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Abstract— Wireless ad hoc networks provide a useful commu-
nications infrastructure for the mobile battlefield. In this paper
we apply and develop passive radio frequency signal strength
monitoring and packet transmission time profiling techniques,
to characterise and reconstruct an encrypted wireless network’s
topology. We show that by using signal strength measurements
from three or more wireless probes and by assuming the use of
carrier sense multiple access with collision avoidance, for physical
layer control, we can produce a representation of a wireless
network’s logical topology and in some cases reconstruct the
physical topology. Smoothed Kalman filtering is used to track
the reconstructed topology over time, and in conjunction with
a weighted least squares template fitting technique, enables the
profiling of the individual network nodes and the characterisation
of their transmissions.

Keywords: Wireless Networks, Wireless Ad Hoc Protocols,
802.11, Monitoring, Template Fitting, NS-2.

I. INTRODUCTION

Wireless Ad Hoc Networks (WAHNSs) continue to be the
focus of many research efforts, with a large number of
protocols having been developed or under development. A
possible application for WAHNs and the one focused on
here, is the use of WAHN protocols to provide networked
mobile battlefield communications. From an adversaries point
of view, the communications provided by a battlefield WAHN
could provide a valuable source of intelligence. The number
of communicating nodes, their location and the nodes which
provide the most communications, are all valuable sources of
information which could be used to change the course of a
battle. We wish to investigate just how much information can
be gleaned from a WAHN, even when encryption techniques
are used to secure both the protocol and data.

The problem we consider here, is to determine how to
reconstruct this secure network’s topology, without decoding
the transmissions and without knowing unique node identifiers
such as IP addresses. The approach makes minimal assump-

tions about the WAHN. In one component of the algorithm
we exploit the specific behaviour of the IEEE 802.11 MAC
protocol, but the algorithm is generic, and could be redesigned
to exploit the behaviour of most wireless MAC protocols.

The paper’s main contributions are techniques that pro-
duce logical graph representations of WAHNSs over time, and
a method that profiles and characterises their nodes using
only passive, time synchronised Radio Frequency (RF) signal
strength measurements. These measurements are gathered by
wireless probes at different known locations, and are used to
calculate the origin of each transmission [1], [2]. A density
based clustering technique [3], over fixed successive time
intervals, in conjunction with inferences based on the MAC
protocol provides the topology information.

Kalman filtering is used to track each individual node’s
movement. We show that by using a simple linear dynamics
model, smoothed Kalman filters are capable of tracking the
node movement. We also show that by using the predicted
location of each node, we can associate nodes recursively
across the successive logical graphs and can therefore track
a significant proportion of the topology over time.

Finally we investigate if it is possible to classify transmitting
nodes as sources, sinks or relays of data. An adversary may
wish to deny communications on the battlefield and therefore
attempt to disrupt communications going through a crucial net-
work relay node. Similarly, for intelligence gathering purposes
an adversary may wish to determine which node generates the
majority of traffic, this could be a command or surveillance
node in the WAHN.

We show that by using the successive time measurements
between each transmission, we can generate timing histograms
that represent the transmission protocols used by particular
nodes. These histograms characterise the nodes’ transmission
profiles for successive logical graphs. Using a least squares
approach, we fit these node histograms to a known set of



transmission protocol timing histograms and consequently are
able to classify them as sources, sinks or relays.

Section II describes the RF propagation environment and
the NS-2 simulation framework that was used to generate
the wireless data for probing. The simulated probes are
used for node localisation using multilateration in Section
III. The positional estimates are clustered using a density
based technique in Section IV, where subgraphs are produced
representing the networks topology by incrementally clustering
the location estimates. Kalman filtering is used for tracking
node movement in Section V. Section VI develops the node
profiling using template fitting, and we conclude and propose
future work in Section VII.

II. PRELIMINARIES

Estimating a WAHN’s topology from RF signal strength
measurements is fraught with much uncertainty. The RF
propagation environment can vary markedly, especially with
node movement. Fading effects caused by the propagation path
or the channel bandwidth can result in large variances in the
received signal strength. However, when it is assumed that
the network being studied is fully encrypted and that only
passive RF measurements can be undertaken, the received
signal strength measurements and their respective timings
provide a good means for network characterisation.

A free space propagation model was used to simulate the RF
propagation loss, with the received signal strength calculated at
each probe using the distance d between it and the associated
nodes. Typically the received power decays proportionally
to d~™ where n is the path loss exponent. Rappaport [4]
shows that n varies between 2 and 4, and for the free space
model n = 2. It has also been shown that variations in the
received power measurements in dB, can be modeled by a
Gaussian distribution and that the standard deviation o, of
the received power can be as low as 4 and as high as 12
[4], [5]. For our simulations, the exact distance from the
probes to the known node locations was calculated to provide
a perfect measurement. Gaussian noise with a mean of zero
and a variance of 20, was added to this to simulate mildly
noisy free space propagation distance estimates. Although
this channel model is overly simplified, it’s adequate for
developing the topology reconstruction methods that are this
paper’s main contribution. A subsequent paper will report on
more detailed channel fading and time difference of arrival
(TDOA) simulations.

NS-2 was used to generate the simulated WAHN transmis-
sions, as it provides multiple ad hoc protocol implementations,
simulated applications and the ability to include mobility. It
also allows for the simulation of simplified RF propagation
channels using characteristics of typical 802.11b WLAN hard-
ware. A 30 second, ten node WAHN simulation, implementing
the Ad-hoc On-Demand Distance Vector (AODV) protocol
was developed to investigate this topology reconstruction
problem. Figure 1 shows the simulation’s node movement,
with the node’s positions plotted at one second intervals.
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Fig. 1. Node tracks and probe locations plotted every second.

Three separate transmission sessions were implemented,
two UDP constant bit rate sessions and one FTP session over
TCP, each starting and stopping at different times. The Node’s
movement was structured to ensure that routing changes had
to occur.

The trace files produced from the NS-2 simulations provided
the data for experimentation, which was filtered to include
only the packet level communication timing and node loca-
tion data. Three or more simulated networked probes with
positions (x,,%,) were used to obtain the measurements of
the received signal strength from the NS-2 data in Matlab;
they are represented as asterisks in Figure 1.

III. NODE LOCALISATION

To calculate an estimated node location, the noisy distance
measurements were compared to a carrier sensing threshold
distance (C'Sthresh) that is calculated according to the sen-
sitivity of a standard 802.11b receiver plus 6 dB of loss. The
additional loss is included to allow for receiver variations. If
CSthresh is exceeded for at least three measurement probes,
then a Minimum Mean Square Estimate (MMSE) for each
node location (s, Yest) can be generated. This is often
termed multilateration in the WAHN location literature. To
solve the MMSE we need n location estimates, where n > 3.
These are calculated by using the probe distance measurements
d;

di = /(@i = west)? + (yi = Yest)%i = 1,....n. (D)
Squaring and rearranging these terms yields the following

equation for each probe measurement

_%2 - yzQ = xgst + ySSt — 2(Test i + YestYi) — dz% (2)



For n such probe equations the z2,, + y2,, can be removed
by subtracting the p,, probe equation from the set, with the
resultant being in the form of v = A, where

—af —yi a2l +yl —di+d}

—x%—y%—i—xgn—i-yzn—di—kd%

—rl o —yi o+ x%n + yin —dy+d;_,

the unknown node’s location estimate is
A _ Test
Yest ’

2(zp, — 1)
Q(xpn - .TQ)

2(Yp, — Y1)
Q(ypn - y2)

Q(xpn — Tn-1) 2(ypn — Yn—1)

A is solved using the Moore-Penrose generalised matrix in-
verse solution for the MMSE [6]

A= (BT3B . 3)

Figure 2 plots the actual node locations for every trans-
mission without noise and the estimated node locations from
(3), for every transmission that is measured by three or
more probes. This data represents the full 30 seconds of
simulated AODV communications that produced nearly 32,000
separate RF transmissions. The estimated location plot shows
the anticipated increase in errors in the location estimates at
the edges of the probes’ detection ranges (nodes 1, 2 and 4),
and no estimates for node 1’s location in the early stages
of the simulation, as less than three probes can measure its
transmissions.
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Fig. 2. Actual node transmissions, the probe locations and the MMSE node
locations.

IV. DENSITY BASED CLUSTERING
A. Clustering using DBSCAN

The location estimates generated by solving the MMSE
above provide an estimate for every RF transmission that
is received simultaneously by at least three probes. Conse-
quently, thousands of estimates can be generated every second,
particularly when there is considerable node movement, or
when data packets have to traverse the WAHN. The noise in
these estimates requires some form of clustering of the results,
so that a centroid for each of the node’s locations can be
generated.

The clustering algorithm used to group each node estimate
must be able to cope with arbitrary cluster shapes to allow for
node movement. It also needs to be able to cluster the estimates
with minimal knowledge of the network dynamics. With the
large number of location estimates the processing must also
be as efficient as possible. These requirements suggest that a
density based clustering algorithm would be most appropriate,
consequently the DBSCAN algorithm by Ester ef al. [3], was
used.

DBSCAN works by clustering points within neighbour-
hoods that are defined by a radius Eps (the Euclidean dis-
tance between the points) and a minimum number of points
MinPts, within the neighbourhood. If the density of points
within the radius Eps exceeds the MinPts threshold, then
a neighbourhood is formed and a core point is created. The
cluster grows by differentiating between core and border
points. Core points are essentially within the centre of the
cluster or neighbourhood and are within the radius of multiple
border points. Border points are within a neighbourhood but
cannot themselves be core points as they don’t exceed the
MinPts threshold. The algorithm seeds itself with a random
starting point and determines if that point can form a core
point. If so, the algorithm loops about this point building the
cluster by creating and merging neighbourhoods that satisfy
the Eps and M1inPts parameters. This continues until all the
data points are classified. Points that don’t fit within clusters
are labeled as noise.

The values for Eps and MinPts were determined em-
pirically, although a knowledge of what can be expected for
the thinnest cluster does help as a starting point. Ester et al.
suggest simple heuristics for choosing these values, however
for this data set, investigating the separation of transmission
clusters versus clustering time for different values of Eps
and MinPts produced the best results. Three—dimensional
clustering in space and time was used. The distance between
points was calculated using a scaled Euclidean distance from
the first time record to every other time record, and the
Euclidean distance for each X and Y location, for every node
to every other node for all transmissions, given by

Dist = /a(AT)?2 + (AX)2 + (AY)2. )

The time scaling represented by «, was incorporated to
proportionally balance the magnitude differences between the



distance measurements and the time measurements. The in-
clusion of time clustering allowed for better discrimination
between clusters, compared to using only the nodes’ locations.
It also allowed for an increased Eps radius and a smaller
MinPts. The clustered results for the entire data set is
depicted in Figure 3. Of particular interest is the clustering
error for nodes 1 and 2, where even with clustering over time,
the clusters have merged to form a single large cluster. The
merging of these two separate tracks cannot be prevented using
only three dimensions.
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Fig. 3. Clustering of Estimated Node locations.

B. Generating Subgraphs from the Clustered Transmissions

Having generated the clustered node estimates we are now
in the position where we can generate graphs that represent
the logical connections between the nodes. Aggregating all the
transmission data into one graph is inappropriate when there
is node movement, so the clustering and consequent graphs
need to be generated over sequential, uniform time intervals
At. To generate the adjacency matrix for each time interval,
we use the underlying 802.11 MAC protocol that governs the
RF transmissions. As the MAC protocol implements Carrier
Sense Multiple Access with Collision Avoidance (CSMA-
CA), we know that there must be a Request-To-Send (RTS)
and Clear-To-Send (CTS) handshake between communicating
nodes. Assuming this, in conjunction with the maximum prop-
agation range between nodes, which is based on the receiver
threshold (the amount of received signal strength that must be
exceeded for error free demodulation of the RF transmissions),
we infer links/edges between successive transmitting nodes.
Simulations have shown that the vast majority of edges are
correctly inferred using this method.

Figure 4 shows the subgraphs produced from clustering two
consecutive one second transmission intervals. By producing

clusters and the associated subgraphs over a reduced time
interval we also reap the benefit of much faster clustering.
The run time is of O(nlog(n)), where n represents the number
of points to be clustered. It also helps prevent clusters from
merging, particularly when the minimum number of points for
clusters is kept small. For this data it prevents the merging of
clusters as occurred in Figure 3 for nodes 1 and 2.
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Fig. 4. Two consecutive subclusterings of the estimated node locations and
their respective subgraphs.

V. KALMAN TRACKING OF NODE LOCATIONS

The subgraphs produced in the preceding section, provide
only a single average or centroid point for the estimated loca-
tion of each unknown node. This location gives no indication
of the accuracy of the estimate. We therefore assume that
the distributions for our node location estimates are normally
distributed as,

b i ewTs T xew
(2m) 5|22

where p is the number of variables, X is the covariance matrix,
and p is the vector of the expected values of X, namely the
mean locations of the x and y coordinates, or the centroids of
the clusters from section IV.

As our nodes’ locations are assumed normally distributed,
we can use a simple Kalman filter [7], [8] to track the nodes’
movements from graph to graph. We need to uniquely label
the nodes across successive subgraphs to allow for the recon-
struction of the WAHN topology and for node characterisation.

The Kalman filter is essentially a state space algorithm
used for estimating the track of an object, using its past and

f(X) = ; (&)



current measurements, in this context, the node’s location. A
process model is used to represent the dynamics of the tracked
node, and assuming linear dynamics, the state of the target is
represented as

Ty, = Fyoe, +wy,, (6)

i+1

where the target state at time ¢, 1 is predicted using the current
state x¢,, and the state transition matrix F}, describes the target
dynamics from time ¢; to ¢;41. Here w;, represents the process
noise and is modeled as a zero mean Gaussian distribution with
known covariance ()¢,. This predicted state is compared to the
measured state using a measurement model

Rt; = Hti T, + Vt; s (7)

where 2, is the measurement vector, H;, is the measurement
matrix, and v, is the measurement noise modeled as a zero
mean Gaussian with known covariance Ry, .

The Kalman filter is implemented using a two step process,
a prediction phase based on equation (6) where the noise is
introduced by calculating the error covariance P, , for the
estimates

'rt7'+1 = Ftixti ?

8
= FE,P.F+ Q.. ®

tit1

and a correction phase, based on the observed deviation from
the prediction.

The filter is effectively tuned using the Kalman gain K,

which minimises the mean square error between the predicted

state and the measured state. The corrected estimate £, , and

its covariance P, , are calculated as

K, = P, HI(H, P, H+R:)™",
L%ti+1 = ‘%;i+1 + Kti (Zti — Hti "f;), (9)
Pt'i+1 (1 - Ktthi)Pt;rl'

Ideally the choice of the process model should accurately
represent the expected node movement. However to simplify
the problem, a constant velocity model has been implemented
to represent the node movement such that X = [z, y,4,9]7,
where © and y represent the x and y node velocities re-
spectively. Simulation has shown that this is adequate for
tracking the node movement for the NS-2 data. Consequently
the transition and process noise covariance matrices are given
as

10T 0
01 0 T
F=1001 0ol (10)
00 0 1
T3 T2
oy 2
o ooz
Y 3 7|, 11
@ Z 0 T 0 an
o Z o T

where T' = t;11 — t; is the update interval, and o2 =20 is
the covariance for the continuous time process noise.

The measurement matrix and its covariance, also assumed
independent, are similarly set to

10 0 0 o2 0
H_{O 1 0 0}’R_{ 0 02]'

A separate Kalman filter is required to track each individual
node, and is initialised as above. Unique node labeling is
required for tracking nodes over successive time intervals,
and it is here where the Kalman filter’s corrected predictions
Z4,,, are used for labeling. For the first sample period any
detected nodes are uniquely labeled; in subsequent periods
each detected node is compared to the predicted locations
from the previous set of unique node locations. The previously
corrected location Z, ., , is used to predict the current estimated
location &, which is then compared to the current measured
node’s location. If the error between the current measured lo-
cation and the predicted location falls within a gating window,
derived from the maximum movement rate, then the node is
relabeled, otherwise a new unique label is created.

This process is repeated for every sample period with each
unique node location stored and sequentially tracked. On com-
pletion of the online tracking the Rauch-Tung-Striebel (RTS)
algorithm [9], [10] is used to recursively smooth the estimated
node locations. This provides a reduced error between the
estimated node location and the measured node location. The
smoothed Kalman filtered tracks, are plotted in Figure 5.
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Fig. 5. Smoothed Kalman filtered node locations.

Also plotted for each smoothed location estimate is an
ellipsoid that represents its 90% confidence interval. This is de-



termined by calculating the Mahalanobis radius that encloses
90% of the probability mass. The Mahalanobis distance

MD = (X —p)"S 1 (X - p), (13)

is the term in the exponential of the normal distribution. It is
determined by evaluating the inverse cumulative distribution
function of the x? distribution up to the desired confidence
value.

The major and minor axes of the covariance ellipsoids
are provided by the eigenvectors of the covariance matrix,
and their lengths by the square roots of their respective
eigenvalues. The ellipsoids provide a good representation of
the uncertainty of the location estimate, and also an indication
of potential node labeling errors when different node ellipses
overlap. The effect of the Kalman smoothing is also evident,
shown by the reduced ellipsoid diameters.

Comparing Figure 5 with the actual node movement in
Figure 1, it is evident that the Kalman tracking has success-
fully tracked the nodes that have regular transmissions across
successive time intervals. For example, nodes 1, 2, 4, 6, 7
and 10 are correctly tracked and uniquely labeled. However
fourteen unique node labels have been created, when there
should be ten. This is a consequence of nodes 3, 5, 8 and 9
moving a significant distance without transmitting. This results
in extra unique labels being created for these nodes. Without
additional data for association, it is very difficult to track this
movement without transmissions, particularly if the predicted
node movement vectors cross.

VI. PROFILING NODES USING TEMPLATE FITTING

To help with the data association problem, and to investigate
the possibility of discriminating between source, sink and relay
nodes, the node’s transmission time distributions were anal-
ysed. This involved using the same NS-2 AODV simulation
trace file with its “macTrace” function enabled. This reports
all the MAC layer transmissions for the simulation and their
associated transmission start times.

The node’s transmission timings were taken as the differ-
ential between start times of consecutive transmissions; this is
obviously only an approximation, but is shown below, to work
extremely well for our template fitting.

Histograms were produced that represent the node’s trans-
mission time distributions, where the estimated timing is
filtered such that any differential times that exceed 1 ms are
removed. We do this to avoid the cases when there are no
transmissions for a long time. The 1 ms upper limit, is selected
to capture the effects of the exponential back-off implemented
by the 802.11 MAC protocol. It captures both virtual and
real RF collisions and the transmissions used to establish and
maintain routing (AODV, ARP, etc.) The combination of these
effects is plotted in Figure 6. The additional annotations on the
plot represent a few selected bins, showing, the elapsed time
from the start of the transmission to the next transmission, the
number of times a transmission of the same length occurred,
and the associated NS-2 transmission labels, in these cases
MAC layer acknowledgements.
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Transmission time distribution for MAC.

To investigate the possibility of distinguishing between
nodes acting as sources, sinks or relays a number of simu-
lations were undertaken. Routing paths were established that
simulated either a UDP, constant bit rate transfer between a
source, relay and sink, or an FTP session over a TCP path in
the same configuration. Figure 7 depicts the source and sink
node transmission time histograms for both these scenarios.
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Fig. 7. Histograms for node transmission times for either a single UDP or
TCP link.

It clearly demonstrates that it is possible to discriminate
between both protocol and transmission types. The annotations
on the histograms show the packet transfers, the associated
MAC, RTS/CTS and the ACK transmissions.

To automatically classify nodes, based on their transmission



time distributions, a template fitting technique for node profil-
ing was developed. Normalised templates were produced for
nodes acting as sources or sinks for both of the transmission
scenarios described above. Templates are not needed for relay
nodes as their transmissions are simply a combination of those
for sources and sinks.

Given that we have a set of measured data y =
[Y1,Y2, - -, Yn)T, for each transmitting node, we need to
compare this using a maximum likelihood test, to our template
set {T1,T5,...,Tn}, so that we can assign the node a given
transmission profile. The classical least squares approach [11],
[12] is used to fit a linear model of the scaled template plus
noise to the measured observations

y=x+n. (14)

The noise component n is assumed normal, and y has a
covariance matrix ¥ = Cov(yp,y,). The model component
x is equal to the matrix H scaled by ©, where © =

[al,ag, ey aN]T and
x=HO, (15)
where,
T
(o7 %) e Qo
1 2 n
= |t ) ) (16)
ONC (o
The first row of H comprises a = a1, s, . .., a,]T, a vector

that represents the exponential back-off implemented by the
802.11 MAC protocol already described. The template data
T = [tg), t%), . ,tE\T,L)]T represents the values for each bin in
the N template histogram set. The model for y has as before,
a normal distribution whose density function in multivariate
form is

1 1 Te—1
—— = o—3W-HO) X (y-HO) 17

fo is maximised when the exponential error term is min-
imised. Therefore for a given estimate of ©, the weighted
squared error between y and our model HO equals

e=(y— HO)'S Yy — HO). (18)

The Maximum Likelihood Estimator (MLE) for © is then

O =H'ST H) ' HTS Yy, (19)
which is simplified with the assumption that the covariance
terms Cov{X,,%,} are zero when p#q, and thus ¥ is a
diagonal matrix with the terms equal to the variance of the
observations o2 = Var(y,).

To this point we have generated a likelihood fit of our
templates to our observation data, but we do not have a
measure of confidence for the quality of the fit. The x? fitting
technique described in [11, page 653] is used to provide
the quantitative measure we require. Our log likelihood ratio
already has the x? form

N
1
2 _ 2
=) - HOy. (20)
n=1
Using this value, we can calculate the probability (), of this
occurring by chance as

N 2
Q_Fq<2a2>7

where I'; is the incomplete Gamma function. To produce a
confidence over a desired range, we scale the value of the
variance afl by A. In our case, we desire a fit between 0 and
100%, so we set our probability to be 100Q and scale o2
appropriately.

Figure 8 shows the fitting results for two nodes, one a TCP
relay and one a relay for both TCP and UDP packets. The
first histogram of each set in the figure represents the actual
node transmissions. The second histogram is the fitted model
of the transmissions created using the five template set.
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(a) A TCP relay transmission time histogram and its model.
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(b) A TCP/UDP relay transmission histogram and its model.

Fig. 8.  Comparison of original transmission time histograms and their
associated modeled histograms.

It shows that by using only the TCP and UDP source and
sink templates and the MAC RTS/CTS template, we have been
able to accurately model the distributions, even when they
are combinations of all the templates. Applying the x? test
to the noisy measured data resulted in a “Goodness of Fit”
as calculated using the scaled @), of 100% for each node.
The incomplete Gamma function has a very sharp, “Step
Function” characteristic and the consequence of this is that



it is very difficult to get a moderate rating. This results in
either a good or bad rating and as such the quality of the
variance estimates for each bin is critical.

Figure 9 shows an aggregated plot of the final number of
unique nodes, their logical edge connections from the inferred
adjacency matrix, and their classification from the final sample
of data.

Graph of logical edge connections with node labels and average classification
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Fig. 9. Graph of unique nodes, their logical edge connections, and their
average classification.

The node classifications are determined by the relative
percentage fits of each template in the template set. If for
example the average template fit for node 10 has a UDP
source component of 85% or greater, then it is classified
“Uso”, a UDP source. An 85% threshold is also used for
the UDP sink and the TCP source and sink templates. Nodes
are classified as relays when their source and sink template fits
are for the same protocol, and within +10% of each other. For
example, a fit comprising of 45% TCP source and 55% TCP
sink components, is classified as a TCP relay. The mixture
classification represents nodes that can’t be classified into one
of the other six categories.

The classification for every node in Figure 9 is correct, and
the inferred logical connections between the nodes are also
correct. The results do however highlight the need for further
work in aggregating the data to aid in node labeling. Firstly
it appears that it may be possible to improve the unique node
labeling, by fusing the tracking data with the classification
data. However this is not straight forward. High mobility can
cause continuous routing changes which means that some
nodes can only be classified as mixtures of transmission types.

Also the sampling period for the transmission clustering, can
greatly affect the classification. If this period is short enough,
then for the majority of cases nodes are characterised correctly.
If however the sampling period is chosen poorly, incorrect
classifications can be made. An example of this type of error
is shown by the labeling of nodes 4 and 13 which are in fact
the same, node 9 from Figure 1. The node for the majority of
the simulation is in fact a UDP sink. However for one very
short period it acts as a TCP relay, but this occurs across
a sample period and the transmission is classified as a TCP
source. The classification is correct, but for only a very small
sample of data. An inspection of the variance for this node’s
location shows that it is 100 times worse then all the other
nodes, so it could be regarded as an outlier. However it does
show that more work is required.

VII. CONCLUSION

This paper has demonstrated, that with a basic understand-
ing of the 802.11 MAC protocol and by using received signal
strength measurements, wireless probes can reconstruct a
wireless network’s topology. It has also been shown that nodes
can be characterised using a simple template fitting approach.
Only a single template is required for modeling the network
and data link layers and separate templates for respective,
source and sink transport layer protocols, to accurately model
a transmitting node.

Future work will concentrate on fusing the collected data
and developing probing schemes that can optimally reconstruct
the wireless network’s topology. More complex propagation
models and TDOA techniques are already being simulated, to
evaluate the developed techniques in less benign environments.
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