; for
j=1,2,..... We employ the usual indicator notation
1, when event A occurs,
I(4) = { 0, otherwise.

The assumption that a dummy service completion occurs at time zero leaving
the system empty implies Py = 1. If Xy = 0, then X,, and I(P,, = j) are
determined purely by A7, at times m < n and hence the ends of the phases are
stopping times.

We define, for each time n € Z™*, a stopping time 7(n) which is either the
end of the current busy period or, if the queue is empty at time n, the end of the



next busy period. We define also the stopping time 7;(n) (j =0,1,2,...) to be
the maximum of n and the end of phase j in the current busy cycle. When the
busy period ends, we consider the process to go through the remaining phases,
spending zero time in each, and so we may formally define

inf{m > n| X,,, =0}, if the set is non-empty,
T(n) = .

o0, otherwise,
7i(n) = 7(n) Ainf{m >n|P, > j},

where as usual z A y :=min(z,y). We have n = 79(n) < 11(n) < »(n) < -+ <
7(n). As the ends of phases correspond to changes in the congestion status, an
intuitive recursive definition of the stopping times 7;(n) is

Toj+1(n) = 7(n) Ainf{m > n;(n)| X, > K},

Tojr2(n) = 7(n) Ainf{m > m1(n)| Xm < Ko}

We can also define, for j = 1,2,..., the times

) = T~ 7 () m
i = {50 2 @

We can interpret p;(n) as the forward recurrence time at time n of phase j + 1
in a cyclical generalized Markov renewal process [17].
3.2 The martingale

We now define the martingale which will provide the majority of our results.
Theorem 1: If

MO(Z) = 17

n-1 1(X,#0)
Mn z == ZXn %) z . y N Z ]-7
(=) 1 (zjzl 107, = mj(z))

then (M, (z))n>0 is a nonnegative integrable martingale for z € (0,1].

Proof: The result is a straightforward extension of those in [14] and [15], which
use the recurrence relation

N

Xni1 = Xn = I(Xn #0) + Y I(CH AT,
j=1



to demonstrate directly the martingale condition E [ My, 1(2)| Fpn] = My (2) a.s.
a

3.3 Stability and regularity

Of obvious interest are the conditions for stability of the queue. These are
established in [15]. Simply stated, the queue is stable if and only if 0 < p. < 1.
It is null-recurrent for p. = 1 and transient for p. > 1. A desirable consequence
is that stability is independent of the uncongested traffic intensity, and hence an
overloaded queue will be stable so long as the originating traffic is sufficiently
throttled.

The result can be understood intuitively by noting that, when congested,
the queue behaves as if it were a standard M/G/1 queue with traffic intensity
pe- This queue is always considered congested when there are more than K,
customers in the buffer. Hence regardless of its uncongested behavior, the queue
reverts to the standard stability behavior of the M /G/1 queue whenever there
are more than K, customers in the buffer.

The following analysis makes use of the optional sampling theorem [18],
which requires that the stopping times involved be regular for the martingale.
In general stronger conditions than stability are required for this to apply. The
following theorem proves that in the present context stability is a sufficient
condition for regularity.

Theorem 2: The stopping times 7;(n) and 7(n) (i,n € Z*) are regqular for
the martingale (M, (z))g°.

Proof: Theorem 3.3 of [15] shows that establishing regularity reduces to demon-
strating a condition referred to as (*). The condition is that

E |-H gj(Z)Vj(O)] < 00
s
for all z € [0, 1], where £;(2) = z/a;(z), and S* is the set of all indices j such

that the traffic intensity p; during phase j exceeds unity. For a stable queue
pe < 1 (although p, may be greater than one). Therefore the condition is

B |- H gu(z)Vj(U)] < co.

o]

The random variable X, can decrease by a maximum of 1 at each time step,
and therefore at congestion abatement times 79, the process is always exactly



at the congestion abatement threshold, that is, X;, = K,. Consequently the
process exhibits renewals at times 7o;, that is, the behavior of the system before
and after 7y; is independent. Therefore the times v;(0) for j odd are independent.
Thus we may reduce the condition to

H E [gu(z)”f(o)] < 0.

j odd

The renewals at congestion abatement times imply the probabilities p{v; = k}
for ¢ > 1 satisfy the recurrence

p{raiv1 =k} = hp{rei—1 =k}, for £ > 0,
p{raiv1 =0 = pl{rei 1 =0} + (1 = h)p{re;i 1 > 0},

where h € (0,1) is the probability that the process returns to the congested
state from the abatement threshold before the busy period terminates. Define

o0
vois1(2) = Y &u(2) p{rais1 = k.
k=0
We can multiply the recurrence relation above by &,(z)* and sum over & to get
o
vois1(2) = kY &u(2)plvaict =k} + p{veict = 0} + (1 — h)p{vzi—1 > 0}
k=1

= h Z §u(z)kp{7/2i_1 = k} +1—h,
k=0

when this exists. For ¢ > 1 this recurrence relation has solution
wiri(z) = B us(z) +1

wherever v3(z) exists. In [15, Lemma 4.3.1] it was shown that v, (z) exists for
z € [0,1]. A minor modification of the lemma shows that v53(z) also exists.
Therefore

1 e 0] = [T v () = i (2)a(2) [T+ H vs(2)
i=0 1=2

j odd

when this exists. From Gradshteyn and Ryzhik [19, 0.252] a necessary and suffi-
cient condition for the last product to converge is that 322, h*~!v3(2) converge.
This is automatic since h € (0, 1), so we are done. O



3.4 Equilibrium results

Theorem 3: Define

u

u
a; az as 0g,—1 O,
u u u u u
ap ay a4y Ok,—2 Ok,—1
u u u u
P, = 0 a5 af OK,-3 0K, 2 (3)
u u
0 0 0 ao al
and set €; = (615,0%,--,0x.,:)" and z = (2,2%,...,25)T. Then if p, > 0

and p. < 1, the probability generating function for the equilibrium number of
customers in the system (as seen by arriving customers) is given by

E [ZX] _ 1 {ac(z)(l —z) +{ac(z) — ay(2)}RK, K, (2) }

m ac(z) — z

for z € 0,1), where

h _
Riga() = (ef + (127 ) ek ) 0= Pr) 2
h = 1-aleg, T(I-Pg,) e,
h1 = 1 — (I,g (S3] T(I — PKo)ilel s

and the mean number m of customers served in a busy period is given by

m = [1 + {pu — pC}RKoKa,(l):| ‘
1—pe
Proof: Doob’s Optional Sampling Theorem [18, Proposition IV-3-12] states
that for stopping times S, T satisfying S < T a.s. and which are regular for the
martingale (M),

E[Mr|Fs]l = Mg, a.s.

A consequence is Theorem 3.10 of [15], which states that the probability
generating function of the number of customers in the queue is given by

i) - 2fFlrles sl

e B P - &.(2)

© [E [ZXTZ““(O)] -F I:ZXTQn(O)]
ngl { 1 - fu(Z) }
zX"2n+2(0) — ZX"'2n+1(0)
(mronpl)

1 - fC(Z)

_|_

SEE

_|_
S|~
M2

Il
-

n



We define h,, = p{7,,(0) < 7(0)}, the probability that phase n + 1 is reached
before the end of the first busy period. If the system moves into the congested
state by passing above the congestion onset threshold, it must, at some time
before the end of the busy period, pass below the congestion abatement thresh-
old. Hence ho, = ho,_1. Also, as noted above, when the process drops to the
abatement threshold there is a renewal in the sense that the future behavior of
the queue is independent of the past behavior of the queue. Hence hopyo = honh
for n € IN. From these two relationships we derive

hont1 = hih", (5)
homss = hih™ (6)

If 7,,(0) < 7(0) then X ) # 0, and so for n. > 1 we get

5 {me(o)] - E [ZX*"(O)I(XT,L,I(O) — 0)] +E [ X (X, 0) # 0)]
= p{X:,_ 0 =0} +p{X;,_,0) #0}E [Z O X o) F 0]
= 1—hp1+hoE [zanw) Xro 1 (0) > 0] : (7)
For n > 0, (7) gives
E[zXm®] = 1= hop 1+ hop 125,
E [ Xf2n+1(°>] = 1—hon + honE [zXf2n+1<0> Xy (0) = K] :
We may set
r(z)=FE [zXT?nH(O) Xrpo(0) = Ka] (8)
for n > 0, since this expression is independent of n. Then
E[Xn0] B [2Xn0] = 1k + k- B 0], (9)

E[Xen©] - B [Xm0] = hih"(r(z) — 25), (10)
B[ ms0] - B[Xma®] = ettt (1- bt ke —r(2)) . (1)
)

Substitution from (9), (10) and (11) into (4) gives
X X
1 | E|z" @O -z 1—-E|z°710
oo - L{EEs opf
m 1 —&u(z) 1 —&(2)

m () - ) () ~ ()
(1—h>l 1 &) - &) ]} -

+



X
We now calculate r(z) — 25« = E [z T2n+1(0)

(21) in the Appendix gives as

X, 0) = K| = #K2, which

") -2 = e Zgn

z

where g, = (Qn(l)agn (2)7 tee agn(Ko))T and
gn(m) = p{12i11(0) > m2i(0) +n, X7, (0)4n = M| X7, 0) = Ka}-

It is evident that gl = ejf(aP K: The sum over n of P Kf has been shown to
converge ([14, Lemma 3.2]), giving Y72 g} = e} (I —Pg,)~". Therefore

o) - = @E e el 1-Pr) e (13)

z

Substitution from (13) into (12) gives

1 | E [ZXﬂ(m] — 2 1-E [ZXTI(O)]
E[zX] - E{ R
CAS SR
b=h (1-&(2) -

The first two terms of the right—hand side of this equation appeared in [14] where
a specific case of this queue, the M/G/1 queue with the abatement threshold
set to zero, was considered. Note that the terms depend only on 71(0), which
is unaffected by the abatement threshold. These terms were shown in in [14] to
provide

E [zXn(o)] — 2 1—-E [erl(O)]

=&l 1-&0)
(1= 2) + {adls) — au(2)} e (1~ Pre,) '
ac(z) — z '

Rearranging slightly, we get

g [ZX] _1 {ac(z)(l — 2) + {ac(2) — au(2)} [(e1 + heKa> (I- PKO)Azt] } |

ac(z) —



We now calculate m using F [ZX ] L= 1. Taking the limit as z T 1 using
z2=
L’Hopital’s rule yields that

]‘ + {IOU B pC}RKoKa(]‘)
1—pe ’

As FE [ZX ] 0= 1/m, the probability that the queue is empty is 1/m and hence
yA—
m is the mean number of customers served in a busy period. From the definitions

of h and hy, we get

o= 1-E[7©

Xo :0]2: ’

XT2n+1 (0)

o= 1—E[z

X7'2n(0) = Ka]

z=0"

which can be calculated from (13) and the similar expression in [14] to be

hi = 1—ate; T(I-Pg,) e,

h = 1-alex (I-Pg,) e,
the desired result. O

Remark 1: The form of the solution is that of the Pollaczek—Khintchine Equa-
tion [16] for the probability generating function of the stationary number of
customers in the M/G/1 queue with traffic intensity p., plus a correction term
which takes into account the altered behavior of the queue in the uncongested
regime. The solution, though more complicated, is very similar to that for the
M/G/1 queue with generalized vacations where only the first arrival to an empty
system notices altered behavior.

Remark 2: The solution requires a matrix inversion. The matrix (I — Pg,)
to be inverted is already in upper—Hessenberg form [20] and the inversion is
therefore easily performed, even for quite large matrices.

Remark 3: The theorem has been described in terms of a source control model,
but applies equally well to packet discard models where the service-time distri-
bution of discarded packets is changed. In this case a;(z) = G;(A[1 — 2]), where
G (+) is the service-time distribution during the congested phase. Furthermore,
in this case the arrivals form a homogeneous Poisson process, and therefore
PASTA [21] (Poisson Arrivals See Time Averages) implies that the arriving cus-
tomers see the time-averaged behavior of the system. Hence our result gives the
stationary queue-length distribution.



3.5 Simple performance estimates

First we introduce some terminology. The offered load p, refers to the load
offered to the system prior to any overload control. The accepted load p, is that
part of the load accepted by the system after application of overload controls.
The rejected load p, refers to traffic blocked by the overload control, not by
overflowing a finite buffer.

To calculate the accepted load we apply Little’s law L = AW to the processor,
rather than the queue, so that L is the average work in the system, namely the
processor utilization, while X is the arrival rate to the system and W the mean
service time. The processor utilization is one minus the probability 1/m of the
system being empty. The arrival rate times the mean service time is the accepted
load pg. Thus

1 pPet (Pu—pc)REi, K, (1
=1 Lo ( ) ()‘ (14)
m 1+ (p’lL _pC)RKoKa(l)

To calculate the proportion of time the system spends in the congested state
we note that PT is applied during congestion reducing the load on the system
from p, to p.. The accepted load on the system is thus p, = (1 — 9)p, + Ype,
where 1) is the proportion of time the queue spends congested. In conjunction
with (14), this expression yields

1+ (pu — 1)RE,k, (1)
L+ (pu — pe)Ri, k. (1)

P (15)
The rejected traffic is just p, = (pu — pPe)¥ = pu — pPa, and therefore the
probability of being blocked by the overload control is pg = py/py.-

3.6 The time spent in the congested region

One of the principal reasons for introducing the hysteretic effect into this type
of threshold—based overload control is to limit the oscillatory behavior that can
occur for a single fixed threshold. In order to measure this behavior we must
calculate the time spent before switching regimes.

Theorem 4: Forn > 1, p. <1 and p, > 1 we have

E [von11(0)| v2n41(0) > 0] = ef,(I-Pg,)7'1, (16)

_ _ T _ —1
Blvmsa(0) nsa(0) > 0] = T m DB 1




Proof: Corollary 3.7 of [15] with N set equal to oo states that

E ﬁ &(z)"i©

j=i+1

- E [zxn(m] _

Taking the difference for consecutive values of ¢ supplies

E

(1= (@) ] @-(z)”“”] = BT - p o] o)

j=i+2

Since we are interested only in limiting behavior, we consider the cases 7 > 1.
The right-hand side of (18) is given in these two cases i even and i odd by (10)
and (11) which state, via (13), that

ay(z)

] o] = i [ o e
E [ZXT2n+2(0)] - F [ZXT2n+1(0)] =
mbn (1= (1= ) [—““(z) - 1] ek - Px,) '2).

z

The derivative of the left-hand side at 2z =1 is

E

(1 - §i+1(z)'/i“(0)) ﬁ §j(z)"j(0)]] = (pit1 — DE [v;41(0)] .
z=1

a
dz =it

Similarly the right—hand side leads to
d
dz

a
dz

B[] = B Xm0 = mh" T p, —1]ek, (1- Pr,)7'1,

z=1
{E [ZXT2n+2(0)] N {zXT2n+1(0)H =
z=1

bt (=(1 = WK, — [pu — 1] €k, (1 - Pr,)7'1).

Equating gives

Evon1(0)] = hb" el (I-Pg,) "1,
hyhn ! .
Blvanir(0)] = = ; ((1 =By +[pu — ek, (I- Pr,)7'1).
Cc



From (5) and (6), we have

p{rana(0) >0} = p{Xp ) >0} = hon hyhn=1,
P{vant2(0) >0} = p{X,, .0 >0} = howy1 = hh™

Since E[X|X > 0] = E[X]/p{X > 0} for a nonnegative random variable, we
get

E [v2311(0)| 20 41(0) > 0] = el (I-Pg,)7'1,
(1-Rh)Ky+ (py — 1) el (I-Pg, )" '1
B [von12(0) | van12(0) > 0] = o ,
as required. O

Remark 4: The expression E[vo,42(0)]| v2p42(0) > 0] in (17) is the average
number of customers served between the onset and abatement of congestion.
Equation (16) includes the possibility that the phase ends because the busy
cycle has ended. The two conditional expectations cannot be added directly
to obtain a measure of the cycle length (the total time between an onset and
the following onset) because of the different conditionings. We now address this
question.

Theorem 5: The mean number of customers served in a cycle through two
consecutive phases (congested and uncongested) is given by
~ m(l —h)

EM_T’

where v = vop 11 + Vapya for some n > 1.

Proof: The busy period is divided into a number of cycles through pairs of
phases. We can calculate the average time of a cycle by calculating the mean
number of customers served in a busy period and dividing by the average num-
ber of cycles occurring during one busy period. The average number of cycles
occurring is simply the probability h; of at least one cycle occurring times the
average number 1/(1 — h) of cycles occurring. Putting these components to-
gether gives the required result. O

4 Numerical results

We now describe some examples and provide numerical results. We begin by
presenting a method for inverting generating functions to find queue-length
distributions and then describe the examples to be considered. The section



then provides numerical results relating to the queue—length distribution and
other performance measures. Note that although we derive the queue-length
distribution for the infinite-buffer case, loss probabilities for the finite-buffer
case can be derived from the infinite-buffer distribution.

4.1 Inverting the generating function

Daigle [22] has demonstrated an efficient method for calculating the probabilities
pn, from a generating function F*(z) = Y 72, ppz" for variants of the M/G/1
queueing process. Daigle’s method uses the discrete Fourier transform as follows.
The characteristic function of the queue-length distribution can be expressed in
terms of the generating function of a complex argument as the complex Fourier
series

o0
<I>(a) — F* (6—i27ra) — ane—i%ran’
n=0
with basis set .
bn(0) = e 270" = 0,41,42,....

Applying the inverse Fourier transform gives

1 J—
Pn =/0 ()P (a)dar.

Numerically this can be performed by calculating ®(«) at L + 1 equi-spaced
intervals of the interval [0, 1) and applying the inverse discrete Fourier transform
to these values, resulting in
1 L
ZF* (e—z’27ral/(L+1)) gizmant/(L+1)
)
=0

ol = T

for n < L. Daigle [22] showed that

0o
Cn,L = Pn + Z Pntm(L4+1)»

m=1

the non—equality of ¢, ;, and p,, being referred to as ‘aliasing’.

In principle this property can be used to approximate the probabilities p,,
by increasing L until the tail probabilities are small enough. However round-
off errors become important for large L, restricting the usefulness of the ap-
proximation, in particular for this application, where aliasing can have serious
side—effects. Daigle’s method relies on the property that the tail probabilities of



the queue decrease geometrically for M /G/1 queueing systems, that is, for each
¢ > 0 there exists an N such that for all n > N,

Ipn —pn x| < e
With computational accuracy €, choose L > N.. Daigle showed that

co,, —Po _ Co,r — 1/m
cr,L cr,L

_ {Cn,L_(CO,L_pO)Tga 1<n<L,
Pn =

ro =

pKrg_K, n > L.

Daigle provided a simple method for choosing L by calculating

Cn,L

'n,L = Vn:N. <n<L
Cn—1,L
To — Tn,L
ar;, = max |——2]|.
N:<n<L 70

The calculations of queue—length distributions based on this method were
written in C++ using a free matrix library called NEWMAT [23], which included
Fast Fourier Transform code, and the code used for matrix inversion.

4.2 The scenarios

The threshold values used, taken from realistic values given in Rumsewicz and
Smith [2], are shown in Table 1. These two sets of thresholds require inversion of
62x62 and 100x 100, arrays respectively. The inversion can be made significantly
easier by taking advantage of the upper Hessenberg [20] form of the matrix
I-Pg,, but for our purposes, computation time being relatively unimportant, it
was sufficient to use a standard inversion routine based on the QR decomposition
of the matrix.

Threshold || Set 1 | Set 2

Abatement 50 90
Onset 62 100

Table 1: Congestion Threshold Settings.

Both overload, and standard load scenarios were investigated in order to
compare the behavior of the overload scheme. In all cases the throttling factor
was 50%, that is, when in the congested regime the arrival rate was decreased
by 50%. Four service time distributions:



1. the negative exponential distribution,
2. the Erlang-5 distribution,

3. the Erlang-20 distribution,

4. the deterministic distribution,

were examined and compared. For simplicity unit mean service times were used
in all cases.

4.3 The number of messages in the buffer

Figures 1(a) and (b) show the results of applying the algorithms with the first
set of thresholds from Table 1 for the three overload scenarios p, = 1.2, 1.5 and
1.8 and the two non—overload cases p,, = 0.8 and 1.0, with exponential service
times. Figure 2 shows what happens when the second set of thresholds are used
for the overload cases with p, = 1.2 and 1.8.

The effect of applying the overload control to the standard 0.8 load scenario
is negligible. The net result of applying the overload control to the overload
scenarios is to isolate the probability mass between the two thresholds, with
a geometric drop off outside the immediate region surrounding the thresholds.
This behavior exactly matches what one might expect - Remark 1 notes the
similarity of the generating function being investigated to that of the standard
M/G/1 queue which exhibits this sort of geometric tail. The fact that tail
behavior of the queue is similar to that in the M/G/1 queue makes setting the
size of the buffer, in the finite—state case, a reasonably simple task.

Furthermore, the behavior of queue under this type of control matches the
requirements of such a control, namely

e it does not effect normal performance significantly and
e under overload it limits the extent of excursions to large queue sizes.

Figure 3 compares the behavior of the queue when the service-time distri-
bution varies through exponential, Erlang—5 and Erlang-20 to a deterministic
distribution, whilst keeping the mean service time constant. As n — oo the
Erlang—n distribution approaches the deterministic distribution, a fact illus-
trated in the figure. Furthermore the results demonstrate the applicability of
the methods for distributions other than exponential.
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Figure 1: The queue-length distribution with K, = 50, K, = 62 and exponential
service times. The first graph shows the probabilities on a linear axis, the second
a log probability graph.
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pu = 1.6.



4.4 Simple performance measures

As noted in Sections 3.4 and 3.5 there are several simple performance measures
which may be used to assess the behavior of the queueing system. Two reciprocal
measures are the probability p(0) that the system is empty and the mean number
m of customers served in one busy period, large values of m corresponding to
high system utilizations. Figure 4 shows log(m) for a range of scenarios. The
independent variable chosen here was the abatement threshold, given a constant
onset threshold. Note the large values of m, leading to p(0) being very small
(< 0.03).

exponential service times, onset threshold = 62, 50% throttling
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Figure 4: The log of the average length of the busy period for different abatement
threshold values.

The accepted traffic load is given by (14). Figure 5 shows this performance
measure. Notably it is near unity for all but the smallest values of K, in all the
overload scenarios. Hence nearly the maximum possible number of messages is
being accepted by the server, a desirable result.

We use (15) to calculate the probability of the queue being congested. Fig-
ure 6 illustrates its value over a range of abatement thresholds and displays
marked insensitivity to the abatement threshold.

The insensitivity of these results to the value of K, is important, because it
means that K, can be set to achieve other performance goals, such as minimizing
the number of congestion status switching events, with almost no cost in terms
of increased loss rates, or a larger proportion of time spent in congestion.
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Figure 5: The accepted traffic load for different abatement threshold values.
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4.5 The time between switching regimes

Section 3.6 provides two ways of estimating the length cycle between uncongested
and congested regimes. The first is to estimate the mean time from crossing the
congestion onset threshold until recrossing the congestion abatement threshold.
The estimate given by (16) is illustrated in Figure 7 for a number of the scenarios
described above. The principal feature is that the value is almost linearly depen-
dent on the congestion abatement threshold. Hence the time between switching
can be increased by decreasing the congestion abatement threshold. The slope is
determined by the traffic intensity in the congested regime, and seems to be in-
sensitive to the service-time distribution, as displayed by the similarity between
Figures (a) and (b). In fact in the examples displayed the slopes can be neatly
approximated by .

1—pe

The second estimate of the cycle time is given by E [v] which directly es-
timates the mean cycle time. The result given in Theorem 5 is illustrated in
Figure 8 for the same range of scenarios as shown in Figure 7. Again cycle time
increases with decrease in abatement threshold, but in this case the increase is
only linear for the overload scenarios. The scenario with offered load p, = 1.0
has a long cycle time that is not linearly dependent on the threshold because
its behavior during the uncongested phase is that of a mean—zero random walk,
while in the overload scenarios the behavior is that of a random walk with drift.

Again the behavior seems to be insensitive to the service-time distribution.
We should however note that the order of the overload scenarios, in terms of
cycle length, is different for this statistic.

S

5 Conclusion

Obviously the model analyzed here does not encapsulate all of the features used
in overload controls, and in particular SS7 congestion controls, nor is it intended
to. The aim was to study the behavior of the hysteretic overload control mecha-
nism. Such controls are of recent interest [3] due to the need to provide overload
controls in broadband networks. This paper provides some key results describing
the behavior of a queue using this control: the PGF of the queue-length distri-
bution, the probability of the queue being congested, the traffic load accepted
by the system and the time between onset and abatement of congestion.

These results have been used to show quantitatively that the control behaves
as desired — limiting excursions to long queue lengths during overloads with little
impact under normal loads.



(a) exponential service times, onset threshold = 62, 50% throttling
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Figure 7: The mean time between onset and abatement of congestion.



(a) exponential service times, onset threshold = 62, 50% throttling
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(b) deterministic service times, onset threshold = 62, 50% throttling
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Figure 8: The mean cycle length for a cycle from congestion back to a new phase
of congestion.



Intuitively, the reason for introducing a second distinct threshold for measur-
ing the abatement of congestion separately from the onset of congestion is that
the congestion cycle time will increase with increasing separation between the
onset and abatement thresholds. This paper demonstrates that this is indeed
the case, and provides a direct method for estimating the increase in cycle time.

The closed—form nature of the results makes them applicable to finding opti-
mal threshold settings. Additionally, the results are also applicable to so called
heavy—tailed distributions such as the Pareto distribution which have been re-
ceiving recent interest [24] for modeling packet traffic. These distributions may
have infinite variance making many methods for calculating solutions inappro-
priate. Future work will examine these extensions.
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Appendix A Random walks

We consider a random walk (X,,)§° on the nonnegative integers and associated
stopping time
T = inf{n > 0|X,, € A°},

where A is a proper subset of the positive integers. The walk is prescribed by

n
Xn=Xo+ > Y, (n>0)
=1

with Y; independent, integer—valued random variables given by

p{Yi=m} = fi(m), form> -1,
p{Yi=m} = f(m),fori>1andm > —1.

To ensure that the random walk makes no excursions to the negative integers
before it is stopped, we assume that one of the regimes
(a) Xp >0 a.s. and Y7 >0 a.s.,
(b) Xo >0 as.
applies. We set

gn(m) = p{T >n, X, =m}, (n,m >0)
hn(m) = p{T =n,Xr=m}, (n>0, m>0).
By the definition of T' we have the boundary conditions
_ p{Xo=m}, ifn=0
gn(m) = { 0, if me A% n >0,

hn(m) = 0,ifmeA (n>1).



We have also for n > 0 the recurrences

hi(m) + g1(m)

> go(k) fr(m — k),
k
hs1(m) + gni1(m) = D ga(k)f(m — k).
k
For |z| <1 we define the generating functions

F(z) := if(k —1)2*,
k=0

Gn(z) = ign(k)zkfl, (n > 0),
k=1

Hy(z) = Zhn(k)zk, (n > 0).
k=0

If regime (a) applies, we put (again for |z] < 1)

Fi(z) := ifl(k)zk,
k=0

Go(z) = Zgg(k)zk;
k=0

otherwise if regime (b) applies, we put

Fi(z) := i fl(k)zkH,

k=—1

Go(z) = igo(k)zk_l.
k=1

Then under both regimes, our recurrence relations provide
Hl(Z) + ZGI(Z) == Go(Z)F1 (Z),
Hp11(2) + 2Gny1(2) = Gp(2) F(2),for n > 0.
Finally, for |w| < 1, set

G(w,z) = Z Gr(z)w",
n=0
H(w,z) := Z Hy(z)w".



Forming generating functions again we derive
H(w,z) = G(w,z)[wF(z)—z]+ 2Go(2) + w[Fi(z) — F(2)]Go(z). (19)

It is readily verified that the double series for G(w, z) is absolutely convergent
for |z| < 1, |w| < 1. The series for H(w,z) is too, provided E(T) < oco. We
assume that this condition is satisfied.

We may choose our walk to represent a stable M /G/1-type system. In this
context we have E(Y;) < 0 for i > 1 and so F'(1) < 1. Since F(1) =1, and F(+)
is convex, we have z/F(z) € [0,1] for z € [0,1]. If also Fi(z) = F(z) then for
z € [0,1] we can set w = z/F(z) in (19) to derive

H(z/F(2),z) = 2Gy(2). (20)

When modeling the first phase of a busy period, we take Xo = 0so Gy(z) = 1,
and A = {1,2,...,K,} so that T = 71(0). Regime (a) applies with F;(z) =
F(z) = ay(z). Hence we derive H(z/a,(z),z) = z, and so, given that by defini-
tion H(w,z) = E [ZXT’UJT],

E {zXT(z/au(z))T] = z.

This is an extension of the standard busy period result

B |(z/a(:)] =2,

where T is the time the busy period ends and hence A = {0} and X7 =0 a.s.

We may also model subsequent odd—numbered phases, that is, phases start-
ing when the queue reaches the abatement threshold K,. In this case we as-
sume that the random walk begins at time 79;(0) in state X, o) = K,. Again,
A =1{1,2,...,K,} so that T = 79;11(0), the time when the onset threshold is
exceeded or the busy period ends. As before Fy(z) = F(z) = a,(z), but now we
are interested in r(z) as defined in (8). In the present context this is

H(l,z) = G(1,2)[F(z) — 2] + 2Go(z).
Regime (b) holds so that Go(z) = z%+~1 and therefore
r(z) = E [zXT2i+1(°)|XT2i(0) = Ka] = G(1,2)ay(z) — 2] + 2Ka,
Here G(1,2) = 3300 Ypmoy gn(m)2™ " = (1/2) Y02, 8 2, With
gn(m) = p{72i+1(0) > 72;(0) + 1, X7, (0)4n = M| X1, (0) = Ka}-
Therefore




