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Abstrat: Overload ontrol is ritial in preventing ongestion in modern

swithing networks. One method, hystereti overload ontrol, uses two thresh-

olds, a ongestion onset and a ongestion abatement threshold, to detet on-

gestion. Variations of this method of overload ontrol have been used in the Sig-

naling System Number 7 (SS7) protool spei�ed by the ITU-T (International

Teleommuniations Union, Teleommuniations Standardization Setor) and

also proposed for use in broadband networks. We provide an analyti tehnique

for investigating the performane of suh ongestion ontrols and thene setting

parameters suh as the threshold levels. The tehnique relies on a martingale{

based relationship between a queueing proess and an embedded renewal proess.

1 Introdution

How does one protet a modern swithing network from overload? Answering

this question has beome ritial to the reliable operation of modern swithing

networks, beause of the inrease in servies with unpreditable traÆ loads.

An example is provided by the Common Channel Signaling traÆ assoiated

with Intelligent Network servies suh as `televoting'. In essene, there are two

related questions: how to detet or measure the ongestion aused by an over-

load and how to mitigate it. A simple and intuitively appealing mehanism to

detet ongestion is a queue{length threshold. The purpose of this paper is to

examine the behavior of systems that use two distint queue{length thresholds

to detet ongestion. Suh a tehnique has been reommended for the Signaling



System Number 7 (SS7) protool [1, p. 313℄, [2℄, and proposed for appliation

in broadband networks [3℄.

Congestion is deteted via a pair of queue{length thresholds, a ongestion

onset K

o

and a ongestion abatement threshold K

a

. For example, in the SS7

protool, a link is onsidered ongested if the number of messages in the Signaling

Transfer Point (STP) link transmit bu�er exeeds the onset threshold, and the

link returns to the unongested state only when the number of messages in the

bu�er falls to the ongestion abatement threshold or below. The two thresholds

typially are hosen so that K

a

< K

o

, leading to a hystereti e�et, desribed

below.

When ongestion ours the ontrol ats to redue the input traÆ by dis-

arding some of the input pakets. In broadband networks seletive disard of

pakets [4℄ disards low priority pakets to minimize the impat on pereived

quality of servie. The model used here for the disard strategy is Perentage

Throttling (PT), where some perentage of the originating traÆ is randomly

bloked at the soure. In this model we assume that bloked traÆ is lost from

the system, that is, ustomers do not retry at a later time, or alternatively

pakets are not retransmitted.

Rumsewiz and Smith [2℄ used simulations to ompare a realisti implemen-

tation of this overload ontrol with others used in SS7. Their results indiated

that a simple system as desribed above (though with more than one level of

throttling) was preferable to more omplex systems that use multiple thresholds

for di�erent priority messages.

There are a number of mathematial analyses of various overload ontrol

systems in whih K

a

= K

o

. For instane, Morrison [5℄ investigated a system in

whih a seond server is added when ongestion is deteted. Gong and Cassan-

dras [6℄ onsidered a system in whih the arrival rate is dependent on the number

of ustomers in the queue. Both these examples are limited to systems in whih

servie times are exponentially distributed. Perry and Asmussen [7℄ onsidered a

queue with generally{distributed servie times and an admission poliy based on

either the workload in the queue or the sojourn time of a ustomer in the queue.

More reently Leung [3℄ onsidered a system with the servie{time distribution

dependent on the workload in the system.

These examples do not allow for the two distint thresholds that lead to the

hystereti e�et in whih the queue exhibits di�erent behavior when the load

inreases, from that as it dereases. Hysteresis has been suggested as a meh-

anism to redue the number of times the ongestion status swithes state [1℄,

reduing any ost assoiated with this swithing.

The blok{matrix methodology of Neuts [8℄ has been used by Neuts [9℄ and

Li [10℄ to derive numerial results for systems with hystereti thresholds. In



this paper we use an analyti form for the generating funtion of the number of

messages in the bu�er, found using an elegant martingale{based methodology.

The losed{form result requires little omputation to evaluate the queue{length

distribution and thene the queue utilization and the bloking probability in the

�nite{bu�er ase. Further, the method allows the derivation of ritial features

of the overload ontrol, suh as the time between the onset and abatement of

ongestion.

The bu�er is modeled using a variant of theM=G=1 queue in whih the queue

state is separated into two regimes, ongested and unongested, eah with its

own arrival rate. The tehnique relies on a martingale analysis based on the

work of Rosenkrantz [11℄ and Baelli and Makowski [12, 13℄ and extended by

Roughan in [14℄ and [15℄. Perry and Asmussen [7℄ have used similar arguments.

Our main result, Theorem 3, whih gives the probability generating funtion

for the distribution of the number of ustomers in the system (as seen by an

arriving ustomer), was onjetured in [15℄. We provide a proof of this on-

jeture through Theorem 2, whih demonstrates the onditions required by the

onjeture. We derive a number of quantities inluding

� the probability the queue is ongested (in Setion 3.5),

� the traÆ load aepted by the system (Setion 3.5) and

� the time between onset and abatement of ongestion (Setion 3.6).

We present examples of numerial results for eah of these performane measures

whih verify quantitatively the intuition about the e�ets of hystereti overload

ontrols.

The paper is organized as follows. Setion 2 desribes our overload ontrol

model and Setion 3 provides a mathematial analysis of this model, inluding

stability results, the derivation of the generating funtion and the derivation of

the time spent between swithing ongestion status. Setion 4 provides numeri-

al results for the performane measures listed above, as well as the queue{length

distribution. Setion 5 suggests some extensions to the work and summarizes

our key results. An appendix gives the derivation of a tehnial result useful in

alulating the generating funtions used here.

2 The model

This setion provides a de�nition of our model of a bu�er whih uses hystereti

overload ontrol. The model is a generalization of the M=G=1 queue, a simple

queue with Poisson arrivals, generally-distributed servie times, a single server,

and an in�nite waiting room. The queue represents ustomers' messages waiting

to be proessed in the bu�er of some proessor. TheM=G=1 queue is generalized



to model the overload ontrol by separating its behavior into two regimes of

operation, ongested and unongested. The PT soure overload ontrol hanges

the unongested arrival rate �

u

to �



during the ongested regime.

An alternative to soure overload ontrol is to alter the servie{time distri-

bution of the proess, for instane, by stripping the headers to �nd the message

priority and disarding those of low priority, resulting in a short servie time

for these messages. If the servie time for the disarded pakages were zero,

this model would be essentially the same as the soure ontrol model desribed

above. In reality it takes some proessing time even to disard a message. Fur-

thermore, in pratie retrials may result in signi�ant problems for this type of

ontrol. Therefore soure ontrol, as onsidered below, is preferable.

The regime hanges from unongested to ongested when, after ompletion

of a servie (the proessing of a message in the bu�er), the number of messages

in the system is greater than the ongestion onset threshold K

o

. The regime

hanges from ongested to unongested when the number of messages in the

bu�er falls to the ongestion abatement threshold K

a

or below. Typially K

a

<

K

o

, resulting in hystereti behavior. The ase K

a

= K

o

is inluded in the

analysis desribed here but K

a

> K

o

makes little sense and is not.

The proess is modeled as follows. Take the number of ustomers in the sys-

tem at time t to be X(t) and the servie ompletion epohs to be t

1

< t

2

< � � �,

where t

n

is the departure time of the nth ustomer. We onsider the proess

embedded at ustomer departure epohs, that is, (X

n

), where X

n

= X(t

n

+),

the number of ustomers in the system as seen by the nth departing ustomer.

Cooper [16, pp. 154℄ shows that the arriving ustomers see the same queue{

length distribution as the departures. Note that, in pratie the distribution

seen by the arrivals is or equal or greater importane than the stationary distri-

bution. Furthermore, in the model desribed above, the ongestion status may

be hanged only at the ompletion of a servie and therefore depends only on

the embedded queueing proess (X

n

).

We assume the proess begins at time zero with a dummy departure leaving

the queue empty, that is, t

0

= 0 and X

0

= 0. The assumption is onvenient, and

does not e�et our results as we are onerned here with equilibrium behavior.

Arrivals to the proess are Poisson with rates �

u

and �



depending on the

urrent ongestion status. Servie times are independently and identially dis-

tributed with probability distribution funtion G(�) and mean 1=�. The traÆ

intensities �

s

are given by �

s

= �

s

=� for s = u; .

We model the arrivals using two distint sequenes of independent identi-

ally distributed random variables A

s

n

(s = u;  and n = 1; 2; : : :). Here A

u

n

and A



n

are respetively the numbers of ustomers to arrive during the nth ser-

vie given that during this servie the queue is unongested or ongested. The



probability generating funtion for the number of arrivals during a servie is

a

s

(z) =

P

1

i=1

a

s

i

z

i

=

~

G(�

s

[1 � z℄) (s = u; ), where a

s

i

= probfA

s

1

= ig and

~

G(�) is the Laplae{Stieltjes transform of the servie{time distribution funtion

G (see [16℄).

3 The martingale analysis

The model de�ned above is spei�ed on a probability spae (
;F ; P ) generated

by the ongestion status and number of ustomers in the system. We de�ne the

�ltration (F

n

) by

F

n

= �(X

0

; A

s

m

j 1 � m � n; s = u; ):

This ontains the history of the queueing proess, inluding the ongestion sta-

tus, up to time n.

3.1 Phases and stopping times

The proess an be modeled using the analysis of [14℄ by regarding eah busy

yle as a sequene of phases. We denote P

n

= 1; 2; : : : : the phase at time

n 2 ZZ

+

. A phase ends when the queue hanges ongestion status and the yle

of phases restarts when the busy yle ends, that is, when the system beomes

empty. Let C

n

denote the ongestion status (u or ) at time n. We have the

following rules:

if X

n

= 0 then P

n

= 1,

else if C

n

= C

n�1

then P

n

= P

n�1

,

else if C

n

6= C

n�1

then P

n

= P

n�1

+ 1.

Odd{numbered phases then orrespond to periods when the queue status is

unongested, even{numbered to ongested periods. We may de�ne a

j

i

for j =

1; 2; : : : to be a

u

i

for j odd and a



i

for j even and thene de�ne a

j

(z) and �

j

for

j = 1; 2; : : : :. We employ the usual indiator notation

I(A) =

(

1; when event A ours;

0; otherwise:

The assumption that a dummy servie ompletion ours at time zero leaving

the system empty implies P

0

= 1. If X

0

= 0, then X

n

and I(P

m

= j) are

determined purely by A

j

m

at times m � n and hene the ends of the phases are

stopping times.

We de�ne, for eah time n 2 ZZ

+

, a stopping time �(n) whih is either the

end of the urrent busy period or, if the queue is empty at time n, the end of the



next busy period. We de�ne also the stopping time �

j

(n) (j = 0; 1; 2; : : :) to be

the maximum of n and the end of phase j in the urrent busy yle. When the

busy period ends, we onsider the proess to go through the remaining phases,

spending zero time in eah, and so we may formally de�ne

�(n) =

(

inffm > njX

m

= 0g; if the set is non-empty,

1; otherwise;

�

j

(n) = �(n) ^ inffm � njP

m

> jg;

where as usual x ^ y :=min(x; y). We have n = �

0

(n) � �

1

(n) � �

2

(n) � � � � �

�(n). As the ends of phases orrespond to hanges in the ongestion status, an

intuitive reursive de�nition of the stopping times �

j

(n) is

�

2j+1

(n) = �(n) ^ inffm � �

2j

(n)jX

m

> K

o

g;

�

2j+2

(n) = �(n) ^ inffm � �

2j+1

(n)jX

m

� K

a

g:

We an also de�ne, for j = 1; 2; : : :, the times

�

j

(n) = �

j

(n)� �

j�1

(n); (1)

�

j

(n) =

(

�

j

(n); X

n

6= 0;

0; X

n

= 0:

(2)

We an interpret �

j

(n) as the forward reurrene time at time n of phase j + 1

in a ylial generalized Markov renewal proess [17℄.

3.2 The martingale

We now de�ne the martingale whih will provide the majority of our results.

Theorem 1: If

M

0

(z) = 1;

M

n

(z) = z

X

n

n�1

Y

k=0

 

z

I(X

k

6=0)

P

1

j=1

I(P

k

= j)a

j

(z)

!

; n � 1;

then (M

n

(z))

n�0

is a nonnegative integrable martingale for z 2 (0; 1℄.

Proof: The result is a straightforward extension of those in [14℄ and [15℄, whih

use the reurrene relation

X

n+1

= X

n

� I(X

n

6= 0) +

N

X

j=1

I(C

j

n

)A

j

n+1



to demonstrate diretly the martingale ondition E [M

n+1

(z)j F

n

℄ =M

n

(z) a.s.

2

3.3 Stability and regularity

Of obvious interest are the onditions for stability of the queue. These are

established in [15℄. Simply stated, the queue is stable if and only if 0 � �



< 1.

It is null-reurrent for �



= 1 and transient for �



> 1. A desirable onsequene

is that stability is independent of the unongested traÆ intensity, and hene an

overloaded queue will be stable so long as the originating traÆ is suÆiently

throttled.

The result an be understood intuitively by noting that, when ongested,

the queue behaves as if it were a standard M=G=1 queue with traÆ intensity

�



. This queue is always onsidered ongested when there are more than K

o

ustomers in the bu�er. Hene regardless of its unongested behavior, the queue

reverts to the standard stability behavior of the M=G=1 queue whenever there

are more than K

o

ustomers in the bu�er.

The following analysis makes use of the optional sampling theorem [18℄,

whih requires that the stopping times involved be regular for the martingale.

In general stronger onditions than stability are required for this to apply. The

following theorem proves that in the present ontext stability is a suÆient

ondition for regularity.

Theorem 2: The stopping times �

i

(n) and �(n) (i; n 2 ZZ

+

) are regular for

the martingale (M

n

(z))

1

0

.

Proof: Theorem 3.3 of [15℄ shows that establishing regularity redues to demon-

strating a ondition referred to as (*). The ondition is that

E

2

4

Y

j2S

�

�

j

(z)

�

j

(0)

3

5

<1

for all z 2 [0; 1℄, where �

j

(z) = z=a

j

(z), and S

�

is the set of all indies j suh

that the traÆ intensity �

j

during phase j exeeds unity. For a stable queue

�



< 1 (although �

u

may be greater than one). Therefore the ondition is

E

2

4

Y

j odd

�

u

(z)

�

j

(0)

3

5

<1:

The random variable X

n

an derease by a maximum of 1 at eah time step,

and therefore at ongestion abatement times �

2n

the proess is always exatly



at the ongestion abatement threshold, that is, X

�

2n

= K

a

. Consequently the

proess exhibits renewals at times �

2i

, that is, the behavior of the system before

and after �

2i

is independent. Therefore the times �

j

(0) for j odd are independent.

Thus we may redue the ondition to

Y

j odd

E

h

�

u

(z)

�

j

(0)

i

<1:

The renewals at ongestion abatement times imply the probabilities pf�

i

= kg

for i > 1 satisfy the reurrene

pf�

2i+1

= kg = hpf�

2i�1

= kg; for k > 0;

pf�

2i+1

= 0g = pf�

2i�1

= 0g+ (1� h)pf�

2i�1

> 0g;

where h 2 (0; 1) is the probability that the proess returns to the ongested

state from the abatement threshold before the busy period terminates. De�ne

�

2i+1

(z) =

1

X

k=0

�

u

(z)

k

pf�

2i+1

= kg:

We an multiply the reurrene relation above by �

u

(z)

k

and sum over k to get

�

2i+1

(z) = h

1

X

k=1

�

u

(z)

k

pf�

2i�1

= kg+ pf�

2i�1

= 0g+ (1� h)pf�

2i�1

> 0g

= h

1

X

k=0

�

u

(z)

k

pf�

2i�1

= kg+ 1� h;

when this exists. For i > 1 this reurrene relation has solution

�

2i+1

(z) = h

i�1

�

3

(z) + 1

wherever �

3

(z) exists. In [15, Lemma 4.3.1℄ it was shown that �

1

(z) exists for

z 2 [0; 1℄. A minor modi�ation of the lemma shows that �

3

(z) also exists.

Therefore

Y

j odd

E

h

�

u

(z)

�

j

(0)

i

=

1

Y

i=0

�

2i+1

(z) = �

1

(z)�

3

(z)

1

Y

i=2

(1 + h

i�1

�

3

(z))

when this exists. From Gradshteyn and Ryzhik [19, 0.252℄ a neessary and suÆ-

ient ondition for the last produt to onverge is that

P

1

i=2

h

i�1

�

3

(z) onverge.

This is automati sine h 2 (0; 1), so we are done. 2



3.4 Equilibrium results

Theorem 3: De�ne

P

K

o

=

0

B

B

B

B

B

B

�

a

u

1

a

u

2

a

u

3

� � � a

u

K

o

�1

a

u

K

o

a

u

0

a

u

1

a

u

2

� � � a

u

K

o

�2

a

u

K

o

�1

0 a

u

0

a

u

1

� � � a

u

K

o

�3

a

u

K

o

�2

.

.

.

0 0 0 � � � a

u

0

a

u

1

1

C

C

C

C

C

C

A

(3)

and set e

i

= (Æ

1i

; Æ

2i

; : : : ; Æ

K

o

i

)

T

and z = (z; z

2

; : : : ; z

K

o

)

T

. Then if �

u

> 0

and �



< 1, the probability generating funtion for the equilibrium number of

ustomers in the system (as seen by arriving ustomers) is given by

E

h

z

X

i

=

1

m

�

a



(z)(1 � z) + fa



(z)� a

u

(z)gR

K

o

K

a

(z)

a



(z)� z

�

for z 2 [0; 1), where

R

K

o

K

a

(z) =

�

e

T

1

+

�

h

1

1� h

�

e

T

K

a

�

(I�P

K

o

)

�1

z;

h = 1� a

u

0

e

K

a

T

(I�P

K

o

)

�1

e

1

;

h

1

= 1� a

u

0

e

1

T

(I�P

K

o

)

�1

e

1

;

and the mean number m of ustomers served in a busy period is given by

m =

�

1 + f�

u

� �



gR

K

o

K

a

(1)

1� �



�

:

Proof: Doob's Optional Sampling Theorem [18, Proposition IV-3-12℄ states

that for stopping times S, T satisfying S � T a.s. and whih are regular for the

martingale (M

n

),

E [M

T

j F

S

℄ =M

S

; a:s:

A onsequene is Theorem 3.10 of [15℄, whih states that the probability

generating funtion of the number of ustomers in the queue is given by

E

h

z

X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

E

h

z

X

�

2

(0)

i

�E

h

z

X

�

1

(0)

i

1� �



(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

E

h

z

X

�

2n+1

(0)

i

�E

h

z

X

�

2n

(0)

i

1� �

u

(z)

9

=

;

+

1

m

1

X

n=1

8

<

:

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

i

1� �



(z)

9

=

;

: (4)



We de�ne h

n

= pf�

n

(0) < �(0)g, the probability that phase n+1 is reahed

before the end of the �rst busy period. If the system moves into the ongested

state by passing above the ongestion onset threshold, it must, at some time

before the end of the busy period, pass below the ongestion abatement thresh-

old. Hene h

2n

= h

2n�1

. Also, as noted above, when the proess drops to the

abatement threshold there is a renewal in the sense that the future behavior of

the queue is independent of the past behavior of the queue. Hene h

2n+2

= h

2n

h

for n 2 IN . From these two relationships we derive

h

2n+1

= h

1

h

n

; (5)

h

2n+2

= h

1

h

n

: (6)

If �

n

(0) < �(0) then X

�

n

(0)

6= 0, and so for n > 1 we get

E

h

z

X

�

n

(0)

i

= E

h

z

X

�

n

(0)

I(X

�

n�1

(0)

= 0)

i

+E

h

z

X

�

n

(0)

I(X

�

n�1

(0)

6= 0)
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= pfX

�

n�1

(0)

= 0g+ pfX

�
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(0)

6= 0gE

h

z

X

�

n

(0)

�

�

�

X

�

n�1

(0)

6= 0

i

= 1� h

n�1

+ h

n�1

E

h

z

X

�

n

(0)

�

�

�

X

�

n�1

(0)

> 0

i

: (7)

For n > 0, (7) gives

E

h

z

X

�

2n

(0)

i

= 1� h

2n�1

+ h

2n�1

z

K

a

;

E

h

z

X

�

2n+1

(0)

i

= 1� h

2n

+ h

2n

E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a
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:

We may set

r(z) = E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

(8)

for n > 0, sine this expression is independent of n. Then

E
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z
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�
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i

�E
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z
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�

1

(0)

i

= 1� h

1

+ h

1

z

K

a

�E

h

z

X

�

1

(0)

i

; (9)
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�
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(0)

i

�E

h

z

X

�

2n

(0)

i

= h

1

h

n�1

(r(z) � z

K

a

); (10)

E

h

z

X

�

2n+2

(0)

i

�E

h

z

X

�

2n+1

(0)

i

= h

1

h

n�1

�

1� h+ hz

K

a

� r(z)

�

: (11)

Substitution from (9), (10) and (11) into (4) gives

E

h

z

X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

1�E

h

z

X

�

1

(0)

i

1� �



(z)

+

h

1

(1� h)

"

(r(z)� z

K

a

)(�

u

(z)� �



(z))

(1� �

u

(z))(1 � �



(z))

#

9

=

;

: (12)



We now alulate r(z) � z

K

a

= E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

� z

K

a

, whih

(21) in the Appendix gives as

r(z)� z

K

a

=

a

u

(z)

z

[1� �

u

(z)℄

1

X

n=0

g

T

n

z;

where g

n

= (g

n

(1); g

n

(2); � � � ; g

n

(K

o

))

T

and

g

n

(m) = pf�

2i+1

(0) > �

2i

(0) + n;X

�

2i

(0)+n

=mjX

�

2i

(0)

= K

a

g:

It is evident that g

T

n

= e

T

K

a

P

K

o

n

. The sum over n of P

K

o

n

has been shown to

onverge ([14, Lemma 3.2℄), giving

P

1

n=0

g

T

n

= e

T

K

a

(I�P

K

o

)

�1

. Therefore

r(z)� z

K

a

=

a

u

(z)

z

[1� �

u

(z)℄ e

T

K

a

(I�P

K

o

)

�1

z: (13)

Substitution from (13) into (12) gives

E
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X

i

=

1

m

8

<

:

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

1�E

h

z
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�

1

(0)

i

1� �



(z)

+

h

1

1� h

2

4

e

T

K

a

(I�P

K

o

)

�1

z

�

1�

a

u

(z)

a



(z)

�

(1� �



(z))

3

5

9

=

;

:

The �rst two terms of the right{hand side of this equation appeared in [14℄ where

a spei� ase of this queue, the M=G=1 queue with the abatement threshold

set to zero, was onsidered. Note that the terms depend only on �

1

(0), whih

is una�eted by the abatement threshold. These terms were shown in in [14℄ to

provide

E

h

z

X

�

1

(0)

i

� z

1� �

u

(z)

+

1�E

h

z

X

�

1

(0)

i

1� �



(z)

=

a



(z)(1 � z) + fa



(z) � a

u

(z)g e

1

(I�P

K

o

)

�1

z

t

a



(z)� z

:

Rearranging slightly, we get

E
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:
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(z)(1 � z) + fa
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+

h

1
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�

(I�P
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i

a



(z)� z

9

=

;

:



We now alulate m using E

h

z

X

i

z=1

= 1. Taking the limit as z " 1 using

L'Hôpital's rule yields that

m =

1 + f�

u

� �



gR

K

o

K

a

(1)

1� �



:

As E

h

z

X

i

z=0

= 1=m, the probability that the queue is empty is 1=m and hene

m is the mean number of ustomers served in a busy period. From the de�nitions

of h and h

1

, we get

h

1

= 1�E

h

z

X

�

1

(0)

�

�

�

X

0

= 0

i

z=0

;

h = 1�E

h

z

X

�

2n+1

(0)

�

�

�

X

�

2n

(0)

= K

a

i

z=0

;

whih an be alulated from (13) and the similar expression in [14℄ to be

h

1

= 1� a

u

0

e

1

T

(I�P

K

o

)

�1

e

1

;

h = 1� a

u

0

e

K

a

T

(I�P

K

o

)

�1

e

1

;

the desired result. 2

Remark 1: The form of the solution is that of the Pollazek{Khinthine Equa-

tion [16℄ for the probability generating funtion of the stationary number of

ustomers in the M=G=1 queue with traÆ intensity �



, plus a orretion term

whih takes into aount the altered behavior of the queue in the unongested

regime. The solution, though more ompliated, is very similar to that for the

M=G=1 queue with generalized vaations where only the �rst arrival to an empty

system noties altered behavior.

Remark 2: The solution requires a matrix inversion. The matrix (I � P

K

o

)

to be inverted is already in upper{Hessenberg form [20℄ and the inversion is

therefore easily performed, even for quite large matries.

Remark 3: The theorem has been desribed in terms of a soure ontrol model,

but applies equally well to paket disard models where the servie-time distri-

bution of disarded pakets is hanged. In this ase a

j

(z) =

~

G

j

(�[1� z℄), where

G

j

(�) is the servie{time distribution during the ongested phase. Furthermore,

in this ase the arrivals form a homogeneous Poisson proess, and therefore

PASTA [21℄ (Poisson Arrivals See Time Averages) implies that the arriving us-

tomers see the time{averaged behavior of the system. Hene our result gives the

stationary queue{length distribution.



3.5 Simple performane estimates

First we introdue some terminology. The o�ered load �

u

refers to the load

o�ered to the system prior to any overload ontrol. The aepted load �

a

is that

part of the load aepted by the system after appliation of overload ontrols.

The rejeted load �

r

refers to traÆ bloked by the overload ontrol, not by

overowing a �nite bu�er.

To alulate the aepted load we apply Little's law L = �W to the proessor,

rather than the queue, so that L is the average work in the system, namely the

proessor utilization, while � is the arrival rate to the system and W the mean

servie time. The proessor utilization is one minus the probability 1=m of the

system being empty. The arrival rate times the mean servie time is the aepted

load �

a

. Thus

�

a

= 1�

1

m

=

�



+ (�

u

� �



)R

K

o

K

a

(1)

1 + (�

u

� �



)R

K

o

K

a

(1)

: (14)

To alulate the proportion of time the system spends in the ongested state

we note that PT is applied during ongestion reduing the load on the system

from �

u

to �



. The aepted load on the system is thus �

a

= (1 �  )�

u

+  �



,

where  is the proportion of time the queue spends ongested. In onjuntion

with (14), this expression yields

 =

1 + (�

u

� 1)R

K

o

K

a

(1)

1 + (�

u

� �



)R

K

o

K

a

(1)

: (15)

The rejeted traÆ is just �

r

= (�

u

� �



) = �

u

� �

a

, and therefore the

probability of being bloked by the overload ontrol is p

B

= �

r

=�

u

.

3.6 The time spent in the ongested region

One of the prinipal reasons for introduing the hystereti e�et into this type

of threshold{based overload ontrol is to limit the osillatory behavior that an

our for a single �xed threshold. In order to measure this behavior we must

alulate the time spent before swithing regimes.

Theorem 4: For n � 1, �



< 1 and �

u

> 1 we have

E [�

2n+1

(0)j �

2n+1

(0) > 0℄ = e

T

K

a

(I�P

K

o

)

�1

1; (16)

E [�
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K

a

(1� h) + (�
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� 1) e

T
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a

(I�P
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o

)

�1

1

(1� �



)h

: (17)



Proof: Corollary 3.7 of [15℄ with N set equal to 1 states that
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:

Taking the di�erene for onseutive values of i supplies
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i

:(18)

Sine we are interested only in limiting behavior, we onsider the ases i > 1.

The right{hand side of (18) is given in these two ases i even and i odd by (10)

and (11) whih state, via (13), that
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:

The derivative of the left{hand side at z = 1 is
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Similarly the right{hand side leads to
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Equating gives
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From (5) and (6), we have

pf�

2n+1

(0) > 0g = pfX

�

2n

(0)

> 0g = h

2n

= h

1

h
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;

pf�
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(0) > 0g = pfX
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(0)

> 0g = h
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= h

1
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:

Sine E [XjX > 0℄ = E [X℄ =pfX > 0g for a nonnegative random variable, we

get
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(0)j �
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(0) > 0℄ = e

T

K
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(I�P

K
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�1
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T

K
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�1

1

(1� �



)h

;

as required. 2

Remark 4: The expression E [�

2n+2

(0)j �

2n+2

(0) > 0℄ in (17) is the average

number of ustomers served between the onset and abatement of ongestion.

Equation (16) inludes the possibility that the phase ends beause the busy

yle has ended. The two onditional expetations annot be added diretly

to obtain a measure of the yle length (the total time between an onset and

the following onset) beause of the di�erent onditionings. We now address this

question.

Theorem 5: The mean number of ustomers served in a yle through two

onseutive phases (ongested and unongested) is given by

E [�℄ =

m(1� h)

h

1

;

where � = �

2n+1

+ �

2n+2

for some n � 1.

Proof: The busy period is divided into a number of yles through pairs of

phases. We an alulate the average time of a yle by alulating the mean

number of ustomers served in a busy period and dividing by the average num-

ber of yles ourring during one busy period. The average number of yles

ourring is simply the probability h

1

of at least one yle ourring times the

average number 1=(1 � h) of yles ourring. Putting these omponents to-

gether gives the required result. 2

4 Numerial results

We now desribe some examples and provide numerial results. We begin by

presenting a method for inverting generating funtions to �nd queue{length

distributions and then desribe the examples to be onsidered. The setion



then provides numerial results relating to the queue{length distribution and

other performane measures. Note that although we derive the queue{length

distribution for the in�nite{bu�er ase, loss probabilities for the �nite{bu�er

ase an be derived from the in�nite{bu�er distribution.

4.1 Inverting the generating funtion

Daigle [22℄ has demonstrated an eÆient method for alulating the probabilities

p

n

from a generating funtion F

�

(z) =

P

1

i=0

p

n

z

n

for variants of the M=G=1

queueing proess. Daigle's method uses the disrete Fourier transform as follows.

The harateristi funtion of the queue{length distribution an be expressed in

terms of the generating funtion of a omplex argument as the omplex Fourier

series

�(�) = F

�

�

e

�i2��

�

=

1

X

n=0

p

n

e

�i2��n

;

with basis set

�

n

(�) = e

�i2��n

; n = 0;�1;�2; : : : :

Applying the inverse Fourier transform gives

p

n

=

Z

1

0

�(�)�

n

(�)d�:

Numerially this an be performed by alulating �(�) at L + 1 equi{spaed

intervals of the interval [0; 1) and applying the inverse disrete Fourier transform

to these values, resulting in



n;L

=

1

L+ 1

L

X

l=0

F

�

�

e

�i2��l=(L+1)

�

e

i2��nl=(L+1)

;

for n � L. Daigle [22℄ showed that



n;L

= p

n

+

1

X

m=1

p

n+m(L+1)

;

the non{equality of 

n;L

and p

n

being referred to as `aliasing'.

In priniple this property an be used to approximate the probabilities p

n

by inreasing L until the tail probabilities are small enough. However round{

o� errors beome important for large L, restriting the usefulness of the ap-

proximation, in partiular for this appliation, where aliasing an have serious

side{e�ets. Daigle's method relies on the property that the tail probabilities of



the queue derease geometrially for M=G=1 queueing systems, that is, for eah

" > 0 there exists an N suh that for all n > N

"

jp

n

� p

N

� r

n�N

j < ":

With omputational auray ", hoose L > N

"

. Daigle showed that

r

0

=



0;L

� p

0



L;L

=



0;L

� 1=m



L;L

;

p

n

=

(



n;L

� (

0;L

� p

0

) r

n

0

; 1 � n � L;

p

K

r

n�K

0

; n > L:

Daigle provided a simple method for hoosing L by alulating

r

n;L

=



n;L



n�1;L

; 8n : N

"

< n � L

a
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= max

N
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<n�L

�

�

�

�

r

0

� r

n;L

r

0

�

�

�

�

:

The alulations of queue{length distributions based on this method were

written in C++ using a free matrix library alled NEWMAT [23℄, whih inluded

Fast Fourier Transform ode, and the ode used for matrix inversion.

4.2 The senarios

The threshold values used, taken from realisti values given in Rumsewiz and

Smith [2℄, are shown in Table 1. These two sets of thresholds require inversion of

62�62 and 100�100, arrays respetively. The inversion an be made signi�antly

easier by taking advantage of the upper Hessenberg [20℄ form of the matrix

I�P

K

o

, but for our purposes, omputation time being relatively unimportant, it

was suÆient to use a standard inversion routine based on the QR deomposition

of the matrix.

Threshold Set 1 Set 2

Abatement 50 90

Onset 62 100

Table 1: Congestion Threshold Settings.

Both overload, and standard load senarios were investigated in order to

ompare the behavior of the overload sheme. In all ases the throttling fator

was 50%, that is, when in the ongested regime the arrival rate was dereased

by 50%. Four servie time distributions:



1. the negative exponential distribution,

2. the Erlang-5 distribution,

3. the Erlang-20 distribution,

4. the deterministi distribution,

were examined and ompared. For simpliity unit mean servie times were used

in all ases.

4.3 The number of messages in the bu�er

Figures 1(a) and (b) show the results of applying the algorithms with the �rst

set of thresholds from Table 1 for the three overload senarios �

u

= 1:2, 1:5 and

1:8 and the two non{overload ases �

u

= 0:8 and 1:0, with exponential servie

times. Figure 2 shows what happens when the seond set of thresholds are used

for the overload ases with �

u

= 1:2 and 1:8.

The e�et of applying the overload ontrol to the standard 0.8 load senario

is negligible. The net result of applying the overload ontrol to the overload

senarios is to isolate the probability mass between the two thresholds, with

a geometri drop o� outside the immediate region surrounding the thresholds.

This behavior exatly mathes what one might expet - Remark 1 notes the

similarity of the generating funtion being investigated to that of the standard

M=G=1 queue whih exhibits this sort of geometri tail. The fat that tail

behavior of the queue is similar to that in the M=G=1 queue makes setting the

size of the bu�er, in the �nite{state ase, a reasonably simple task.

Furthermore, the behavior of queue under this type of ontrol mathes the

requirements of suh a ontrol, namely

� it does not e�et normal performane signi�antly and

� under overload it limits the extent of exursions to large queue sizes.

Figure 3 ompares the behavior of the queue when the servie{time distri-

bution varies through exponential, Erlang{5 and Erlang{20 to a deterministi

distribution, whilst keeping the mean servie time onstant. As n ! 1 the

Erlang{n distribution approahes the deterministi distribution, a fat illus-

trated in the �gure. Furthermore the results demonstrate the appliability of

the methods for distributions other than exponential.
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Figure 1: The queue{length distribution withK

a

= 50;K

o

= 62 and exponential

servie times. The �rst graph shows the probabilities on a linear axis, the seond

a log probability graph.
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4.4 Simple performane measures

As noted in Setions 3.4 and 3.5 there are several simple performane measures

whih may be used to assess the behavior of the queueing system. Two reiproal

measures are the probability p(0) that the system is empty and the mean number

m of ustomers served in one busy period, large values of m orresponding to

high system utilizations. Figure 4 shows log(m) for a range of senarios. The

independent variable hosen here was the abatement threshold, given a onstant

onset threshold. Note the large values of m, leading to p(0) being very small

(< 0:03).
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Figure 4: The log of the average length of the busy period for di�erent abatement

threshold values.

The aepted traÆ load is given by (14). Figure 5 shows this performane

measure. Notably it is near unity for all but the smallest values of K

a

in all the

overload senarios. Hene nearly the maximum possible number of messages is

being aepted by the server, a desirable result.

We use (15) to alulate the probability of the queue being ongested. Fig-

ure 6 illustrates its value over a range of abatement thresholds and displays

marked insensitivity to the abatement threshold.

The insensitivity of these results to the value of K

a

is important, beause it

means thatK

a

an be set to ahieve other performane goals, suh as minimizing

the number of ongestion status swithing events, with almost no ost in terms

of inreased loss rates, or a larger proportion of time spent in ongestion.
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4.5 The time between swithing regimes

Setion 3.6 provides two ways of estimating the length yle between unongested

and ongested regimes. The �rst is to estimate the mean time from rossing the

ongestion onset threshold until rerossing the ongestion abatement threshold.

The estimate given by (16) is illustrated in Figure 7 for a number of the senarios

desribed above. The prinipal feature is that the value is almost linearly depen-

dent on the ongestion abatement threshold. Hene the time between swithing

an be inreased by dereasing the ongestion abatement threshold. The slope is

determined by the traÆ intensity in the ongested regime, and seems to be in-

sensitive to the servie-time distribution, as displayed by the similarity between

Figures (a) and (b). In fat in the examples displayed the slopes an be neatly

approximated by

s =

1

1� �



:

The seond estimate of the yle time is given by E [�℄ whih diretly es-

timates the mean yle time. The result given in Theorem 5 is illustrated in

Figure 8 for the same range of senarios as shown in Figure 7. Again yle time

inreases with derease in abatement threshold, but in this ase the inrease is

only linear for the overload senarios. The senario with o�ered load �

u

= 1:0

has a long yle time that is not linearly dependent on the threshold beause

its behavior during the unongested phase is that of a mean{zero random walk,

while in the overload senarios the behavior is that of a random walk with drift.

Again the behavior seems to be insensitive to the servie{time distribution.

We should however note that the order of the overload senarios, in terms of

yle length, is di�erent for this statisti.

5 Conlusion

Obviously the model analyzed here does not enapsulate all of the features used

in overload ontrols, and in partiular SS7 ongestion ontrols, nor is it intended

to. The aim was to study the behavior of the hystereti overload ontrol meha-

nism. Suh ontrols are of reent interest [3℄ due to the need to provide overload

ontrols in broadband networks. This paper provides some key results desribing

the behavior of a queue using this ontrol: the PGF of the queue{length distri-

bution, the probability of the queue being ongested, the traÆ load aepted

by the system and the time between onset and abatement of ongestion.

These results have been used to show quantitatively that the ontrol behaves

as desired { limiting exursions to long queue lengths during overloads with little

impat under normal loads.
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Intuitively, the reason for introduing a seond distint threshold for measur-

ing the abatement of ongestion separately from the onset of ongestion is that

the ongestion yle time will inrease with inreasing separation between the

onset and abatement thresholds. This paper demonstrates that this is indeed

the ase, and provides a diret method for estimating the inrease in yle time.

The losed{form nature of the results makes them appliable to �nding opti-

mal threshold settings. Additionally, the results are also appliable to so alled

heavy{tailed distributions suh as the Pareto distribution whih have been re-

eiving reent interest [24℄ for modeling paket traÆ. These distributions may

have in�nite variane making many methods for alulating solutions inappro-

priate. Future work will examine these extensions.
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Appendix A Random walks

We onsider a random walk (X

n

)

1

0

on the nonnegative integers and assoiated

stopping time

T = inffn > 0jX

n

2 A



g;

where A is a proper subset of the positive integers. The walk is presribed by

X

n

= X

0

+

n

X

i=1

Y

i

; (n � 0)

with Y

i

independent, integer{valued random variables given by

pfY

1

= mg = f

1

(m); for m � �1;

pfY

i

= mg = f(m); for i > 1 and m � �1:

To ensure that the random walk makes no exursions to the negative integers

before it is stopped, we assume that one of the regimes

(a) X

0

� 0 a.s. and Y

1

� 0 a.s.,

(b) X

0

> 0 a.s.

applies. We set

g

n

(m) = pfT > n;X

n

= mg; (n;m � 0)

h

n

(m) = pfT = n;X

T

= mg; (n > 0; m � 0):

By the de�nition of T we have the boundary onditions

g

n

(m) =

(

pfX

0

= mg; if n = 0

0; if m 2 A



; n > 0;

h

n

(m) = 0; if m 2 A (n � 1):



We have also for n > 0 the reurrenes

h

1

(m) + g

1

(m) =

X

k

g

0

(k)f

1

(m� k);

h

n+1

(m) + g

n+1

(m) =

X

k

g

n

(k)f(m� k):

For jzj � 1 we de�ne the generating funtions

F (z) :=

1

X

k=0

f(k � 1)z

k

;

G

n

(z) :=

1

X

k=1

g

n

(k)z

k�1

; (n > 0);

H

n

(z) =

1

X

k=0

h

n

(k)z

k

; (n > 0):

If regime (a) applies, we put (again for jzj � 1)

F

1

(z) :=

1

X

k=0

f

1

(k)z

k

;

G

0

(z) :=

1

X

k=0

g

0

(k)z

k

;

otherwise if regime (b) applies, we put

F

1

(z) :=

1

X

k=�1

f

1

(k)z

k+1

;

G

0

(z) :=

1

X

k=1

g

0

(k)z

k�1

:

Then under both regimes, our reurrene relations provide

H

1

(z) + zG

1

(z) = G

0

(z)F

1

(z);

H

n+1

(z) + zG

n+1

(z) = G

n

(z)F (z); for n > 0:

Finally, for jwj � 1, set

G(w; z) :=

1

X

n=0

G

n

(z)w

n

;

H(w; z) :=

1

X

n=1

H

n

(z)w

n

:



Forming generating funtions again we derive

H(w; z) = G(w; z) [wF (z) � z℄ + zG

0

(z) + w [F

1

(z)� F (z)℄G

0

(z): (19)

It is readily veri�ed that the double series for G(w; z) is absolutely onvergent

for jzj � 1, jwj � 1. The series for H(w; z) is too, provided E(T ) < 1. We

assume that this ondition is satis�ed.

We may hoose our walk to represent a stable M=G=1{type system. In this

ontext we have E(Y

i

) < 0 for i > 1 and so F

0

(1) < 1. Sine F (1) = 1, and F (�)

is onvex, we have z=F (z) 2 [0; 1℄ for z 2 [0; 1℄. If also F

1

(z) = F (z) then for

z 2 [0; 1℄ we an set w = z=F (z) in (19) to derive

H(z=F (z); z) = zG

0

(z): (20)

When modeling the �rst phase of a busy period, we takeX

0

= 0 soG

0

(z) = 1,

and A = f1; 2; : : : ;K

o

g so that T = �

1

(0). Regime (a) applies with F

1

(z) =

F (z) = a

u

(z). Hene we derive H(z=a

u

(z); z) = z; and so, given that by de�ni-

tion H(w; z) = E

h

z

X

T

w

T

i

,

E

h

z

X

T

(z=a

u

(z))

T

i

= z:

This is an extension of the standard busy period result

E

h

(z=a(z))

T

i

= z;

where T is the time the busy period ends and hene A = f0g and X

T

= 0 a.s.

We may also model subsequent odd{numbered phases, that is, phases start-

ing when the queue reahes the abatement threshold K

a

. In this ase we as-

sume that the random walk begins at time �

2i

(0) in state X

�

2i

(0)

= K

a

. Again,

A = f1; 2; : : : ;K

o

g so that T = �

2i+1

(0), the time when the onset threshold is

exeeded or the busy period ends. As before F

1

(z) = F (z) = a

u

(z), but now we

are interested in r(z) as de�ned in (8). In the present ontext this is

H(1; z) = G(1; z) [F (z) � z℄ + zG

0

(z):

Regime (b) holds so that G

0

(z) = z

K

a

�1

and therefore

r(z) = E

h

z

X

�

2i+1

(0)

jX

�

2i

(0)

= K

a

i

= G(1; z) [a

u

(z)� z℄ + z

K

a

:

Here G(1; z) =

P

1

n=0

P

1

m=1

g

n

(m)z

m�1

= (1=z)

P

1

n=0

g

T

n

z, with

g

n

(m) = pf�

2i+1

(0) > �

2i

(0) + n;X

�

2i

(0)+n

=mjX

�

2i

(0)

= K

a

g:

Therefore

r(z)� z

K

a

=

a

u

(z)

z

�

1�

z

a

u

(z)

�

1

X

n=0

g

T

n

z: (21)


