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Abstract: It has been suggested that fusion of multiple

data sources may be required for the reliable detection of

land mines at acceptable false alarm rates. This study val-

idates this contention by showing that a fusion algorithm

using images from two infrared wave bands (3-5�m and

8-12�m) yields signi�cantly better false alarm rates than

either by itself. The research was pursued with method-

ological rigour, both in experimental design and statistical

assessment. The data processing involves orthographic

registration, region of interest extraction, feature extrac-

tion, feature selection, classi�cation.

1 Introduction

Land mines pose problems for the military by restricting their

mobility, and for civilian populations, who are at risk long af-

ter con
icts have passed. At current rates of clearance, more

than one thousand years would be required to remove all of

the existing land mines (approximately 100 million according

to UN �gures), not to mention the 2.5 million mines being

laid each year.

Current techniques for mine clearance involve painstaking in-

vestigating of each inch of ground, by hand, or by sni�er dog.

Active investigation is under way into various sensor technolo-

gies { chemical, acoustic, electro-optical and electromagnetic

{ to provide improved land-mine detection methods. Notably,

infrared (IR) imagery can detect buried land mines by detect-

ing associated variations in the surface temperature of the

soil caused by the di�erent thermal inertias and conductivi-

ties of the mine and soil and the diurnal temperature cycle

[Clark et al., 1992; Clark et al., 1993; DelGrande, 1990], as

can be seen in Figure 1.

The primary requirement of any land-mine detection system

is a high probability of detection (P

d

). Modern land mines

may be very small, have little metallic content, and therefore

be very hard to detect. As in other di�cult detection appli-

cations, single-sensor systems with high probabilities of de-

tection have correspondingly high probabilities of false alarm

(P

f

). At present, no single-sensor technique can simultane-

ously deliver the required probabilities of detection and false

alarm, and achieve an acceptable rate of progress [Clark et al.,
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Figure 1: An example IR image containing a land mine which

appears as the a lighter circular feature near the centre of the

registration square. The is also a second mine near the base

of the registration square.

1992; Clark et al., 1993; DelGrande, 1990; Hanshaw, 1995;

Mullins, 1996].

This study aims to provide a quantitative demonstration of

the bene�ts of using multiple sensors for the detection of

buried land mines. In particular, it aims to show a reduction

in the P

f

through the fusion of two sets of imagery from

di�erent IR bands.

This paper is based upon three technical reports [Roughan

and McMichael, 1996a,b,c] which describe the methodology

for MSF [Roughan and McMichael, 1996a], the experimen-

tal design [Roughan and McMichael, 1996b], and the re-

sults [Roughan and McMichael, 1996c] of the project. The

paper provides several features not seen in other land-mine

detection studies:

� a more sophisticated approach to MSF;

� a thorough discussion of the methodology used;

� a well-founded experimental design;

� a statistical analysis of the results to provide strong

conclusions.

The paper is divided into six sections. Following this intro-

duction, Section 2 describes the data. Section 3 presents

the methodology and implementation of the algorithms, and



Section 4 presents the results. Section 5 discusses these re-

sults, and areas for future research. Section 6 summarises

and concludes the paper.

2 Data

The data was provided under a contract with the Defence

Science and Technology Organisation of Australia (DSTO).

The data was collected from a platform approximately 4m

high, located 7m from the base of the mine�eld, which was

approximately 8m long, and 3m wide. One third of the mine-

�eld was covered in sand. Please see Figure 2 for a schematic

of the mine�eld.

A summary of the data provided to the Cooperative Research

Centre for Sensor Signal and Information Processing (CSSIP)

by DSTO, which was in the form of raw IR imagery, plus a

small number of visual range images of the mine�eld, is given

in Table 2. The Agema imagery, collected using the Agema

DBTI 900 system, consists of two bands of IR imagery: 3-5

�m, and 8-12 �m, referred to here as short and long wave-

length imagery, respectively. The IR imagery was 12 bit, with

a spatial resolution of 272x136 pixels. The visual range im-

agery was taken with a Kodak DCS 420 camera, and provided

as 24 bit colour RGB TIFF �les, with a spatial resolution of

1524x1012 pixels.

The experimental design of the Data Fusion for Land-Mine

Detection project [Roughan and McMichael, 1996b] speci�ed

18 categories of data, based on soil type, time of day, and

whether the images contained extensive clutter. Classes I and

II, shown in Table 1, were considered crucial for assessing the

advantages of MSF in this application.

Experimental variables

Class time weather soil type clutter

class I daylight � sand yes

class II daylight � sand no

Table 1: The classi�cation of conditions for key experiments.

The \�" indicates that the variable has not been speci�ed,

but it is uniform for all the data.

The amount of data required was designed to be su�cient

to match a requirement on the size of the statistical test of

the hypothesis that this fusion method gives better perfor-

mance than an analogous single-sensor algorithm [Roughan

and McMichael, 1996a]. It was found that approximately 100

two-band images would be required to di�erentiate the P

f

of

two di�erent detection methods (with a reasonable level of

con�dence), while 200 two-band images would be required to

di�erentiate P

d

's. In the event, the data that was actually

provided is shown in Table 2.

The net result of registration, Region Of Interest (ROI) selec-

tion, restriction to PMN mines (see following sections), and

selecting class II data was 90 ROI with a PMN or PMN2 land

mine in them. This was approximately the amount of data

required for detecting di�erences in P

f

, but more data would

be needed to detect di�erences in P

d

's.

2.1 Data driven objectives

In order to focus the results of the project where there is the

most available data, the speci�c objectives of this paper are

limited to consideration of:

Number of two-band images

Data class short wave long wave visual

class I 7� 5 7� 5 0

class II 18 � 5 18 � 5 20

Table 2: The quantity of data provided. Note the IR imagery

is shown in terms of sets of �ve images, each set of which

covers the 8m�1m sand-covered part of the mine�eld, shown

in Figure 2.

� class II data (described above);

� detection of PMN an PMN2 mines;

� testing classi�cation algorithms.

Class II data, and the fusion of dual-band IR data were of

primary interest here, while class I data will be examined in

more detail once more imagery has been collected for this

data set. The study was conducted with the emphasis on

the PMN and PMN2 anti-personnel mines, for the following

reasons:

� Di�erent mines have substantially di�erent signatures {

based on weight, radius, etc. { and therefore a separate

classi�er is required for each type.

� To simplify the statistical analysis.

� Anti-personnel mines were chosen for testing as very

little anti-tank data was available. There were only

two anti-tank mines in the mine �eld that was tested,

and these were all at the extreme end of the mine�eld,

where a number of features (poor resolution, and cam-

era angle) made imagery of these mines hard to use.

� Of the anti-personnel mines, the PMN mine is best

represented in the data.

� The PMNmines are well distributedover the mine-�eld.

3 Methodology

The study's methodology is simple and robust. The detection

process is broken into four sequential processes:

� registration of the imagery;

� selection of the ROI;

� extraction of features from the ROI;

� classi�cation of the ROI based upon the features.

The four stages are discussed in detail in Sections 3.1 to 3.4.

3.1 Registration

The data of interest consists of three sets of imagery - two

sets of IR imagery and one set of visible imagery (to be used

later). The cameras used to take this imagery each have

di�erent �elds of view, orientations, and images resolutions,

as shown in Figure 3.

The �rst stage of the processing, described above, is that of

registration, the process of overlaying the images so that there

is a spatial correspondence between the features in the di�er-

ent sets of imagery. In this application, the imagery was to be

co-registered to a common coordinate system { a square grid
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Figure 2: A schematic of the mine�eld, showing the types of the mines (PMN, M14, T72, VS50, Mk5, TM62) buried in the

sand covered part of the �eld (shaded). The small black squares indicate the registration markers, while the distances along

the x-axis indicate the distance from the cameras.

Land Mine

Figure 3: The camera setup. The two cameras have di�erent

�elds of view, orientations and resolutions. The dotted black

lines indicate a square from the grid.

placed over the mine�eld. This process, sometimes referred

to as recti�cation, corrects the perspective distortions of the


at mine�eld. In general, registration is a di�cult problem;

however, in this instance the registration process was aided

by the addition of �ducial points in the image. The �du-

cial markers were small square aluminium plates, placed in

recorded positions on the ground before capturing the im-

ages (refer to Figure 2).

A graphical user interface (GUI) was developed at CSSIP

to allow manual extraction of the registration points using

mouse clicks on the source imagery; the points were then

used as reference points to construct a transformation from

the registered image to the source image:

[x; y] = [f

x

(u; v); f

y

(u; v)] ; (1)

where [x;y] refers to coordinates in the source image corre-

sponding to [u; v] in the registered image, while f

x

(�; �) and

f

y

(�; �) are the mapping functions.

The transformation from the registered image to the source

image may be used to construct the registered image through

resampling. Sampling is required because of the digital nature

of both source and registered images. In nearest neighbour

resampling [Russ, 1995, p. 203] the (x;y) coordinates ob-

tained from the transformation in equation (1) are rounded

o� to �nd the pixel in the source image nearest to (x; y). An

alternative, used in this application, is to round down (x; y)

to obtain the location of the sampled pixel; that is,

I

reg

(u; v) = I

source

�

bf

x

(u; v)c; bf

y

(u; v)c

�

: (2)

where I

source

(�; �) is the source image transformed to a com-

mon reference frame I

reg

(�; �), and bxc denotes the largest

integer less than x.

Interpolation using neighbouring pixels can reduce artifacts

in the registered images introduced by sampling [Russ, 1995,

p. 205], but the minimal occurrence of such artifacts made

interpolation unnecessary in this application.

The perspective transformations introduced by the cameras

distorts the square grid on the mine-�eld into trapezoids in the

images [Russ, 1995, pp. 200{201], as can be seen in Figure 1

which shows the registration square (in white) transformed

into a trapezoid.

When the registration points lie at the corners of a known

rectangle the coordinate transformations f

x

(�; �) and f

y

(�; �)

which reverse the perspective transformation may be per-

formed using a trapezoidal mapping without calculating the

perspective transformation explicitly. The trapezoidal map-

ping is found using the four registration points, chosen manu-

ally from the source image. These four points de�ne a trape-

zoid which corresponds, in reality, to a horizontal square of

the grid on the mine�eld. Thus pixels in the registered square

can be mapped to the source image by bi-linear interpolation

of the positions of the registration points.

The GUI application, programmed in IDL, allowed co-

registration of the three image sources (two bands of IR, and

one visible range image) by manually inputing the location of

the four �ducial points, via mouse click in a window. The size

of the registered image was chosen to be 300 � 300 pixels,

in order to oversample the IR source images. Figure 4 shows

Figure 1 after recti�cation.

3.2 Region of interest selection

The regions of interest (ROI) are subregions of the image,

to which the test for a land mine is applied. The test is

applied by extracting features from the ROI, as described in

Section 3.3 and classifying based on features selected in Sec-

tion 3.3. Restricting feature extraction to the relatively small

ROI reduces the computation required to detect signi�cant

features.

In this study, the set of ROI were manually chosen to directly

coincide with the positions of the land mines in the image.

In fully automated systems the ROI would be selected from

the image using image processing algorithms, but in order to



Figure 4: The registration square from Figure 1 after recti�ca-

tion. The four black squares at the corners of the registration

square are the aluminium registration markers.

focus the testing on the classi�cation stage { the critical stage

for MSF { ROI were extracted using ground truth information.

A set of control ROI, referred to as decoy regions of interest

(DROI), were chosen so that they contained no part of a land

mine.

The ROI were chosen to �t only the PMN and PMN2 mines,

as discussed in Section 2.1. The exact locations of the ROI

and DROI are given in [Roughan and McMichael, 1996c].

3.3 Feature extraction and selection

Feature extraction is the next task. Finding a suitable feature

set is critical to success. In this project, a set of features

(described below) was tested, from which a useful subset was

selected. The subset of features was initially chosen by a

visual inspection of the data, but the appropriateness of these

features was later veri�ed by Fisher discrimination (refer to

Section 3.3).

Feature extraction The features used in this project were

those which could be sensibly extracted from a rectangular

ROI. Features based on the shape of the ROI are obviously

useless in this problem, where all of the ROI are square. The

features extracted from the ROI fall into two categories -

the gray-scale statistics of the ROI, and rotationally invariant

statistics. Gray-scale statistics are commonly used as fea-

tures, and their inclusion is necessary in any comprehensive

testing, if only to rule them out. The rotationally invari-

ant statistics have been speci�cally chosen for this problem

because the mines have a circular signature in the images.

The signature does not have a sharp edge, and so the stan-

dard methods for detecting circles { for example the Hough

transform { will not perform well. Instead a series of statis-

tics, designed to measure the behaviour of a radial pro�le,

are used as features. All together a set of 12 features was

extracted from the ROI.

The gray-scale statistics for N �N ROI are:

� The minimum intensity in the ROI:

ROI

min

= min

x;y

ROI(x; y):

� The maximum intensity in the ROI:

ROI

max

= max

x;y

ROI(x; y):

� The mean intensity � in the ROI:

� =

1

N

2

Z

x;y

ROI(x; y)dxdy:

� The standard deviation � of the intensity in the ROI

where

�

2

=

1

N

2

Z

x;y

fROI(x; y)� �g

2

dxdy:

� The coe�cient of skewness �

3

of the intensity in the

ROI:

�

3

=

1

N

2

R

x;y

fROI(x; y)� �g

3

dxdy

�

3

:

� The coe�cient of excess �

4

� 3, of the intensity in the

ROI where

�

4

=

1

N

2

R

x;y

fROI(x; y)� �g

4

dxdy

�

4

:

The rotationally invariant statistics used here are based on

a radial pro�le. The radial pro�le is obtained by �nding the

mean pixel intensity at given distances from the centre of the

ROI, that is:

r(�) =

1

2��

Z

(x;y)2C(�)

ROI(x; y) dxdy;

where C(�) is the circle, of radius � de�ned by

C(�) =

�

x; y

�

�

(x� x

0

)

2

+ (y � y

0

)

2

= �

2

	

;

where (x

0

; y

0

) denotes the centre of the ROI. The radial pro-

�le itself (discretised) is not suitable for classi�cation as it

has a high dimensionality, and so features of the pro�le are

used for classi�cation. Given a normalised radial pro�le r̂(x),

and Gaussian approximation g(x) to this pro�le, the features

used were:

� The variational radius:

R = 2

Z

R

0

r̂(�) j�j d�:

� The mean square error between g(�) and r̂(�):

G

MSE

= 2

Z

R

0

fr̂(�)� g(�)g

2

d�:

� The chi-square goodness of �t of g(�) to r̂(�):

G

�

2 = 2

Z

R

0

fr̂(�)� g(�)g

2

g(�)

d�:

� The Kolmogorov goodness of �t of g(�) to r̂(�):

G

K

= max

�

jr̂(�)� g(�)j:



� The mean of the circular variance from the radial pro-

�le, the circular variance being given by

v(�) =

1

2��

Z

(x;y)2C(�)

fr(�) � ROI(x; y)g

2

dxdy:

� The variance of the circular variance from the radial

pro�le.

Note that the discretised versions of the above formulae are

used in the implementation, and hence these features are only

truly invariant under rotations through 90

o

.

Three of the statistics above have measured the goodness of

�t of the radial pro�le to a Gaussian approximation. Ideally,

physical modelling would provide an estimate of the expected

radial pro�le from the collateral data, and the goodness of �t

would be evaluated with respect to that.

Feature selection Initial data exploration. Initially the fea-

tures were examined with XGobi [Swayne et al., 1991], a pro-

gram speci�cally designed to provide a graphical means of

examining feature data. From this visual examination, the

most suitable feature for classi�cation was clearly the varia-

tional radius. Figure 5 shows the variational radius for the

short-wave images vs the variational radius for the long-wave

images, for the class II data only.
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Figure 5: The variational radius for the long vs short-wave

images. The circles are cases with no land mine present, while

the crosses indicate cases where a land mine was present.

Fisher discrimination. The Fisher discriminant (see Sec-

tion 3.4) was found for the land-mine features. It is a linear

combination of the original 24 features (12 each from the

long- and short-wave imagery). The component of each of

the original 24 features in the discriminant is shown in Ta-

ble 3.

Table 3 shows that the variational radius is by far the dom-

inant feature in the Fisher discriminant. The coe�cients of

the variational radius in both long- and short-wave imagery

are larger than any other coe�cient, by a factor of 100. This

Component value

Feature short wave long wave

Minimum intensity -0.00124724 -0.00625205

Maximum intensity 0.00630188 0.00333990

Mean intensity -0.00059549 -0.00476067

Standard deviation 0.00189057 0.00264853

Coe�cient of skewness 0.00419134 0.00457964

Coe�cient of excess -0.00233164 -0.00694964

Variational radius -0.69212500 -0.72161900

Mean squared error -0.00000081 -0.00000098

Chi-squared GOF -0.00167863 -0.00249913

Kolmogorov GOF -0.00009252 -0.00012151

Mean of circular var. 0.00029314 0.00075823

Var. of circular var. -0.00077399 -0.00049984

Table 3: The Fisher discriminant components from each of

the original 24 features. The variational radius is shown in

bold to highlight its importance.

supports the initial estimate of which features should be used

for classi�cation. The distribution of the Fisher discriminant

for the ROI and the DROI, for class II data is shown as a

scatter plot in Figure 6.
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Figure 6: A scatter plot of the Fisher discriminant. The cases

with a mine present are shown as crosses, while the cases

without a mine present are shown as circles. The x-axis has

been used to spread the data to make it easier to interpret.

3.4 Classi�cation

The �nal stage of processing { classi�cation { is discussed

in this section. The ROI must be classi�ed into two classes

\land mine present," and \no land mine present," based on

the features selected in the previous stage. Five classi�cation

methods were tested, two single-sensor techniques (one for

each IR band) and three fusion methods. For reference to

these methods please see [Duda and Hart, 1973].

The simplest form of classi�cation is a special case of linear

discrimination, thresholding. Linear discrimination separates



classes with a linear boundary in the feature space, threshold-

ing being the case where only one feature is used. The two

single-sensor methods (one for each IR band) use a threshold

based on the best of the features extracted in the previous

stage.

A na��ve method of combining the results from each single-

band classi�cation is polling, where the results of the simple

thresholding classi�cation are combined via an AND operation,

as shown in Table 4. Polling is simple because it separates

fusion from classi�cation, but much is to be gained by inte-

grating them.

Short Wave

Long wave No mine Mine present

No mine \No mine" \No mine"

Mine present \No mine" \Mine present"

Table 4: A table showing the declaration of the polling

method, given the individual classi�cations based on the two

IR bands.

An approach to MSF, which integrates classi�cation with fu-

sion, is to perform classi�cation on the combined features

from both IR bands. Fisher discrimination (discussed above)

�nds the optimal linear discriminant function for the com-

bined set of features by �nding the linear transform which

maximises the ratio of between-class scatter to within-class

scatter. The result, the Fisher discriminant, shown in Fig-

ure 6, can then be thresholded to perform the classi�cation.

When a linear boundary is not appropriate in a higher dimen-

sional feature space, an alternative is the Bayes classi�er, in

which estimates of the probability densities of the data are

found, and using these and the class priors, the most proba-

ble class is chosen. The method used here for estimating the

densities is Parzen windowing. The advantages of Bayesian

classi�er methods are that they may yield non-linear classi-

�cation boundaries, and they may be optimised through the

use of hyper-parameters.

Approximate Bayes classi�ers work by �nding approximations

to p(xjc), the probability of a set of data x, given class

c. From these conditional probabilities and the class priors,

Bayes rule is used to �nd p(cjx) for some particular data.

The class priors are estimated as

p(c) =

N

c

N

;

where N

c

and N are the numbers of data in class c and the

total number of data respectively.

Gaussian classi�cation is applied by modelling p(xjc) by a

Gaussian distribution:

p(xjc) =

1

j2��

c

j

1

2

exp

�

�

(x ��

c

)

T

�

�1

c

(x� �

c

)

2

�

;

where �

c

and �

c

are the means and covariances of the con-

ditional distribution, which may be estimated by

�

c

=

1

N

c

X

j:y

j

=c

x

j

; (3)

�

c

=

1

N

c

� 1

X

j:y

j

=c

(x

j

��

c

)(x

j

��

c

)

T

; (4)

where y

j

is the class of data x

j

. Initial examinations of the

data, however, would indicate that the data is non-Gaussian

(refer to Figure 5), and therefore another Bayesian classi�er

was considered.

The Parzen windows classi�er approximates the conditional

probability p(xjc) by a sum of window functions. In this case

the windows functions w(x;x

j

) used were spherical Gaus-

sians, centred on x

j

, giving

p(xjc) =

1

N

c

(2��

2

)

d

2

X

j:y

j

=c

exp

�

�

(x

j

� x)

T

(x

j

� x)

2�

2

�

:

Parzen windows would seem a much more appropriate method

than the Gaussian classi�er for approximating the distribution

of data in Figure 5, because it can accommodate the non-

Gaussian distributions evident in the data.

The parameter � is a hyperparameter of the Parzen windows

classi�er. The performance of the classi�er depends on the

hyperparameter. Cross-validation is the process of using sep-

arate sets of training and testing data to optimise its value.

The Parzen window approximation is found for the training

data, and the numbers of errors on the test data made by

the Parzen window classi�cation are calculated (making the

hard classi�cation boundary at p(cjx) = 0:5), for a range of

hyperparameter values �. The result can be seen in Figure 7

which shows the number of errors made on the training set.

In land-mine detection, failed detections are critical. It can

be seen that higher values of � result in both higher detection

and false alarm rates. Simultaneous optimisation of these two

error rates e

D

and e

P

f

requires a loss function L(e

D

; e

P

f

), to

be de�ned. The hyper-parameter estimate is the value which

minimises the loss function.

Figure 7: The number of errors as a function of the hyper-

parameter. The number of test samples were 45 and 217 for

the missed detection, and the false alarms respectively.

An alternative is to maximise the likelihood of the test data,

L = p(Y jX) where p(Y jX), is the probability that the cor-

rect classes Y are chosen for the test data X. The likelihood



function is simpli�ed by assuming independent experiments,

and the log is taken to give the average log-likelihood:

log L = log

 

N

test

Y

j=1

p(y

j

jx

j

)

!

(5)

=

N

test

X

j=1

log (p(y

j

jx

j

)) : (6)

When, for an outlying datum x

j

, p(y

j

jx

j

) ' 0, the log be-

comes large and negative, and can outweigh all of the other

contributions to the function. The moderated cross valida-

tion (MCV) score has been used here in order to reduce the

weight of outliers. Figure 8 shows the MCV score given by:

N

test

X

j=1

log

�

p(y

j

jx

j

) + �

1 +N

classes

�

�

;

where N

classes

is the number of classes (for this application

N

classes

= 2) and � is a small positive constant; three values

of �: 0:005; 0:01 and 0:02, have been used to show that the

result is not sensitive to its value near to the maximum of the

MCV score. Figure 8 shows the MCV score as a function of

the hyper-parameter. The optimal values are � = 32; 34; 35,

for each of the three values of �. In the testing performed

here the median of these values, � = 34:0, is used.

Figure 8: The moderated cross validation score as a function

of the hyperparameter.

Once the hyperparameter has been chosen, the classi�cation

boundary can be set. Given only two classes, as in this appli-

cation, the decision between classes may be made at a �xed

threshold p(cjx) = k

�

, where k

�

is chosen such that the

probability of failing to detect a land mine which is present,

p(c = 'no mine'jy = 'mine present') � �, for some �xed

number �. Figure 9 shows the boundaries for � = 0:04; 0:05

and 0:06.

Figure 9: The boundaries between classes. The contours,

labelled by the probability of detection 1 � �, are the lines

p(cjx) = k

�

, where k

�

is chosen to to give required proba-

bility of detection.

4 Results

This section describes the results of the land-mine detection

methods discussed above. Three approaches are used in de-

scribing the performance of the algorithms. The �rst, de-

scribed in Section 4.1, is non-statistical, but is included to

show the relationship between the false alarm rate and P

d

for

the �ve methods. The second section, Section 4.2 provides an

intuitive statistical assessment of the �ve algorithms, followed

in Section 4.3, by a formal assessment using the generalised

likelihood ratio test, which was described in [Roughan and

McMichael, 1996b].

The �ve methods of classi�cation assessed here are two

single-sensor methods (one for each IR band), polling, Fisher

discrimination and the Parzen windows classi�er, with hyper-

parameter � = 34:0. In these results only the class II data

was considered, and only PMN type mines detected, for the

reasons outlined in Section 2.1.

4.1 Assessment using Receiver Operating Characteristic

curves

A traditional method for comparing detection algorithms is

the Receiver Operating Characteristic (ROC) curve which

shows the detection and false alarm rates over a range of

threshold levels, illustrating the trade-o� between the two er-

ror rates. The ROC curves are shown in Figure 10, for the

�ve methods of detection.

The �gure does not show the statistical relationship between

the �ve methods, but it does provide an idea of their rela-

tive performance, at di�erent threshold levels. Our tentative

conclusion is that the two single-sensor methods are worse

than the MSF methods, and of the MSF techniques Parzen

windowing is the best.

A less standard, but more revealing, form of ROC curve, is



Figure 10: The ROC curves for the di�erent classi�cation

methods, showing the P

f

vs P

d

for various methods of clas-

si�cation.

shown in Figure 11(a). The axis have been switched, and the

x-axis now shows � = 1 � P

D

, the probability of a missed

detection. The logarithmic x-axis gives more detail in the

important interval P

D

= (0:8; 0:99).

4.2 Con�dence interval analysis

In this section the results of the land-mine detection feasibil-

ity study are analysed using standard frequentist con�dence

intervals. Table 5 shows the 80% con�dence intervals for the

P

f

, given an estimated rate of detection, 94; 95 and 96%.

The con�dence intervals provide an intuitive measure of the

relative performance of the di�erent algorithms.

The results in Table 5 are graphically displayed in Fig-

ure 11 (b) which shows the 80% con�dence intervals for the

false alarm rate on the ROC curves of Figure 11(a). A simi-

lar graph of the 80% con�dence intervals for the P

d

's, shown

in [Roughan and McMichael, 1996c], illustrates the fact that

there was insu�cient data to determine a di�erence between

P

d

's of the methods.

4.3 Generalised likelihood ratio test

The previous method for analysing the results is somewhat

informal. It presents simple, intuitive measures of the algo-

rithmic performance. This section uses a more sophisticated

approach, and can provide stronger conclusions. By forming

a likelihood based test, the exact con�dence in the results

can be assessed. In particular, these results show that the

con�dence in the assessment that the Parzen windows clas-

si�er has a lower P

f

than a single-sensor classi�er is better

than 99.998% over a range of probabilities of detection.

The starting point, for a mathematical analysis, is the distri-

bution of the di�erence of the two false alarm rates e

1

� e

2

,

given two estimated P

f

's, ê

1

and ê

2

. The false alarm rates,

estimated by ê =

N

E

N

are shown in Table 5, for each classi�er.

Considering the error process as a sequence of Bernoulli tri-

als, with parameter e, the distribution of errors follows the

binomial distribution:

p(N

E

je;N) =

N !e

N

E

(1� e)

N�N

E

N

E

!(N �N

E

)!

;

where N

E

is the number of errors, given N trials. As in

[Roughan and McMichael, 1996b], the normal approximation

to this distribution, N(eN;e(1 � e)N), is used. The distri-

bution for the estimated error rate ê =

N

E

N

can therefore be

written

p(êje;N) � N(e; e(1� e)=N):

The di�erence of two normally distributed random variables

is itself normally distributed, and given a di�erence in the

underlying decision probabilities � = e

1

�e

2

, this distribution

is

p(ê

1

� ê

2

j�;N) �

exp

�

�

(ê

1

�ê

2

��)

2

2�

2

12

�

p

2��

12

;

where

�

2

12

= e

1

(1� e

1

)=N

1

+ e

2

(1� e

2

)=N

2

� ê

1

(1� ê

1

)=N

1

+ ê

2

(1� ê

2

)=N

2

: (7)

Using Bayes theorem, and uniform priors for the error rates e

1

and e

2

, the distribution of � given the estimated error rates

can be written

p(�jê

1

� ê

2

;N) �

exp

�

�

(ê

1

�ê

2

��)

2

2�

2

12

�

p

2��

12

:

The generalised likelihood test, described in the [Roughan

and McMichael, 1996b], forms the ratio of the likelihood of

a hypothesis H

0

that the error rates are the same, to the

likelihood of an alternative hypothesis H

1

that they are dif-

ferent. This ratio, or rather twice its negative log, is a good

statistic, by which to make a quantitative assessment of the

signi�cance of results.

Twice the negative log of the generalised likelihood ratio is

given by

� =

(ê

1

� ê

2

)

2

�

2

12

:

Given hypothesis H

0

is true, � is distributed as a �

2

variate

with one degree of freedom. Hence the probability that � �

x, given H

0

, is given by

pf� � xjH

0

g =

1

p

2�

Z

1

x

e

�

t

2

p

t

dt: (8)

We choose the size of the test �, which is the probability

that the test `gets it wrong' when hypothesis H

0

is true.

This determines the critical value �

2

(�) which is determined

by � = pf� � �

2

(�)jH

0

g. The critical value �

2

(�), the

upper � percentile point of the chi-square distribution, above

which H

0

is rejected, determines the test:

H =

�

H

0

; if � < �

2

(�);

H

1

; if � � �

2

(�).

The Parzen windows classi�er has been shown to be the best

of the MSF methods above, and the short-wave classi�er the

best of the single-sensor methods, and so we concentrate

on a comparison between the two. The number of tests for



Required P

d

Classi�cation

^

P

D

= 94%

^

P

D

= 95%

^

P

D

= 96%

P

FA

min

^

P

FA

P

FA

max

P

FA

min

^

P

FA

P

FA

max

P

FA

min

^

P

FA

P

FA

max

long wave 0.311 0.339 0.369 0.331 0.360 0.390 0.379 0.408 0.440

short wave 0.181 0.204 0.231 0.230 0.255 0.284 0.268 0.294 0.324

polling 0.166 0.188 0.214 0.177 0.200 0.226 0.181 0.204 0.231

Fisher discrimination 0.114 0.133 0.156 0.144 0.166 0.190 0.250 0.277 0.305

Parzen 0.068 0.087 0.119 0.080 0.103 0.134 0.104 0.131 0.165

Table 5: The estimates and 80% con�dence intervals of the P

f

s for �ve di�erent classi�cation methods, for three estimated

probabilities of detection,

^

P

D

.

(a) (b)

Figure 11: (a) The ROC curves for various methods of classi�cation. (b) The 80% con�dence intervals for the P

f

rates vs the

P

d

.

the single-sensor and Parzen windowing examples above are

435, and 217 respectively. Parzen windowing has half as

many because half of the data is needed for cross-validation.

Figure 12 shows the value of �. Over the entire range � >

17:8 and henceH

1

will be accepted by any test with size 2:0�

10

�5

or more. To rephrase, the hypothesis that the two

error rates are di�erent can be accepted with 99.998%

con�dence.

5 Discussion

The best of the three MSF methods tested was the Parzen

windows classi�er, which more than halves the estimated P

f

of a single sensor, with no reduction in the detection proba-

bility. The classi�er requires a computationally-intensive one-

time-only calculation of the class boundaries, but the ongo-

ing computation required is negligibly more than that for two

single-sensor classi�ers. The reward for doubling the number

of sensors is a P

f

which is more than halved.

5.1 Further work

There are many possible incremental improvements to the

work already performed here. The methodology has already

been developed for these tasks. This section discusses the

improvements, and methods of approaching them.

Accurate estimates of the probability of detection. An

obvious requirement is a comparison of the P

d

's of di�erent

algorithms. Signi�cantlymore data will be required to provide

estimates of P

d

's accurate enough to discriminate between

algorithms. The di�culty arise because the P

d

's that are to

be estimates are close to each other and to 1.

A loss function. Introduction of a loss function for the two

possible types of errors: missed detections, and false alarms,

would allow cross validation to optimise the quantity of in-

terest to the user

Extraction of other features. Any number of alternative

features could, some exploiting the roundness of mine shad-

ows.



Figure 12: The generalised likelihood ratio statistic �, for a

comparison between Parzen windowing and the short-wave

single-sensor classi�er, for a range of estimated probabilities

of detection. The dotted lines show the size � of the tests,

while the dashed lines show � for the maximum and minimum

values of �.

Fusing of other sensors. There are many other sensors which

could be considered for integration into a land-mine detection

system. The prime candidate at this stage is multi-spectral

(MS) imagery from the visible band, which could be used for

surface clutter mitigation.

(i) MS imaging sensors: The obvious role of MS imagery in

detecting buried land mines is clutter mitigation: to reduce

the e�ects of clutter on the classi�cation of IR data. An-

other use is to improve the systems own assessment of the

uncertainty of it's classi�cations.

(ii) Collateral sensors: Another set of data which is impor-

tant is data from collateral sensors, such as the temperature

history, or the soil moisture. These may have a signi�cant

e�ect on the IR imagery, and should be taken into account

when processing this imagery. The ideal method for incor-

porating this data is through a mathematical model of the

heating/cooling process.

(iii) Other sensors: There are several other sensors being

considered for inclusion in a land-mine detection system. For

instance metal detectors, and ground penetrating radar.

Testing of other data classes and mine types. Wider rang-

ing and more realistic data are needed.

A further point here is that the data vary considerably with

range from the cameras, which use a �xed angular �eld of

view. Hence the data should be classi�ed by range, as well

as the other classi�cation variables stated here.

This study considered only PMN mines. Each type of mine

has its own signature, and hence may require a di�erent classi-

�er. Thus the di�erent mine types { in particular anti-vehicle

mines { must be considered before any general performance

assessment can be made.

E�ects of the weather. The experimental design was not

speci�c about the meteorological conditions under which the

experiments should be conducted, but did require these condi-

tions to be consistent. More e�ective methods of classifying

the data according to meteorological conditions have been

instituted in the follow-on study.

6 Conclusion

This paper has presented a comprehensive analysis of the data

provided to CSSIP in the buried land-mine detection project.

The analysis has included:

� a description of the data to be processed;

� the methodology used to process the data;

� details of the implementation of the algorithms;

� results of the methodology, as applied to the data;

� an analysis of the results.

This study has con�rmed the value of multisensor fusion in

the detection of land mines with a con�dence of 99.998%.

Furthermore, the estimated P

f

is more than halved through

the use of two sensors. There is insu�cient data to make any

such assertion about the P

d

's, but the ROC curves suggest

that data-fusion techniques perform better than single-sensor

techniques.

The study shows that, of the methods tried, the Parzen win-

dows classi�er is best for fusing the information from the two

IR bands. Parzen windowing has the lowest P

f

of the MSF

techniques, and can be applied with negligibly more compu-

tation than two single-sensor detectors.

This paper does not provide a method for automatically de-

tecting buried land mines in IR imagery, nor is this its intent.

The study has focussed on the classi�cation of the ROI, rather

than the automatic selection of the ROI. Furthermore, the

paper has been limited to showing the advantage of fusing

the two IR bands for class II data, because this was the only

complete data available. Thus the clear avenue for future

work arising from this project is the automatic identi�cation

of ROI.
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