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Abstra
t: Overload 
ontrol is 
riti
al in preventing 
ongestion in modern

swit
hing networks. One method, hystereti
 overload 
ontrol, uses two thresh-

olds, a 
ongestion onset and a 
ongestion abatement threshold, to dete
t 
on-

gestion. Variations of this method of overload 
ontrol have been used in the Sig-

naling System Number 7 (SS7) proto
ol spe
i�ed by the ITU-T (International

Tele
ommuni
ations Union, Tele
ommuni
ations Standardization Se
tor) and

also proposed for use in broadband networks. We provide an analyti
 te
hnique

for investigating the performan
e of su
h 
ongestion 
ontrols and then
e setting

parameters su
h as the threshold levels. The te
hnique relies on a martingale{

based relationship between a queueing pro
ess and an embedded renewal pro
ess.

1 Introdu
tion

How does one prote
t a modern swit
hing network from overload? Answering

this question has be
ome 
riti
al to the reliable operation of modern swit
hing

networks, be
ause of the in
rease in servi
es with unpredi
table traÆ
 loads.

An example is provided by the Common Channel Signaling traÆ
 asso
iated

with Intelligent Network servi
es su
h as `televoting'. In essen
e, there are two

related questions: how to dete
t or measure the 
ongestion 
aused by an over-

load and how to mitigate it. A simple and intuitively appealing me
hanism to

dete
t 
ongestion is a queue{length threshold. The purpose of this paper is to

examine the behavior of systems that use two distin
t queue{length thresholds

to dete
t 
ongestion. Su
h a te
hnique has been re
ommended for the Signaling



System Number 7 (SS7) proto
ol [1, p. 313℄, [2℄, and proposed for appli
ation

in broadband networks [3℄.

Congestion is dete
ted via a pair of queue{length thresholds, a 
ongestion

onset K

o

and a 
ongestion abatement threshold K

a

. For example, in the SS7

proto
ol, a link is 
onsidered 
ongested if the number of messages in the Signaling

Transfer Point (STP) link transmit bu�er ex
eeds the onset threshold, and the

link returns to the un
ongested state only when the number of messages in the

bu�er falls to the 
ongestion abatement threshold or below. The two thresholds

typi
ally are 
hosen so that K

a

< K

o

, leading to a hystereti
 e�e
t, des
ribed

below.

When 
ongestion o

urs the 
ontrol a
ts to redu
e the input traÆ
 by dis-


arding some of the input pa
kets. In broadband networks sele
tive dis
ard of

pa
kets [4℄ dis
ards low priority pa
kets to minimize the impa
t on per
eived

quality of servi
e. The model used here for the dis
ard strategy is Per
entage

Throttling (PT), where some per
entage of the originating traÆ
 is randomly

blo
ked at the sour
e. In this model we assume that blo
ked traÆ
 is lost from

the system, that is, 
ustomers do not retry at a later time, or alternatively

pa
kets are not retransmitted.

Rumsewi
z and Smith [2℄ used simulations to 
ompare a realisti
 implemen-

tation of this overload 
ontrol with others used in SS7. Their results indi
ated

that a simple system as des
ribed above (though with more than one level of

throttling) was preferable to more 
omplex systems that use multiple thresholds

for di�erent priority messages.

There are a number of mathemati
al analyses of various overload 
ontrol

systems in whi
h K

a

= K

o

. For instan
e, Morrison [5℄ investigated a system in

whi
h a se
ond server is added when 
ongestion is dete
ted. Gong and Cassan-

dras [6℄ 
onsidered a system in whi
h the arrival rate is dependent on the number

of 
ustomers in the queue. Both these examples are limited to systems in whi
h

servi
e times are exponentially distributed. Perry and Asmussen [7℄ 
onsidered a

queue with generally{distributed servi
e times and an admission poli
y based on

either the workload in the queue or the sojourn time of a 
ustomer in the queue.

More re
ently Leung [3℄ 
onsidered a system with the servi
e{time distribution

dependent on the workload in the system.

These examples do not allow for the two distin
t thresholds that lead to the

hystereti
 e�e
t in whi
h the queue exhibits di�erent behavior when the load

in
reases, from that as it de
reases. Hysteresis has been suggested as a me
h-

anism to redu
e the number of times the 
ongestion status swit
hes state [1℄,

redu
ing any 
ost asso
iated with this swit
hing.

The blo
k{matrix methodology of Neuts [8℄ has been used by Neuts [9℄ and

Li [10℄ to derive numeri
al results for systems with hystereti
 thresholds. In



this paper we use an analyti
 form for the generating fun
tion of the number of

messages in the bu�er, found using an elegant martingale{based methodology.

The 
losed{form result requires little 
omputation to evaluate the queue{length

distribution and then
e the queue utilization and the blo
king probability in the

�nite{bu�er 
ase. Further, the method allows the derivation of 
riti
al features

of the overload 
ontrol, su
h as the time between the onset and abatement of


ongestion.

The bu�er is modeled using a variant of theM=G=1 queue in whi
h the queue

state is separated into two regimes, 
ongested and un
ongested, ea
h with its

own arrival rate. The te
hnique relies on a martingale analysis based on the

work of Rosenkrantz [11℄ and Ba

elli and Makowski [12, 13℄ and extended by

Roughan in [14℄ and [15℄. Perry and Asmussen [7℄ have used similar arguments.

Our main result, Theorem 3, whi
h gives the probability generating fun
tion

for the distribution of the number of 
ustomers in the system (as seen by an

arriving 
ustomer), was 
onje
tured in [15℄. We provide a proof of this 
on-

je
ture through Theorem 2, whi
h demonstrates the 
onditions required by the


onje
ture. We derive a number of quantities in
luding

� the probability the queue is 
ongested (in Se
tion 3.5),

� the traÆ
 load a

epted by the system (Se
tion 3.5) and

� the time between onset and abatement of 
ongestion (Se
tion 3.6).

We present examples of numeri
al results for ea
h of these performan
e measures

whi
h verify quantitatively the intuition about the e�e
ts of hystereti
 overload


ontrols.

The paper is organized as follows. Se
tion 2 des
ribes our overload 
ontrol

model and Se
tion 3 provides a mathemati
al analysis of this model, in
luding

stability results, the derivation of the generating fun
tion and the derivation of

the time spent between swit
hing 
ongestion status. Se
tion 4 provides numeri-


al results for the performan
e measures listed above, as well as the queue{length

distribution. Se
tion 5 suggests some extensions to the work and summarizes

our key results. An appendix gives the derivation of a te
hni
al result useful in


al
ulating the generating fun
tions used here.

2 The model

This se
tion provides a de�nition of our model of a bu�er whi
h uses hystereti


overload 
ontrol. The model is a generalization of the M=G=1 queue, a simple

queue with Poisson arrivals, generally-distributed servi
e times, a single server,

and an in�nite waiting room. The queue represents 
ustomers' messages waiting

to be pro
essed in the bu�er of some pro
essor. TheM=G=1 queue is generalized



to model the overload 
ontrol by separating its behavior into two regimes of

operation, 
ongested and un
ongested. The PT sour
e overload 
ontrol 
hanges

the un
ongested arrival rate �

u

to �




during the 
ongested regime.

An alternative to sour
e overload 
ontrol is to alter the servi
e{time distri-

bution of the pro
ess, for instan
e, by stripping the headers to �nd the message

priority and dis
arding those of low priority, resulting in a short servi
e time

for these messages. If the servi
e time for the dis
arded pa
kages were zero,

this model would be essentially the same as the sour
e 
ontrol model des
ribed

above. In reality it takes some pro
essing time even to dis
ard a message. Fur-

thermore, in pra
ti
e retrials may result in signi�
ant problems for this type of


ontrol. Therefore sour
e 
ontrol, as 
onsidered below, is preferable.

The regime 
hanges from un
ongested to 
ongested when, after 
ompletion

of a servi
e (the pro
essing of a message in the bu�er), the number of messages

in the system is greater than the 
ongestion onset threshold K

o

. The regime


hanges from 
ongested to un
ongested when the number of messages in the

bu�er falls to the 
ongestion abatement threshold K

a

or below. Typi
ally K

a

<

K

o

, resulting in hystereti
 behavior. The 
ase K

a

= K

o

is in
luded in the

analysis des
ribed here but K

a

> K

o

makes little sense and is not.

The pro
ess is modeled as follows. Take the number of 
ustomers in the sys-

tem at time t to be X(t) and the servi
e 
ompletion epo
hs to be t

1

< t

2

< � � �,

where t

n

is the departure time of the nth 
ustomer. We 
onsider the pro
ess

embedded at 
ustomer departure epo
hs, that is, (X

n

), where X

n

= X(t

n

+),

the number of 
ustomers in the system as seen by the nth departing 
ustomer.

Cooper [16, pp. 154℄ shows that the arriving 
ustomers see the same queue{

length distribution as the departures. Note that, in pra
ti
e the distribution

seen by the arrivals is or equal or greater importan
e than the stationary distri-

bution. Furthermore, in the model des
ribed above, the 
ongestion status may

be 
hanged only at the 
ompletion of a servi
e and therefore depends only on

the embedded queueing pro
ess (X

n

).

We assume the pro
ess begins at time zero with a dummy departure leaving

the queue empty, that is, t

0

= 0 and X

0

= 0. The assumption is 
onvenient, and

does not e�e
t our results as we are 
on
erned here with equilibrium behavior.

Arrivals to the pro
ess are Poisson with rates �

u

and �




depending on the


urrent 
ongestion status. Servi
e times are independently and identi
ally dis-

tributed with probability distribution fun
tion G(�) and mean 1=�. The traÆ


intensities �

s

are given by �

s

= �

s

=� for s = u; 
.

We model the arrivals using two distin
t sequen
es of independent identi-


ally distributed random variables A

s

n

(s = u; 
 and n = 1; 2; : : :). Here A

u

n

and A




n

are respe
tively the numbers of 
ustomers to arrive during the nth ser-

vi
e given that during this servi
e the queue is un
ongested or 
ongested. The



probability generating fun
tion for the number of arrivals during a servi
e is

a

s

(z) =

P

1

i=1

a

s

i

z

i

=

~

G(�

s

[1 � z℄) (s = u; 
), where a

s

i

= probfA

s

1

= ig and

~

G(�) is the Lapla
e{Stieltjes transform of the servi
e{time distribution fun
tion

G (see [16℄).

3 The martingale analysis

The model de�ned above is spe
i�ed on a probability spa
e (
;F ; P ) generated

by the 
ongestion status and number of 
ustomers in the system. We de�ne the

�ltration (F

n

) by

F

n

= �(X

0

; A

s

m

j 1 � m � n; s = u; 
):

This 
ontains the history of the queueing pro
ess, in
luding the 
ongestion sta-

tus, up to time n.

3.1 Phases and stopping times

The pro
ess 
an be modeled using the analysis of [14℄ by regarding ea
h busy


y
le as a sequen
e of phases. We denote P

n

= 1; 2; : : : : the phase at time

n 2 ZZ

+

. A phase ends when the queue 
hanges 
ongestion status and the 
y
le

of phases restarts when the busy 
y
le ends, that is, when the system be
omes

empty. Let C

n

denote the 
ongestion status (u or 
) at time n. We have the

following rules:

if X

n

= 0 then P

n

= 1,

else if C

n

= C

n�1

then P

n

= P

n�1

,

else if C

n

6= C

n�1

then P

n

= P

n�1

+ 1.

Odd{numbered phases then 
orrespond to periods when the queue status is

un
ongested, even{numbered to 
ongested periods. We may de�ne a

j

i

for j =

1; 2; : : : to be a

u

i

for j odd and a




i

for j even and then
e de�ne a

j

(z) and �

j

for

j = 1; 2; : : : :. We employ the usual indi
ator notation

I(A) =

(

1; when event A o

urs;

0; otherwise:

The assumption that a dummy servi
e 
ompletion o

urs at time zero leaving

the system empty implies P

0

= 1. If X

0

= 0, then X

n

and I(P

m

= j) are

determined purely by A

j

m

at times m � n and hen
e the ends of the phases are

stopping times.

We de�ne, for ea
h time n 2 ZZ

+

, a stopping time �(n) whi
h is either the

end of the 
urrent busy period or, if the queue is empty at time n, the end of the



next busy period. We de�ne also the stopping time �

j

(n) (j = 0; 1; 2; : : :) to be

the maximum of n and the end of phase j in the 
urrent busy 
y
le. When the

busy period ends, we 
onsider the pro
ess to go through the remaining phases,

spending zero time in ea
h, and so we may formally de�ne

�(n) =

(

inffm > njX

m

= 0g; if the set is non-empty,

1; otherwise;

�

j

(n) = �(n) ^ inffm � njP

m

> jg;

where as usual x ^ y :=min(x; y). We have n = �

0

(n) � �

1

(n) � �

2

(n) � � � � �

�(n). As the ends of phases 
orrespond to 
hanges in the 
ongestion status, an

intuitive re
ursive de�nition of the stopping times �

j

(n) is

�

2j+1

(n) = �(n) ^ inffm � �

2j

(n)jX

m

> K

o

g;

�

2j+2

(n) = �(n) ^ inffm � �

2j+1

(n)jX

m

� K

a

g:

We 
an also de�ne, for j = 1; 2; : : :, the times

�

j

(n) = �

j

(n)� �

j�1

(n); (1)

�

j

(n) =

(

�

j

(n); X

n

6= 0;

0; X

n

= 0:

(2)

We 
an interpret �

j

(n) as the forward re
urren
e time at time n of phase j + 1

in a 
y
li
al generalized Markov renewal pro
ess [17℄.

3.2 The martingale

We now de�ne the martingale whi
h will provide the majority of our results.

Theorem 1: If

M

0

(z) = 1;

M

n

(z) = z

X

n

n�1

Y

k=0

 

z

I(X

k

6=0)

P

1

j=1

I(P

k

= j)a

j

(z)

!

; n � 1;

then (M

n

(z))

n�0

is a nonnegative integrable martingale for z 2 (0; 1℄.

Proof: The result is a straightforward extension of those in [14℄ and [15℄, whi
h

use the re
urren
e relation

X

n+1

= X

n

� I(X

n

6= 0) +

N

X

j=1

I(C

j

n

)A

j

n+1



to demonstrate dire
tly the martingale 
ondition E [M

n+1

(z)j F

n

℄ =M

n

(z) a.s.

2

3.3 Stability and regularity

Of obvious interest are the 
onditions for stability of the queue. These are

established in [15℄. Simply stated, the queue is stable if and only if 0 � �




< 1.

It is null-re
urrent for �




= 1 and transient for �




> 1. A desirable 
onsequen
e

is that stability is independent of the un
ongested traÆ
 intensity, and hen
e an

overloaded queue will be stable so long as the originating traÆ
 is suÆ
iently

throttled.

The result 
an be understood intuitively by noting that, when 
ongested,

the queue behaves as if it were a standard M=G=1 queue with traÆ
 intensity

�




. This queue is always 
onsidered 
ongested when there are more than K

o


ustomers in the bu�er. Hen
e regardless of its un
ongested behavior, the queue

reverts to the standard stability behavior of the M=G=1 queue whenever there

are more than K

o


ustomers in the bu�er.

The following analysis makes use of the optional sampling theorem [18℄,

whi
h requires that the stopping times involved be regular for the martingale.

In general stronger 
onditions than stability are required for this to apply. The

following theorem proves that in the present 
ontext stability is a suÆ
ient


ondition for regularity.

Theorem 2: The stopping times �

i

(n) and �(n) (i; n 2 ZZ

+

) are regular for

the martingale (M

n

(z))

1

0

.

Proof: Theorem 3.3 of [15℄ shows that establishing regularity redu
es to demon-

strating a 
ondition referred to as (*). The 
ondition is that

E

2

4

Y

j2S

�

�

j

(z)

�

j

(0)

3

5

<1

for all z 2 [0; 1℄, where �

j

(z) = z=a

j

(z), and S

�

is the set of all indi
es j su
h

that the traÆ
 intensity �

j

during phase j ex
eeds unity. For a stable queue

�




< 1 (although �

u

may be greater than one). Therefore the 
ondition is

E

2

4

Y

j odd

�

u

(z)

�

j

(0)

3

5

<1:

The random variable X

n


an de
rease by a maximum of 1 at ea
h time step,

and therefore at 
ongestion abatement times �

2n

the pro
ess is always exa
tly



at the 
ongestion abatement threshold, that is, X

�

2n

= K

a

. Consequently the

pro
ess exhibits renewals at times �

2i

, that is, the behavior of the system before

and after �

2i

is independent. Therefore the times �

j

(0) for j odd are independent.

Thus we may redu
e the 
ondition to

Y

j odd

E

h

�

u

(z)

�

j

(0)

i

<1:

The renewals at 
ongestion abatement times imply the probabilities pf�

i

= kg

for i > 1 satisfy the re
urren
e

pf�

2i+1

= kg = hpf�

2i�1

= kg; for k > 0;

pf�

2i+1

= 0g = pf�

2i�1

= 0g+ (1� h)pf�

2i�1

> 0g;

where h 2 (0; 1) is the probability that the pro
ess returns to the 
ongested

state from the abatement threshold before the busy period terminates. De�ne

�

2i+1

(z) =

1

X

k=0

�

u

(z)

k

pf�

2i+1

= kg:

We 
an multiply the re
urren
e relation above by �

u

(z)

k

and sum over k to get

�

2i+1

(z) = h

1

X

k=1

�

u

(z)

k

pf�

2i�1

= kg+ pf�

2i�1

= 0g+ (1� h)pf�

2i�1

> 0g

= h

1

X

k=0

�

u

(z)

k

pf�

2i�1

= kg+ 1� h;

when this exists. For i > 1 this re
urren
e relation has solution

�

2i+1

(z) = h

i�1

�

3

(z) + 1

wherever �

3

(z) exists. In [15, Lemma 4.3.1℄ it was shown that �

1

(z) exists for

z 2 [0; 1℄. A minor modi�
ation of the lemma shows that �

3

(z) also exists.

Therefore

Y

j odd

E

h

�

u

(z)

�

j

(0)

i

=

1

Y

i=0

�

2i+1

(z) = �

1

(z)�

3

(z)

1

Y

i=2

(1 + h

i�1

�

3

(z))

when this exists. From Gradshteyn and Ryzhik [19, 0.252℄ a ne
essary and suÆ-


ient 
ondition for the last produ
t to 
onverge is that

P

1

i=2

h

i�1

�

3

(z) 
onverge.

This is automati
 sin
e h 2 (0; 1), so we are done. 2



3.4 Equilibrium results

Theorem 3: De�ne

P

K

o

=

0

B

B

B

B

B

B

�

a

u

1

a

u

2

a

u

3

� � � a

u

K

o

�1

a

u

K

o

a

u

0

a

u

1

a

u

2

� � � a

u

K

o

�2

a

u

K

o

�1

0 a

u

0

a

u

1

� � � a

u

K

o

�3

a

u

K

o

�2

.

.

.

0 0 0 � � � a

u

0

a

u

1

1

C

C

C

C

C

C

A

(3)

and set e

i

= (Æ

1i

; Æ

2i

; : : : ; Æ

K

o

i

)

T

and z = (z; z

2

; : : : ; z

K

o

)

T

. Then if �

u

> 0

and �




< 1, the probability generating fun
tion for the equilibrium number of


ustomers in the system (as seen by arriving 
ustomers) is given by

E

h

z

X

i

=

1

m

�

a




(z)(1 � z) + fa




(z)� a

u

(z)gR

K

o

K

a

(z)

a




(z)� z

�

for z 2 [0; 1), where

R

K

o

K

a

(z) =

�

e

T

1

+

�

h

1

1� h

�

e

T

K

a

�

(I�P

K

o

)

�1

z;

h = 1� a

u

0

e

K

a

T

(I�P

K

o

)

�1

e

1

;

h

1

= 1� a

u

0

e

1

T

(I�P

K

o

)

�1

e

1

;

and the mean number m of 
ustomers served in a busy period is given by

m =

�

1 + f�

u

� �




gR

K

o

K

a

(1)

1� �




�

:

Proof: Doob's Optional Sampling Theorem [18, Proposition IV-3-12℄ states

that for stopping times S, T satisfying S � T a.s. and whi
h are regular for the

martingale (M

n

),

E [M

T

j F

S

℄ =M

S

; a:s:

A 
onsequen
e is Theorem 3.10 of [15℄, whi
h states that the probability

generating fun
tion of the number of 
ustomers in the queue is given by

E

h

z

X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

E

h

z

X

�

2

(0)

i

�E

h

z

X

�

1

(0)

i

1� �




(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

i

1� �

u

(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

i

1� �




(z)

9

=

;

: (4)



We de�ne h

n

= pf�

n

(0) < �(0)g, the probability that phase n+1 is rea
hed

before the end of the �rst busy period. If the system moves into the 
ongested

state by passing above the 
ongestion onset threshold, it must, at some time

before the end of the busy period, pass below the 
ongestion abatement thresh-

old. Hen
e h

2n

= h

2n�1

. Also, as noted above, when the pro
ess drops to the

abatement threshold there is a renewal in the sense that the future behavior of

the queue is independent of the past behavior of the queue. Hen
e h

2n+2

= h

2n

h

for n 2 IN . From these two relationships we derive

h

2n+1

= h

1

h

n

; (5)

h

2n+2

= h

1

h

n

: (6)

If �

n

(0) < �(0) then X

�

n

(0)

6= 0, and so for n > 1 we get

E

h

z

X

�

n

(0)

i

= E

h

z

X

�

n

(0)

I(X

�

n�1

(0)

= 0)

i

+E

h

z

X

�

n

(0)

I(X

�

n�1

(0)

6= 0)

i

= pfX

�

n�1

(0)

= 0g+ pfX

�

n�1

(0)

6= 0gE

h

z

X

�

n

(0)

�

�

�

X

�

n�1

(0)

6= 0

i

= 1� h

n�1

+ h

n�1

E

h

z

X

�

n

(0)

�

�

�

X

�

n�1

(0)

> 0

i

: (7)

For n > 0, (7) gives

E

h

z

X

�

2n

(0)

i

= 1� h

2n�1

+ h

2n�1

z

K

a

;

E

h

z

X

�

2n+1

(0)

i

= 1� h

2n

+ h

2n

E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

:

We may set

r(z) = E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

(8)

for n > 0, sin
e this expression is independent of n. Then

E

h

z

X

�

2

(0)

i

�E

h

z

X

�

1

(0)

i

= 1� h

1

+ h

1

z

K

a

�E

h

z

X

�

1

(0)

i

; (9)

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

i

= h

1

h

n�1

(r(z) � z

K

a

); (10)

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

i

= h

1

h

n�1

�

1� h+ hz

K

a

� r(z)

�

: (11)

Substitution from (9), (10) and (11) into (4) gives

E

h

z

X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

1�E

h

z

X

�

1

(0)

i

1� �




(z)

+

h

1

(1� h)

"

(r(z)� z

K

a

)(�

u

(z)� �




(z))

(1� �

u

(z))(1 � �




(z))

#

9

=

;

: (12)



We now 
al
ulate r(z) � z

K

a

= E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

� z

K

a

, whi
h

(21) in the Appendix gives as

r(z)� z

K

a

=

a

u

(z)

z

[1� �

u

(z)℄

1

X

n=0

g

T

n

z;

where g

n

= (g

n

(1); g

n

(2); � � � ; g

n

(K

o

))

T

and

g

n

(m) = pf�

2i+1

(0) > �

2i

(0) + n;X

�

2i

(0)+n

=mjX

�

2i

(0)

= K

a

g:

It is evident that g

T

n

= e

T

K

a

P

K

o

n

. The sum over n of P

K

o

n

has been shown to


onverge ([14, Lemma 3.2℄), giving

P

1

n=0

g

T

n

= e

T

K

a

(I�P

K

o

)

�1

. Therefore

r(z)� z

K

a

=

a

u

(z)

z

[1� �

u

(z)℄ e

T

K

a

(I�P

K

o

)

�1

z: (13)

Substitution from (13) into (12) gives

E

h

z

X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

1�E

h

z

X

�

1

(0)

i

1� �




(z)

+

h

1

1� h

2

4

e

T

K

a

(I�P

K

o

)

�1

z

�

1�

a

u

(z)

a




(z)

�

(1� �




(z))

3

5

9

=

;

:

The �rst two terms of the right{hand side of this equation appeared in [14℄ where

a spe
i�
 
ase of this queue, the M=G=1 queue with the abatement threshold

set to zero, was 
onsidered. Note that the terms depend only on �

1

(0), whi
h

is una�e
ted by the abatement threshold. These terms were shown in in [14℄ to

provide

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

1�E

h

z

X

�

1

(0)

i

1� �




(z)

=

a




(z)(1 � z) + fa




(z) � a

u

(z)g e

1

(I�P

K

o

)

�1

z

t

a




(z)� z

:

Rearranging slightly, we get

E

h

z

X

i

=

1

m

8

<

:

a




(z)(1 � z) + fa




(z)� a

u

(z)g

h�

e

1

+

h

1

1�h

e

K

a

�

(I�P

K

o

)

�1

z

t

i

a




(z)� z

9

=

;

:



We now 
al
ulate m using E

h

z

X

i

z=1

= 1. Taking the limit as z " 1 using

L'Hôpital's rule yields that

m =

1 + f�

u

� �




gR

K

o

K

a

(1)

1� �




:

As E

h

z

X

i

z=0

= 1=m, the probability that the queue is empty is 1=m and hen
e

m is the mean number of 
ustomers served in a busy period. From the de�nitions

of h and h

1

, we get

h

1

= 1�E

h

z

X

�

1

(0)

�

�

�

X

0

= 0

i

z=0

;

h = 1�E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

z=0

;

whi
h 
an be 
al
ulated from (13) and the similar expression in [14℄ to be

h

1

= 1� a

u

0

e

1

T

(I�P

K

o

)

�1

e

1

;

h = 1� a

u

0

e

K

a

T

(I�P

K

o

)

�1

e

1

;

the desired result. 2

Remark 1: The form of the solution is that of the Polla
zek{Khint
hine Equa-

tion [16℄ for the probability generating fun
tion of the stationary number of


ustomers in the M=G=1 queue with traÆ
 intensity �




, plus a 
orre
tion term

whi
h takes into a

ount the altered behavior of the queue in the un
ongested

regime. The solution, though more 
ompli
ated, is very similar to that for the

M=G=1 queue with generalized va
ations where only the �rst arrival to an empty

system noti
es altered behavior.

Remark 2: The solution requires a matrix inversion. The matrix (I � P

K

o

)

to be inverted is already in upper{Hessenberg form [20℄ and the inversion is

therefore easily performed, even for quite large matri
es.

Remark 3: The theorem has been des
ribed in terms of a sour
e 
ontrol model,

but applies equally well to pa
ket dis
ard models where the servi
e-time distri-

bution of dis
arded pa
kets is 
hanged. In this 
ase a

j

(z) =

~

G

j

(�[1� z℄), where

G

j

(�) is the servi
e{time distribution during the 
ongested phase. Furthermore,

in this 
ase the arrivals form a homogeneous Poisson pro
ess, and therefore

PASTA [21℄ (Poisson Arrivals See Time Averages) implies that the arriving 
us-

tomers see the time{averaged behavior of the system. Hen
e our result gives the

stationary queue{length distribution.



3.5 Simple performan
e estimates

First we introdu
e some terminology. The o�ered load �

u

refers to the load

o�ered to the system prior to any overload 
ontrol. The a

epted load �

a

is that

part of the load a

epted by the system after appli
ation of overload 
ontrols.

The reje
ted load �

r

refers to traÆ
 blo
ked by the overload 
ontrol, not by

over
owing a �nite bu�er.

To 
al
ulate the a

epted load we apply Little's law L = �W to the pro
essor,

rather than the queue, so that L is the average work in the system, namely the

pro
essor utilization, while � is the arrival rate to the system and W the mean

servi
e time. The pro
essor utilization is one minus the probability 1=m of the

system being empty. The arrival rate times the mean servi
e time is the a

epted

load �

a

. Thus

�

a

= 1�

1

m

=

�




+ (�

u

� �




)R

K

o

K

a

(1)

1 + (�

u

� �




)R

K

o

K

a

(1)

: (14)

To 
al
ulate the proportion of time the system spends in the 
ongested state

we note that PT is applied during 
ongestion redu
ing the load on the system

from �

u

to �




. The a

epted load on the system is thus �

a

= (1 �  )�

u

+  �




,

where  is the proportion of time the queue spends 
ongested. In 
onjun
tion

with (14), this expression yields

 =

1 + (�

u

� 1)R

K

o

K

a

(1)

1 + (�

u

� �




)R

K

o

K

a

(1)

: (15)

The reje
ted traÆ
 is just �

r

= (�

u

� �




) = �

u

� �

a

, and therefore the

probability of being blo
ked by the overload 
ontrol is p

B

= �

r

=�

u

.

3.6 The time spent in the 
ongested region

One of the prin
ipal reasons for introdu
ing the hystereti
 e�e
t into this type

of threshold{based overload 
ontrol is to limit the os
illatory behavior that 
an

o

ur for a single �xed threshold. In order to measure this behavior we must


al
ulate the time spent before swit
hing regimes.

Theorem 4: For n � 1, �




< 1 and �

u

> 1 we have

E [�

2n+1

(0)j �

2n+1

(0) > 0℄ = e

T

K

a

(I�P

K

o

)

�1

1; (16)

E [�

2n+2

(0)j �

2n+2

(0) > 0℄ =

K

a

(1� h) + (�

u

� 1) e

T

K

a

(I�P

K

o

)

�1

1

(1� �




)h

: (17)



Proof: Corollary 3.7 of [15℄ with N set equal to 1 states that

E

2

4

1

Y

j=i+1

�

j

(z)

�

j

(0)

3

5

= E

h

z

X

�

i

(0)

i

:

Taking the di�eren
e for 
onse
utive values of i supplies

E

2

4

�

1� �

i+1

(z)

�

i+1

(0)

�

1

Y

j=i+2

�

j

(z)

�

j

(0)

3

5

= E

h

z

X

�

i+1

(0)

i

�E

h

z

X

�

i

(0)

i

:(18)

Sin
e we are interested only in limiting behavior, we 
onsider the 
ases i > 1.

The right{hand side of (18) is given in these two 
ases i even and i odd by (10)

and (11) whi
h state, via (13), that

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

i

= h

1

h

n�1

�

a

u

(z)

z

� 1

�

e

T

K

a

(I�P

K

o

)

�1

z;

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

i

=

h

1

h

n�1

�

(1� h)(1 � z

K

a

)�

�

a

u

(z)

z

� 1

�

e

T

K

a

(I�P

K

o

)

�1

z

�

:

The derivative of the left{hand side at z = 1 is

d

dz

2

4

E

2

4

�

1� �

i+1

(z)

�

i+1

(0)

�

1

Y

j=i+2

�

j

(z)

�

j

(0)

3

5

3

5

z=1

= (�

i+1

� 1)E [�

i+1

(0)℄ :

Similarly the right{hand side leads to

d

dz

h

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

ii

z=1

= h

1

h

n�1

[�

u

� 1℄ e

T

K

a

(I�P

K

o

)

�1

1;

d

dz

h

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

ii

z=1

=

h

1

h

n�1

�

�(1� h)K

a

� [�

u

� 1℄ e

T

K

a

(I�P

K

o

)

�1

1

�

:

Equating gives

E [�

2n+1

(0)℄ = h

1

h

n�1

e

T

K

a

(I�P

K

o

)

�1

1;

E [�

2n+2

(0)℄ =

h

1

h

n�1

1� �




�

(1� h)K

a

+ [�

u

� 1℄ e

T

K

a

(I�P

K

o

)

�1

1

�

:



From (5) and (6), we have

pf�

2n+1

(0) > 0g = pfX

�

2n

(0)

> 0g = h

2n

= h

1

h

n�1

;

pf�

2n+2

(0) > 0g = pfX

�

2n+1

(0)

> 0g = h

2n+1

= h

1

h

n

:

Sin
e E [XjX > 0℄ = E [X℄ =pfX > 0g for a nonnegative random variable, we

get

E [�

2n+1

(0)j �

2n+1

(0) > 0℄ = e

T

K

a

(I�P

K

o

)

�1

1;

E [�

2n+2

(0)j �

2n+2

(0) > 0℄ =

(1� h)K

a

+ (�

u

� 1) e

T

K

a

(I�P

K

o

)

�1

1

(1� �




)h

;

as required. 2

Remark 4: The expression E [�

2n+2

(0)j �

2n+2

(0) > 0℄ in (17) is the average

number of 
ustomers served between the onset and abatement of 
ongestion.

Equation (16) in
ludes the possibility that the phase ends be
ause the busy


y
le has ended. The two 
onditional expe
tations 
annot be added dire
tly

to obtain a measure of the 
y
le length (the total time between an onset and

the following onset) be
ause of the di�erent 
onditionings. We now address this

question.

Theorem 5: The mean number of 
ustomers served in a 
y
le through two


onse
utive phases (
ongested and un
ongested) is given by

E [�℄ =

m(1� h)

h

1

;

where � = �

2n+1

+ �

2n+2

for some n � 1.

Proof: The busy period is divided into a number of 
y
les through pairs of

phases. We 
an 
al
ulate the average time of a 
y
le by 
al
ulating the mean

number of 
ustomers served in a busy period and dividing by the average num-

ber of 
y
les o

urring during one busy period. The average number of 
y
les

o

urring is simply the probability h

1

of at least one 
y
le o

urring times the

average number 1=(1 � h) of 
y
les o

urring. Putting these 
omponents to-

gether gives the required result. 2

4 Numeri
al results

We now des
ribe some examples and provide numeri
al results. We begin by

presenting a method for inverting generating fun
tions to �nd queue{length

distributions and then des
ribe the examples to be 
onsidered. The se
tion



then provides numeri
al results relating to the queue{length distribution and

other performan
e measures. Note that although we derive the queue{length

distribution for the in�nite{bu�er 
ase, loss probabilities for the �nite{bu�er


ase 
an be derived from the in�nite{bu�er distribution.

4.1 Inverting the generating fun
tion

Daigle [22℄ has demonstrated an eÆ
ient method for 
al
ulating the probabilities

p

n

from a generating fun
tion F

�

(z) =

P

1

i=0

p

n

z

n

for variants of the M=G=1

queueing pro
ess. Daigle's method uses the dis
rete Fourier transform as follows.

The 
hara
teristi
 fun
tion of the queue{length distribution 
an be expressed in

terms of the generating fun
tion of a 
omplex argument as the 
omplex Fourier

series

�(�) = F

�

�

e

�i2��

�

=

1

X

n=0

p

n

e

�i2��n

;

with basis set

�

n

(�) = e

�i2��n

; n = 0;�1;�2; : : : :

Applying the inverse Fourier transform gives

p

n

=

Z

1

0

�(�)�

n

(�)d�:

Numeri
ally this 
an be performed by 
al
ulating �(�) at L + 1 equi{spa
ed

intervals of the interval [0; 1) and applying the inverse dis
rete Fourier transform

to these values, resulting in




n;L

=

1

L+ 1

L

X

l=0

F

�

�

e

�i2��l=(L+1)

�

e

i2��nl=(L+1)

;

for n � L. Daigle [22℄ showed that




n;L

= p

n

+

1

X

m=1

p

n+m(L+1)

;

the non{equality of 


n;L

and p

n

being referred to as `aliasing'.

In prin
iple this property 
an be used to approximate the probabilities p

n

by in
reasing L until the tail probabilities are small enough. However round{

o� errors be
ome important for large L, restri
ting the usefulness of the ap-

proximation, in parti
ular for this appli
ation, where aliasing 
an have serious

side{e�e
ts. Daigle's method relies on the property that the tail probabilities of



the queue de
rease geometri
ally for M=G=1 queueing systems, that is, for ea
h

" > 0 there exists an N su
h that for all n > N

"

jp

n

� p

N

� r

n�N

j < ":

With 
omputational a

ura
y ", 
hoose L > N

"

. Daigle showed that

r

0

=




0;L

� p

0




L;L

=




0;L

� 1=m




L;L

;

p

n

=

(




n;L

� (


0;L

� p

0

) r

n

0

; 1 � n � L;

p

K

r

n�K

0

; n > L:

Daigle provided a simple method for 
hoosing L by 
al
ulating

r

n;L

=




n;L




n�1;L

; 8n : N

"

< n � L

a

L

= max

N

"

<n�L

�

�

�

�

r

0

� r

n;L

r

0

�

�

�

�

:

The 
al
ulations of queue{length distributions based on this method were

written in C++ using a free matrix library 
alled NEWMAT [23℄, whi
h in
luded

Fast Fourier Transform 
ode, and the 
ode used for matrix inversion.

4.2 The s
enarios

The threshold values used, taken from realisti
 values given in Rumsewi
z and

Smith [2℄, are shown in Table 1. These two sets of thresholds require inversion of

62�62 and 100�100, arrays respe
tively. The inversion 
an be made signi�
antly

easier by taking advantage of the upper Hessenberg [20℄ form of the matrix

I�P

K

o

, but for our purposes, 
omputation time being relatively unimportant, it

was suÆ
ient to use a standard inversion routine based on the QR de
omposition

of the matrix.

Threshold Set 1 Set 2

Abatement 50 90

Onset 62 100

Table 1: Congestion Threshold Settings.

Both overload, and standard load s
enarios were investigated in order to


ompare the behavior of the overload s
heme. In all 
ases the throttling fa
tor

was 50%, that is, when in the 
ongested regime the arrival rate was de
reased

by 50%. Four servi
e time distributions:



1. the negative exponential distribution,

2. the Erlang-5 distribution,

3. the Erlang-20 distribution,

4. the deterministi
 distribution,

were examined and 
ompared. For simpli
ity unit mean servi
e times were used

in all 
ases.

4.3 The number of messages in the bu�er

Figures 1(a) and (b) show the results of applying the algorithms with the �rst

set of thresholds from Table 1 for the three overload s
enarios �

u

= 1:2, 1:5 and

1:8 and the two non{overload 
ases �

u

= 0:8 and 1:0, with exponential servi
e

times. Figure 2 shows what happens when the se
ond set of thresholds are used

for the overload 
ases with �

u

= 1:2 and 1:8.

The e�e
t of applying the overload 
ontrol to the standard 0.8 load s
enario

is negligible. The net result of applying the overload 
ontrol to the overload

s
enarios is to isolate the probability mass between the two thresholds, with

a geometri
 drop o� outside the immediate region surrounding the thresholds.

This behavior exa
tly mat
hes what one might expe
t - Remark 1 notes the

similarity of the generating fun
tion being investigated to that of the standard

M=G=1 queue whi
h exhibits this sort of geometri
 tail. The fa
t that tail

behavior of the queue is similar to that in the M=G=1 queue makes setting the

size of the bu�er, in the �nite{state 
ase, a reasonably simple task.

Furthermore, the behavior of queue under this type of 
ontrol mat
hes the

requirements of su
h a 
ontrol, namely

� it does not e�e
t normal performan
e signi�
antly and

� under overload it limits the extent of ex
ursions to large queue sizes.

Figure 3 
ompares the behavior of the queue when the servi
e{time distri-

bution varies through exponential, Erlang{5 and Erlang{20 to a deterministi


distribution, whilst keeping the mean servi
e time 
onstant. As n ! 1 the

Erlang{n distribution approa
hes the deterministi
 distribution, a fa
t illus-

trated in the �gure. Furthermore the results demonstrate the appli
ability of

the methods for distributions other than exponential.
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Figure 1: The queue{length distribution withK
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= 50;K
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= 62 and exponential

servi
e times. The �rst graph shows the probabilities on a linear axis, the se
ond

a log probability graph.
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4.4 Simple performan
e measures

As noted in Se
tions 3.4 and 3.5 there are several simple performan
e measures

whi
h may be used to assess the behavior of the queueing system. Two re
ipro
al

measures are the probability p(0) that the system is empty and the mean number

m of 
ustomers served in one busy period, large values of m 
orresponding to

high system utilizations. Figure 4 shows log(m) for a range of s
enarios. The

independent variable 
hosen here was the abatement threshold, given a 
onstant

onset threshold. Note the large values of m, leading to p(0) being very small

(< 0:03).
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Figure 4: The log of the average length of the busy period for di�erent abatement

threshold values.

The a

epted traÆ
 load is given by (14). Figure 5 shows this performan
e

measure. Notably it is near unity for all but the smallest values of K

a

in all the

overload s
enarios. Hen
e nearly the maximum possible number of messages is

being a

epted by the server, a desirable result.

We use (15) to 
al
ulate the probability of the queue being 
ongested. Fig-

ure 6 illustrates its value over a range of abatement thresholds and displays

marked insensitivity to the abatement threshold.

The insensitivity of these results to the value of K

a

is important, be
ause it

means thatK

a


an be set to a
hieve other performan
e goals, su
h as minimizing

the number of 
ongestion status swit
hing events, with almost no 
ost in terms

of in
reased loss rates, or a larger proportion of time spent in 
ongestion.
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4.5 The time between swit
hing regimes

Se
tion 3.6 provides two ways of estimating the length 
y
le between un
ongested

and 
ongested regimes. The �rst is to estimate the mean time from 
rossing the


ongestion onset threshold until re
rossing the 
ongestion abatement threshold.

The estimate given by (16) is illustrated in Figure 7 for a number of the s
enarios

des
ribed above. The prin
ipal feature is that the value is almost linearly depen-

dent on the 
ongestion abatement threshold. Hen
e the time between swit
hing


an be in
reased by de
reasing the 
ongestion abatement threshold. The slope is

determined by the traÆ
 intensity in the 
ongested regime, and seems to be in-

sensitive to the servi
e-time distribution, as displayed by the similarity between

Figures (a) and (b). In fa
t in the examples displayed the slopes 
an be neatly

approximated by

s =

1

1� �




:

The se
ond estimate of the 
y
le time is given by E [�℄ whi
h dire
tly es-

timates the mean 
y
le time. The result given in Theorem 5 is illustrated in

Figure 8 for the same range of s
enarios as shown in Figure 7. Again 
y
le time

in
reases with de
rease in abatement threshold, but in this 
ase the in
rease is

only linear for the overload s
enarios. The s
enario with o�ered load �

u

= 1:0

has a long 
y
le time that is not linearly dependent on the threshold be
ause

its behavior during the un
ongested phase is that of a mean{zero random walk,

while in the overload s
enarios the behavior is that of a random walk with drift.

Again the behavior seems to be insensitive to the servi
e{time distribution.

We should however note that the order of the overload s
enarios, in terms of


y
le length, is di�erent for this statisti
.

5 Con
lusion

Obviously the model analyzed here does not en
apsulate all of the features used

in overload 
ontrols, and in parti
ular SS7 
ongestion 
ontrols, nor is it intended

to. The aim was to study the behavior of the hystereti
 overload 
ontrol me
ha-

nism. Su
h 
ontrols are of re
ent interest [3℄ due to the need to provide overload


ontrols in broadband networks. This paper provides some key results des
ribing

the behavior of a queue using this 
ontrol: the PGF of the queue{length distri-

bution, the probability of the queue being 
ongested, the traÆ
 load a

epted

by the system and the time between onset and abatement of 
ongestion.

These results have been used to show quantitatively that the 
ontrol behaves

as desired { limiting ex
ursions to long queue lengths during overloads with little

impa
t under normal loads.
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Intuitively, the reason for introdu
ing a se
ond distin
t threshold for measur-

ing the abatement of 
ongestion separately from the onset of 
ongestion is that

the 
ongestion 
y
le time will in
rease with in
reasing separation between the

onset and abatement thresholds. This paper demonstrates that this is indeed

the 
ase, and provides a dire
t method for estimating the in
rease in 
y
le time.

The 
losed{form nature of the results makes them appli
able to �nding opti-

mal threshold settings. Additionally, the results are also appli
able to so 
alled

heavy{tailed distributions su
h as the Pareto distribution whi
h have been re-


eiving re
ent interest [24℄ for modeling pa
ket traÆ
. These distributions may

have in�nite varian
e making many methods for 
al
ulating solutions inappro-

priate. Future work will examine these extensions.
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Appendix A Random walks

We 
onsider a random walk (X

n

)

1

0

on the nonnegative integers and asso
iated

stopping time

T = inffn > 0jX

n

2 A




g;

where A is a proper subset of the positive integers. The walk is pres
ribed by

X

n

= X

0

+

n

X

i=1

Y

i

; (n � 0)

with Y

i

independent, integer{valued random variables given by

pfY

1

= mg = f

1

(m); for m � �1;

pfY

i

= mg = f(m); for i > 1 and m � �1:

To ensure that the random walk makes no ex
ursions to the negative integers

before it is stopped, we assume that one of the regimes

(a) X

0

� 0 a.s. and Y

1

� 0 a.s.,

(b) X

0

> 0 a.s.

applies. We set

g

n

(m) = pfT > n;X

n

= mg; (n;m � 0)

h

n

(m) = pfT = n;X

T

= mg; (n > 0; m � 0):

By the de�nition of T we have the boundary 
onditions

g

n

(m) =

(

pfX

0

= mg; if n = 0

0; if m 2 A




; n > 0;

h

n

(m) = 0; if m 2 A (n � 1):



We have also for n > 0 the re
urren
es

h

1

(m) + g

1

(m) =

X

k

g

0

(k)f

1

(m� k);

h

n+1

(m) + g

n+1

(m) =

X

k

g

n

(k)f(m� k):

For jzj � 1 we de�ne the generating fun
tions

F (z) :=

1

X

k=0

f(k � 1)z

k

;

G

n

(z) :=

1

X

k=1

g

n

(k)z

k�1

; (n > 0);

H

n

(z) =

1

X

k=0

h

n

(k)z

k

; (n > 0):

If regime (a) applies, we put (again for jzj � 1)

F

1

(z) :=

1

X

k=0

f

1

(k)z

k

;

G

0

(z) :=

1

X

k=0

g

0

(k)z

k

;

otherwise if regime (b) applies, we put

F

1

(z) :=

1

X

k=�1

f

1

(k)z

k+1

;

G

0

(z) :=

1

X

k=1

g

0

(k)z

k�1

:

Then under both regimes, our re
urren
e relations provide

H

1

(z) + zG

1

(z) = G

0

(z)F

1

(z);

H

n+1

(z) + zG

n+1

(z) = G

n

(z)F (z); for n > 0:

Finally, for jwj � 1, set

G(w; z) :=

1

X

n=0

G

n

(z)w

n

;

H(w; z) :=

1

X

n=1

H

n

(z)w

n

:



Forming generating fun
tions again we derive

H(w; z) = G(w; z) [wF (z) � z℄ + zG

0

(z) + w [F

1

(z)� F (z)℄G

0

(z): (19)

It is readily veri�ed that the double series for G(w; z) is absolutely 
onvergent

for jzj � 1, jwj � 1. The series for H(w; z) is too, provided E(T ) < 1. We

assume that this 
ondition is satis�ed.

We may 
hoose our walk to represent a stable M=G=1{type system. In this


ontext we have E(Y

i

) < 0 for i > 1 and so F

0

(1) < 1. Sin
e F (1) = 1, and F (�)

is 
onvex, we have z=F (z) 2 [0; 1℄ for z 2 [0; 1℄. If also F

1

(z) = F (z) then for

z 2 [0; 1℄ we 
an set w = z=F (z) in (19) to derive

H(z=F (z); z) = zG

0

(z): (20)

When modeling the �rst phase of a busy period, we takeX

0

= 0 soG

0

(z) = 1,

and A = f1; 2; : : : ;K

o

g so that T = �

1

(0). Regime (a) applies with F

1

(z) =

F (z) = a

u

(z). Hen
e we derive H(z=a

u

(z); z) = z; and so, given that by de�ni-

tion H(w; z) = E

h

z

X

T

w

T

i

,

E

h

z

X

T

(z=a

u

(z))

T

i

= z:

This is an extension of the standard busy period result

E

h

(z=a(z))

T

i

= z;

where T is the time the busy period ends and hen
e A = f0g and X

T

= 0 a.s.

We may also model subsequent odd{numbered phases, that is, phases start-

ing when the queue rea
hes the abatement threshold K

a

. In this 
ase we as-

sume that the random walk begins at time �

2i

(0) in state X

�

2i

(0)

= K

a

. Again,

A = f1; 2; : : : ;K

o

g so that T = �

2i+1

(0), the time when the onset threshold is

ex
eeded or the busy period ends. As before F

1

(z) = F (z) = a

u

(z), but now we

are interested in r(z) as de�ned in (8). In the present 
ontext this is

H(1; z) = G(1; z) [F (z) � z℄ + zG

0

(z):

Regime (b) holds so that G

0

(z) = z

K

a

�1

and therefore

r(z) = E

h

z

X

�

2i+1

(0)

jX

�

2i

(0)

= K

a

i

= G(1; z) [a

u

(z)� z℄ + z

K

a

:

Here G(1; z) =

P

1

n=0

P

1

m=1

g

n

(m)z

m�1

= (1=z)

P

1

n=0

g

T

n

z, with

g

n

(m) = pf�

2i+1

(0) > �

2i

(0) + n;X

�

2i

(0)+n

=mjX

�

2i

(0)

= K

a

g:

Therefore

r(z)� z

K

a

=

a

u

(z)

z

�

1�

z

a

u

(z)

�

1

X

n=0

g

T

n

z: (21)


