
Generalized Graph Products for Network Design
and Analysis

Eric Parsonage, Hung X. Nguyen, Rhys Bowden, Simon Knight, Nickolas Falkner, Matthew Roughan
University of Adelaide, Australia

{eric.parsonage,hung.nguyen,rhys.bowden,simon.knight,nickolas.falkner,matthew.roughan}@adelaide.edu.au

Abstract—Network design, as it is currently practiced, involves
putting devices together to create a network. However, a network
is more than the sum of its parts, both in terms of the
services it provides, and the potential for bugs. Devices are
important, but their combination into a network should follow
from expression of high-level policy, not the minutiae of network
device configuration. Ideally we want to consider the network as
a whole object.
In this paper we develop generalized graph products that allow

the mathematical design of a network in terms of small subgraphs
that directly express business policy. The result is a flexible
algebraic description of networks suitable for manipulation and
proof.
The approach is more than just design – it allows for analysis

of existing networks providing an understanding of the policies
used in their construction, something which can be difficult if the
original designers no longer work on that network. We apply the
approach to several real world networks to demonstrate how it
can provide insight, and improve design.

I. INTRODUCTION

Graphs of communications networks have received a great
deal of interest over the last few decades (see [1]–[8]), for
both scientific interest and practical reasons. Network graphs
represent many of the properties of the underlying communi-
cations network, such as reliability and performance. They are
therefore valuable inputs into many network algorithms, and
much effort has gone into the measurement and synthesis of
network graphs to use in testing algorithms.
Models of graph formation tell us something about how

networks are designed. An engineer may be able to describe
their methods for network design, but we wish to learn
universal laws of network formation that will continue to apply
as technology evolves. Through understanding these laws we
can learn how best to improve the underlying technology to
fit the network design process, rather than providing engineers
with features they do not need, or requiring them to work
around technological limitations.
In this paper we investigate how structure is incorporated

into data communications networks. We see clear evidence of
hierarchy, which may not be suprising to someone familiar
with network operations. Hierarchy is used in networking to
improve scalability, and is taught in introductory networking
courses such as the Cisco CCNA certification.
A hierarchical network could be organized into PoPs (Points

of Presence), which are sets of routers, often located in the
same physical location. We frequently see repeated patterns
in PoP level designs. In large networks the design of each

PoP may be almost identical. Another example of hierarchy is
the organization of a data center, which has a small number
of routers at the top level, and a descending tree of switches
down to the servers.
Why is this so? Simply, network designers often apply

“cookie cutter” methods to design networks, though that term
unnecessarily trivializes the importance of repeated patterns.
Repetition makes network operations vastly simpler: the man-
agement of two PoPs requires the same skills. Equipment can
be bulk purchased, debugging is easier, and adding new PoPs
is simpler. Finally, networks based on templated design lead
to simple design methodologies. For instance, the inter-PoP
level network topology can be optimized relatively simply, as
details such as redundancy will be supplied by the provision
of pairs of redundant routers in each PoP, with redundant
links between them. Design often refers to the graph topology
of router interconnections, but templated design can extend
to other details, such as physical configuration within racks,
connections with external networks, or additional servers such
as Domain Name Service or Network Management Systems.
While repeated patterns can improve a network in many

ways, there are often exceptions. For instance, some PoPs
are too insignificant to warrant provision of a redundant pair
of routers, though that might be the norm in the rest of the
network. Solving the problems created by exceptions to pattern
based design is one of the motivations of this work.
This view of repeated patterns does not fit either of the

two main network model paradigms. On one hand we have
random networks [1], where any structure is ignored (there
are exceptions such as hierarchical random models [9] but
although these respect hierarchy they ignore repeated patterns
in structure). On the other we have the more convincing
Heuristically Optimal Topologies networks [10], [11], which
make the case that networks arise from engineers optimizing
the network (at least heuristically). Optimization is a very
broad notion, and can include arbitrary constraints, but typ-
ically in the context of network modeling the constraints do
not include any pattern elements. This could be remedied by
using ideas presented here.
In this paper, we show examples of real networks that illus-

trate the principles described above. We also go much further
and describe an algebraic method for describing, analyzing,
and constructing such networks. The method is based on the
notion of graph products, which we describe in detail below.
The approach we take is analogous to recent develop-

2011 19th IEEE International Conference on Network Protocols

978-1-4577-1394-1/11/$26.00 ©2011 IEEE 79

ments in routing protocol design, namely metarouting and
its extensions [12], [13]. The motivation of both metarouting
and our work is to express high-level networking policy in
mathematical terms leading to formal proofs.
Our technique allows us to express network design policy

algebraically as a set of subgraphs and graph products, with the
necessary flexibility to build in exceptions to general design
rules. From this we can construct a range of real networks
and analyze networks to discover the high-level rules used for
their construction.

II. BACKGROUND AND RELATED WORK

Throughout we use G = (N , E) to define a graph, where
N is the set of nodes or vertices, and E is the set of edges
or links. We define N(G) = N , i.e., the nodes of G, and
E(G) = E , i.e., the edges.
Define Adj(G) = AG, the adjacency matrix of G, i.e., aij =

1 indicates that link (i, j) ∈ E(G), otherwise aij = 0. In this
paper we use undirected graphs for ease of exposition (and
because most networks are described by symmetrical links) but
there is no difficulty in extending results to directed graphs.
There is a standard notion in graph theory, namely that of

a graph product. The concept is simple. Take the product of
two graphs, and this should produce a third, however, it turns
out that there are quite a few possible ways to do this, and
none of them is obviously the “right” way.
We start by taking a Cartesian product of the nodes of the

two graphs, i.e., we take a new set of nodes N(G ×H), to be

N(G)×N(H) = {(m, k)|m ∈ N(G) and k ∈ N(H)}.

The interesting part of a graph product is usually what we
do with the edges. Given two graphs G and H a short list
of definitions and the notation we use for them follows. In
each case, we look for the connectivity between two arbitrary
vertices (u, u′) and (v, v′) both in N(G)×N(H).

• The Cartesian product G � H: [14], [15] requires that
any two vertices (u, u′), (v, v′) ∈ G � H are adjacent iff
u = v and (u′, v′) ∈ E(H) or u′ = v′ and (u, v) ∈ E(G).

• The Tensor product G × H: [15], [16] sometimes
called the direct, relational, categorical, cardinal, or
Kronecker product is defined by any two vertices/nodes
(u, u′), (v, v′) ∈ G ×H being adjacent iff (u, v) ∈ E(G)
and (u′, v′) ∈ E(H) and u �= v and u′ �= v′. It is
equivalent to taking the Kronecker (or tensor) product
of the adjacency matrices of G and H.

• The Strong product G�H: [14], [15] also known as the
normal or AND product, has edges which are the union
of the Cartesian and Tensor products.

• The Lexicographic product G•H: [15], [17] also known
as graph composition, is defined by two vertices (u, u′)
and (v, v′) being adjacent iff (u, v) ∈ E(G) or u = v and
(u′, v′) ∈ E(H)

• The Rooted product G ◦ H: [18] requires the extra
definition of a root node h ∈ N(H). Given this the
rooted product is defined by requiring that two vertices
(u, u′) and (v, v′) are adjacent iff u′ = h and v′ = h and

(u, v) ∈ E(G) or (u′, v′) ∈ E(H) and u = v. It can be
intuitively explained to be |N(G)| copies of H, each of
whose root is associated with a node of G.

• The Corona product G � H: [19] is the only product
not defined on a Cartesian product of the nodes of the two
graphs, so it does not fit neatly into the general pattern
described above, but it has interesting properties so we
consider it here as well. The Corona product is created by
taking a copy of G and connecting each node i ∈ N(G)
to every node of a copy Hi of H. The copies Hi are not
connected to each other, except through G.

The definitions of products may not seem intuitive, but the
results often are. Figures 1–5 show simple examples of such
networks. Many more simple cases exist, and map well to
common examples of network designs: hypergraphs, prisms
and book graphs can be generated using graph products of
simple subgraphs.

�

�

� � �

���

���

���

���

���

����
�

�

Fig. 1. Cartesian product of a path and a single edge forms a ladder network.

�

�

� �

���

���

���

���

�
�

�

Fig. 2. Tensor product.

�

�

� � �

���

���

���

���

���

����
��

Fig. 3. Strong and Lexicographic products give the same result in this case.

�

�

�� �

���

���

���

���

���

����

�
�

Fig. 4. Lexicographic product showing non-commutativity when compared
with Fig. 3.

The advantage of constructing a network from a graph
product is the known properties of these products: for instance,
the Cartesian, Tensor and Strong products are commutative
(up to isomorphisms) whereas the Lexicographic, Rooted
and Corona products are not. Other properties follow, for
example the Tensor product is connected iff both G and H

80

�

�

� �

���

	��

����
��

���

���

���

���

	��

	��

�

�

Fig. 5. Rooted product (note the bold node in H indicates the root).

are connected, and at least one factor is non-bipartite, and we
shall discuss such properties relevant to networking in later
sections.
For those who have worked with networks, graph products

are suggestive of some aspects of network design. For instance,
if G defines a PoP-level network topology, then we can
construct a simple router-level topology with redundant pairs
of routers, by using a single edge networkH and the Cartesian
product. If a more redundant link structure is required, then
the Strong product could be used. Likewise, we could build
a PoP-level design, with an access distribution tree in each
PoP using the rooted product. The interesting thing about the
products is the combination of a product and the subgraphs
describes a policy for the construction of the network.
Some research has touched on this aspect of design. Most

recently [20] has considered the power of the assumptions of
structure in networks, though without consideration of graph
product based construction. There is also work [21] showing
that repeated application of graph products generates graphs
that display fractal properties. However, these result in strictly
regular, repetitive graphs. As we shall see in the following
section we need to be able to loosen this restriction.
The above definitions are standard, but in some ways un-

satisfying. It is preferable to be able to express the operations
algebraically, in a common format so that we can compare,
combine and operate on them. The definitions of graph prod-
ucts can be written in terms of the Kronecker product of
adjacency matrices. The Kronecker product of m × n matrix
A and k × � matrix B is defined by

A⊗B =

⎡
⎢⎣

a11B · · · a1nB
...

...
am1B · · · amnB

⎤
⎥⎦ ,

so that A⊗B has size km× �n. Then the graph products can
be written as follows (noting that the adjacency matrices AG

and AH have respective size n× n and m×m where G has
n nodes, and H has m nodes):

Adj(G � H) = AG ⊗ Im + In ⊗AH , (1)

Adj(G×H) = AG ⊗AH , (2)

Adj(G�H) = AG ⊗ Im + In ⊗AH +AG ⊗AH , (3)

Adj(G •H) = AG ⊗ Jm + In ⊗ AH , (4)

Adj(G ◦H) = AG ⊗Dm,k + In ⊗AH , (5)

Adj(G � H) = AG ⊗Dm+1,0 + In ⊗ ÂH , (6)

where In is the n× n identity matrix, Jn is the n× n matrix
with 1 in every position and Dm,k is the m×m elementary
matrix with a 1 on the kth diagonal and zeros elsewhere
(k is the row number in AH that corresponds to the node
representing the root of H).
The Corona product requires special augmented matrices,

which intuitively arise because the Corona product can equiv-
alently be constructed by adding a root node to H, which is
adjacent to all the other nodes. We then perform the rooted
product with the augmented graph Ĥ. For simplicity, we
number the rooted node zero, and augment the adjacency
matrix of H, by adding a row of ones to the first row and
column to get the matrix ÂH .
The Kronecker or Tensor product result (2) is widely known

[16]. Other relationships are easy to derive, for instance (1),
(3) and (4) are given as Exercise 96, without proof in [22], so
the proofs are not included here.
These representations are important as they allow us to

understand the structure of the adjacency matrix of the product
graph. It is this understanding that allows the generalizations
found in sections IV, V and VI.

III. DATA, HIGH-LEVEL NETWORK DESIGN PRINCIPLES,
AND EXCEPTIONS

A. Data

A great deal can be learnt about network design from
network engineers, either through mailing lists such as the
NANOG list, or direct discussion. To justify the technique
we present here, we supplement these informal sources with
data. The data comes in the form of a series of network maps,
published by network operators, and collected in the Internet
Topology Zoo [23]. The Zoo contains over 200 networks,
including several where structural relationships, such as PoPs,
were provided. We use these networks as examples to motivate
and illustrate our approach.

B. High-level rules for network design

Networks are not typically built by running a single math-
ematical optimization routine. The mathematical approach
to network management – specifying a cost function and
constraints, and then performing a minimization – is optimal,
but only if the cost function and constraints, and the input
traffic matrix are correct. In practice, the costs are approximate
and based on capital costs, not operations costs which are
hard to approximate; it is hard to incorporate all of the many
details of the real constraints; and traffic matrices are at best
predictions (and sometimes outright guesses). The result is
that formal optimization does not have the power to justify
the complexity it introduces.
Instead, networks are design heuristically. Network opera-

tors start with some broad set of objectives, and rules of thumb,
and build the network from there, perhaps using mathematical
optimization for some relatively simple components of the
network, such as weight assignment.
So the question is, “What are the high-level rules for

networks design or at the least, what are the ones that

81

are justifiable?” The question is important, because we are
concerned with describing a network as an object, not simply
a collection of connected devices. We discussed high-level
design rules with network operators and used the Internet
Topology Zoo’s collection of network maps to elucidate a
number of important network properties and design features.
The four main high-level features in the data we examined

were:
1) Connectivity: It may seem obvious that the basic re-

quirement for a network is to be connected, but it should
still be formally stated in the high-level network description
because (i) the network specification should be complete and
checkable; (ii) there are multiple types of connectivity – inter-
nal connectivity, Internet connectivity, and connectivity at the
physical, IP or application layer; and (iii) in the Topology Zoo
we have observed several networks which are not connected.
That problem may seem strange, but it is possible to design
a network that is unachievable through cost, geographic or
technological constraints.
2) Redundancy: Most networks are designed to have some

type of redundancy. This was a key requirement of the
early ARPANET design [24], and has continued to this day.
However, there are multiple types of possible redundancy:
e.g. edge vs node; multiple layers at which redundancy can
appear (e.g., SONET vs IP); multiple degrees of redundancy
(say the number of links that can fail before the network
partitions); consideration of the amount of capacity needed to
avoid overloads under failure scenarios; and consideration of
Shared-Risk Link Groups (SRLGs) [25] (say fibers that share
a conduit). Different network operators have different redun-
dancy requirements, and different parts of a single network
may have different requirements.
3) Simplicity: A simple network is not only easy to design

and build. It is easier and cheaper to manage [26]. Simplicity
is hard to define, so we have a number of sub-headings related
to simplicity:

• Hierarchy in networks is often associated with scalabil-
ity, but when used well it can make a network much
easier to understand. Breaking a network into regions,
and/or PoPs (Points of Presence) allows it to be more
easily described, visualized and managed. For instance,
locations of devices like route-reflectors and DNS servers,
and logical structures such as OSPF areas are often based
on the regional or PoP structure of a network.

• Repeated structures can be used in networking to simplify
network maps, improve re-usability of equipment, and
reduce training requirements. Examples are the design of
a PoP (up to and including rack placement and wiring dia-
grams in some cases), the way multiple redundant routers
connect PoPs, and the configuration of interconnects.

• Congruence is the property that there is a natural mapping
between different, but associated network elements or
services.

Each of the three features can be seen as a form of en-
capsulation: a standard software engineering concept where
one set of related data and/or procedures is grouped together

and given a common interface. As in software, encapsulation
aids in re-usability and maintainability by enabling multiple
parties to work independently on well defined components of,
in this case, a network. However, here these rules are far more
structural (in a sense we will describe in the following section).
4) Correctness: A network should be correct: it should

function as specified. However, the specification of a network
must be both sufficiently detailed to check that it is correct,
and it should be possible to verify correctness. The approach
presented in this paper allows network design to be done in
a way as that makes the specification of the network more
precise, and correctness tests easier.
This is obviously a partial list of important features that

network operators use in design, but they are at the core
of many network designs. We shall show in the following
sections how they can be designed into a network through
simple application of graph products. However, as common
as these features are, there are also exceptions.
Exceptions are often deliberate, and so we must also be

able to include these into our approach. Some exceptions
may be accidental, and one of the other facilities granted by
our method is the ability to analyze a network and discover
exceptions, which allows engineers to consider these, and
make a decision about whether the exception was warranted.
In the next section we provide an example of a network to
show how exceptions appear, and what types of exceptions
we need to be able to model.

C. Exceptions

For the sake of illustration, in this section we shall concen-
trate on one example – AARNET – which is simple enough
to be easily illustrated, but which also exhibits all of the most
common exceptions to a simple graph product formulation of
a network. AARNET is the Australian Academic Research
Network (see Figure 6). We have discussed their design
process with them, and they also publish detailed network
diagrams and design information [27]. Australia’s population
is concentrated on the coast, and AARNET’s domestic network
is based on a line graph starting in Perth and working its way
around the coast to northern Queensland. It has several spurs
– to Hobart, Alice Springs and Darwin.

�
��

������

������

���������

����
����������
��������

��
����

������

����
���

�������

� ��

�
���!��

Fig. 6. AARNET router level network 2009.

82

The network has pairs of routers in each of its major PoPs:
Perth, Adelaide, Melbourne, Sydney and Canberra. We can
(almost) construct this part of the network with a Cartesian
product of two line graphs, producing a ladder graph.
There are several exceptions. There are nodes that have no

redundancy: e.g. the links to Northern Queensland. There are
also nodes that have link, but not node redundancy, e.g. Alice
Springs, Darwin and Hobart each have 2-connectivity to the
main network, but only a single router. Finally, Canberra has
both node and link redundancy, but not shared-node group
level redundancy (discussed later).
The design of the network was deliberate – it is like this

for a reason. Redundancy is important, but it comes at a large
cost. The distances in Australia are large, and outside of the
major cities the population is quite small. Hence, there is node
and link redundancy for the major cities, but a reduced level
of redundancy for minor PoPs.
The problem for the application of graph products to gener-

ation and design of networks is to allow for such exceptions,
which are well motivated, while providing for simple structure
on the main part of the network. The typical exceptions we
have seen across the Topology Zoo are the need to allow for
different numbers of (redundant) routers in a PoP, and for
different degrees of connectivity between PoPs.
These requirements motivate the following generalizations

of the graph products previously described.

IV. FIRST GENERALIZATION

It is helpful in what follows to ascribe a role to the
subgraphs G and H whose product we take, and so for
illustrative purposes we consider the problem of PoP based
hierarchical network. We shall take G to specify the inter-PoP
network connections (just which PoPs are connected, without
reference to which routers provide the actual connections) and
H will describe the interior structure of the PoPs, i.e., the way
the routers within a PoP are connected. The graph product
will define the router-level connectivity of the network. For
instance see Figure 1 which shows an example based on a
simple Cartesian product, where G represents the inter-PoP
graph and the H represents intra-PoP connectivity which is
the same for all the PoPs.
The challenges in forming a generalized graph product are

1) PoPs must be able to have a variable number of nodes.
2) We must be able to allow for different graph product
operations on each inter-PoP link to allow for different
levels of redundancy.

3) Different nodes should be able to take on different roles
(e.g. backbone vs access router) in the PoP.

4) In degenerate cases, for instance where all PoPs are
identical, the generalized product should collapse down
to the appropriate specific product.

5) In the same way that the standard Strong graph product
is the disjoint union of the standard Cartesian and
Kronecker graph products then the generalised Strong
product should be the union of the generalised Cartesian
and Kronecker graph products.

6) We desire the ability to carry labels (for instance,
distance, link weight, or capacity) onto the new graph
(with possible modifications).

In this first generalization, we allow each PoP to have a
different internal structure, e.g., for the number of routers in
a PoP to vary.
Examination of the relationships (1)-(5) reveals that all but

(2) are in the form of two parts:

1) A term of the form AG ⊗X where X is determined by
the type of graph product.

2) A term of the form Y ⊗AH where Y is determined by
the type of graph product.

In most cases the matrices X and Y are obvious, for instance
in all cases but (2) Y is just the identity. In the case of (2) we
could write the product either by taking X or Y equal to the
zero matrix.
Once the products are written in this general form, other

new products become obvious, for instance

Adj(G � H) = AG ⊗ AH + In ⊗AH ,

which results in a graph with connectivity somewhere between
the tensor product and strong product. This has some inter-
esting properties, for instance shortest paths through it have
a lower average distance between nodes in a graph than the
Cartesian product. We call this the star product.
Using the above insight, we can write all of the graph

products in the form

Adj(G ⊗f,g H) = AG ⊗ f(AH) + In ⊗ g(AH) (7)

=

⎡
⎢⎣
a1,1f(AH) · · · a1,nf(AH)

...
. . .

...
an,1f(AH) · · · an,nf(AH)

⎤
⎥⎦+

⎡
⎢⎣
g(AH) 0

. . .
0 g(AH)

⎤
⎥⎦

(8)

where aij = (AG)ij and the functions f and g depend on the
product as shown in Table I. Note that in some cases the only
dependency in f or g on the adjacency matrix comes from the
size of that matrix.

Product Notation f(AH) g(AH)
Cartesian product G � H Im AH

Tensor product G ×H AH 0m

Strong product G �H Im +AH AH

Lexicographic product G • H Jm AH

Rooted product G ◦ H Dm,k AH

Corona product G � H Dm,1 ÂH

Star product G �H AH AH

TABLE I
FUNCTIONAL BASIS FOR GRAPH PRODUCTS.

The change of notation (7) admits new possible graph
products. We can create a new graph product by substituting
new choices for g(·) and f(·) but we leave this extension for
future work.
Once we make this identification, the first and second

components of the product (7) take on distinct meaning. The
first part AG ⊗ f(AH) defines the inter-PoP links, and the
second part defines the intra-PoP links. Routers automatically

83

get a label based on their co-ordinate in the Cartesian product
space, i.e., if the PoPs N(G) = {A,B, . . . , }, and the routers
N(H) = {1, 2, . . . , } then the routers in the product graph get
names combining the PoP and router number, e.g., (A, 1) and
so on. Obviously the above identification is not necessary for
the generalized graph product, but we use it to illustrate the
power of the approach in what follows.
Many properties of these graph products are well known.

For instance, consider edge connectivity: an edge cut of a
graph G is a group of edges whose total removal renders the
graph disconnected. The edge-connectivity λ(G) is the size of
the smallest edge cut. The edge connectivity of a disconnected
graph or the trivial graph (with 1 node) is 0.
A lower bound for the edge connectivity of standard Carte-

sian graphs is known [28]:

λ(G � H) ≥ λ(G) + λ(H).

There are equivalent results for node connectivity [28], and
the edge connectivity of strong product is provided in [29],
but the connectivity for tensor product is currently unknown.
A. Generalization 1

Given this notational change, out first generalization is to
allow for non-identical PoP structures. Imagine that instead of
a single H to describe the same structure inside all PoPs, we
have a set of graphs {Hi}ni=1 which describe the connectivity
of each of the n PoPs in the network. This allows us to change
the number of nodes per PoP, and the structure inside the PoP.
In this case, the block sizes of the adjacency matrices of

the n PoPs would not fit together in one Kronecker product.
However, we can construct a new Kronecker type product
using functions of two variables. Similar to (8), the adjacency
matrix for this generalized product can be written as

Adj(G,⊗f,g(H1, . . . , Hn)) =⎡
⎢⎣
a11f(AH1

, AH1
) · · · a1nf(AH1

, AHn
)

...
. . .

...
an1f(AHn

, AH1
) · · · annf(AHn

, AHn
)

⎤
⎥⎦

+

⎡
⎢⎣
g(AH1

, AH1
) 0

. . .
0 g(AHn

, AHn
)

⎤
⎥⎦ , (9)

where the functions f(AHi
, AHj

) (for i �= j) and g(AHi
, AHi

)
are given in Table II, where

• ni is the number of nodes in Hi

• Ini×nj
is a matrix of dimension ni × nj with 1 on the

diagonal entries and 0 everywhere else.
• Lni×nj

is a matrix of dimension ni×nj with L(i, j) = 1
if AHi

(i, j) = 1 or AHj
(i, j) = 1 and 0 otherwise.

These generalised variants were chosen so that they satisfy the
conditions required at the start of this section, e.g., that they
collapse back to standard products when all the Hi are the
same.
In Figure 7 we construct our first approximation to the

AARNET network using this product. There are two classes
of PoPs: those with one node, and those with two connected

Product Notation f(AHi
, AHj

) g(AHi
, AHi

)

Cartesian G � (H1, . . . ,Hn) Ini×nj
AHi

Tensor G × (H1, . . . ,Hn) Lni×nj
0ni

Strong G � (H1, . . . ,Hn) Ini×nj
+ Lni×nj

AHi

Lexical G • (H1, . . . ,Hn) Jni×nj
AHi

Rooted G ◦ (H1, . . . ,Hn) Dm,1 AHi

Corona G � (H1, . . . ,Hn) Dm+1,1 ÂHi

Star G � (H1, . . . ,Hn) Lni×nj
AHi

TABLE II
FUNCTIONAL BASIS FOR GRAPH PRODUCTS WITH DIFFERENTHi , WHERE

ni IS THE NUMBER OF NODES IN Hi .

G = �

�

���

�

��

	

��

�

�

�

�

���

�

��

	

��

�

�

� � �

�

�

�

� �

HD = HAS = HH = HAR = HR = HT = HCa =

HP = HA = HM = HS = HC = HB =

G�{HD,HAS ,HH ,HAr,HR,HT ,HCa,HP ,HA,HM ,

HS ,HC ,HB} =

Fig. 7. Modeling the AARNET network with the generalized Cartesian
product. PoP names are abbreviated to their first letter.

nodes. The inter-PoP graph is shown as G in the figure, and
the product graph is also shown. Note that the number of
routers in each PoP is correct, but the inter-PoP connectivity
between these is not correct, except for the simpler parts of
the network. There is a requirement that we be able to vary
the connectivity model (or product) on a link by link basis to
be able to reproduce the AARNET network, and that is what
we consider in the following section. However, first we show
that we can still work with generalized products, for instance
to determine their connectivity.

B. Connectivity of the generalized Cartesian product

The generalized products maintain many properties of the
standard products. Due to space constraints, we consider only
the edge-connectivity of the generalized Cartesian product.
This is closely related to the design requirements for con-
nectivity and redundancy given in sections III-B1 and III-B2.
For simplicity of the argument, we label the nodes of the

graph Hi with ni nodes by V (Hi) = {1, . . . , ni}. Similarly,

84

we label the nodes in G as V (G) = {1, . . . , n}.
Let i be a vertex of G. The subgraph of G � (H1, . . . ,Hn)

induced by {i} × V (Hi) is isomorphic to Hi. We shall call
this graph Hi. Let m = max(|V (H1)|, . . . , |V (Hn)|), the
maximum size of all the PoP graphs. For a given value
of i ≤ m, the subgraph of G � (H1, . . . ,Hn) induced by
{(i, j)|i ∈ V (G), j ∈ V (H1), . . . , V (Hn)} is denoted by Gi.
Note that Gj , 1 ≤ j ≤ m, are subgraphs of G and that by
labelling nodes of the PoP graph Hi from 1 to ni = |V (Hi)|,
the implicit assumption among Gj is that |V (Gj)| is non-
decreasing, e.g., |V (Gj)|) ≥ |V (Gj+1)|). Gi and Hj are called
the G-fibers and H-fibers of the Cartesian product graph [29].
Let

λG = min{λ(G1), . . . , λ(Gm)},

and λH = min{λ(H1), . . . , λ(Hn)}.

When G and all Hi are finite, connected graphs with at
least one node, the following result provides a lower bound
for the connectivity of the generalised Cartesian product
G � (H1, . . . ,Hn).
Theorem 1: (Connectivity – Generalised Cartesian) The

edge connectivity of the network G � (H1, . . . ,Hn) has a
lower bound λG + λH , i.e.,

λ (G � (H1, . . . ,Hn)) ≥ λG + λH .

Proof: Let S be an edge set of G � (H1, . . . ,Hn), S ⊆
E (G � (H1, . . . ,Hn}) with |S| < λG+λH . We need to show
that G � (H1, . . . ,Hn)\S is connected.
Let

ḡj = |S ∩ E(Gj)|, for j = 1, . . . ,m, and λ̄G = max
j

{ḡj};

h̄i = |S ∩ E(Hi)|, for i = 1, . . . , n, and λ̄H = max
i

{h̄i}.

As Hi and Gj are edge-disjoint and completely cover
G � (H1, . . . ,Hn),∑

i

h̄i +
∑
j

ḡj = |S|.

Furthermore, as λ̄G + λ̄H ≤
∑

i h̄i +
∑

j ḡj < λG + λH , at
least one of the two following inequalities is true: λ̄G < λG

or λ̄H < λH . We consider these two cases separately.
1) Case 1: 0 ≤ λ̄G < λG implying all G-fibers are non-
trivial (i.e., they have at least 2 nodes) and are connected
in G � (H1, . . . ,Hn)\S. Let k be the number of H-
fibers with the maximum number of nodes m. Without
loss of generality, denote these H-fibers as Hi1 , . . . ,Hik .
Because at least one H-fibers has m nodes, k ≥ 1.
We only need to prove that one of these H-fibers is
connected in G � (H1, . . . ,Hn)\S as it will connect all
the G-fibers and makes the whole graph connected.
Consider the G-fiber Gm, the number of nodes in Gm is
|V (Gm)| = k. Note that λG ≤ λ(Gm) ≤ |V (Gm)|−1 =
k − 1. We now consider the following two cases.

a) If λH ≥ 1, then

|S| < λG + λH ≤ k − 1 + λH ≤ kλH ,

for all λH ≥ 1, and k ≥ 1. Thus, at least one of
the H-fibers Hi1 , . . . ,Hik is connected.

b) If λH = 0, we again consider two sub-cases:

i) If m = 1, all the PoP graphs have one node.
Thus, the product graph is simply a graph of
one G-fiber, namely G1. And as λ̄G = |S| <
λ(G1), this G-fiber is connected.

ii) Ifm > 1, then all k H-fibersHi1 , . . . ,Hik have
m > 1 nodes and their connectivity λ(Hil) ≥
1. As

|S| < λG + λH = λG ≤ k − 1 <

k∑
l=1

λ(Hil),

at least one of the k H-fibers Hi1 , . . . ,Hik is
connected.

2) Case 2: 0 ≤ λ̄H < λH , implying λH > 0, so
all H-fibers are connected and are not trivial. Let
q = min{|V (H1)|, . . . , |V (Hn)|}, the minimum size
of all the H-fibers (PoP graphs). As Hi are non-trivial,
q ≥ 2. Each of the G-fibers G1, . . .Gq has n nodes and is
isomorphic to G. Thus, λ(G1) = . . . = λ(Gq) = λ(G).
We only need to show that the one of the G-fibers
G1, . . .Gq is connected in G � (H1, . . . ,Hn)\S. Indeed,
consider the following cases.

a) If λG > 0, as λH = min{λ(H1), . . . , λ(Hn) ≤
q − 1,

|S| < λG + λH ≤ q − 1 + λG ≤ qλG.

Thus at least one of G1, . . . ,Gq is connected.
b) λG = 0, again there are two sub-cases

i) If λ(G) = 0, we have the trivial case of the
product graph containing only one H-fiber (PoP
graph). This H-fiber is connected as λ̄H < λH .

ii) If λ(G) > 0, then

|S| < λH ≤ q − 1 ≤ (q − 1)λ(G).

Thus one of the fibers G1, . . .Gq is connected.

In many cases, we are only interested in the connectivity
of small (but important) parts of the network. The following
corollary is useful when analyzing these sub-networks.
Corollary 1: For any subgraph G′ ⊆ G with n′ = |V (G′)|

nodes and n′ PoP graphs {H1, . . . ,Hn′} , let G′

1, . . . ,G
′

m be
the G-fibers in the product G′

� (H1, . . . ,Hn′). The connec-
tivity of G′

� (H1, . . . ,Hn′) has a lower bound

λ (G′
� (H1, . . . ,Hn′)) ≥ min{λ(G′

1), . . . , λ(G
′

m)}+

min{λ(H1), . . . , λ(Hn′)}.

V. SECOND GENERALIZATION

We now extend the graph products to allow for different
inter-PoP links to have different structure. For instance, one
may wish to have different levels of redundancy depending
on the importance of a particular edge in the inter-PoP-level
graph. We need to generalize the Kronecker product in the

85

following way. Instead of a matrix of scalars, take A to be a
matrix of functions aij(·), then

A⊗B =

⎡
⎢⎣

a11(B) · · · a1n(B)
...

...
am1(B) · · · amn(B)

⎤
⎥⎦ .

Given that definition, take

Adj((G, FG, GG)⊗H) = FG ⊗AH +GG ⊗AH

= (FG +GG)⊗AH , (10)

where instead of the adjacency matrix AG, we create a matrix
FG which contains elements that are functions chosen from
a set of functions implied by the choices for f(·) in Table I
or Table II for different Hi. The matrix of functions GG is
likewise chosen to match the relevant g(·) function.
Choosing the appropriate function for each block of the

Kronecker product allows us to choose the type of connectivity
between each pair of PoPs. In Figure 8 we extend our example
of AARNET using different functions on different links. On
link P-A we use the Cartesian product but the link A-AS uses
the tensor product. This generalization allows us to design
correctly the component of the network within the dotted box,
but some parts outside of this box are still incorrect.

�

G = �

�

� �

�

�

� �

�

�

�

�

×

�

�

���

�

��

	

��

�

�

�

�

���

�

��

	

��

�

�

� � �

�

�

G ◦f,g {HD,HAS ,HH ,HAr,HR,HT ,HCa,HP ,HA,HM ,

HS ,HC ,HB} =

�

� �

HD = HAS = HH = HAR = HR = HT = HCa =

HP = HA = HM = HS = HC = HB =

Fig. 8. Modeling the AARNET network with different products on links.

VI. THIRD GENERALIZATION

The functions fij(AHi
, AHj

) in the second generalization
required us to define different connections simultaneously for
all nodes in a pair of PoPs. In many cases, such as sections of
the AARNET network outside the dotted box, it is desirable
to specify connectivities for only a subset of nodes. This can

be achieved by breaking fij(AHi
, AHj

) into several smaller
functions. The trivial approach is to specify each link for each
pair of routers between the two PoPs separately, which would
require us to specify ninj connections for the pair Hi and Hj .
However, nodes in a network are not connected arbitrarily.

They often form structures to provide high level redundancy
and reliability requirements. For example, the network might
consist a major backbone that connects all the PoPs to provide
connectivity, with smaller backbones connecting a chosen
subset of PoPs to provide redundancy at important locations.
Let m be the number of these separate network wide

connectivity patterns. We can generalize the graph product
to include these patterns by first assigning each router in a
PoP with a label and then replacing the graph G with a set of
graphs {G1, . . . ,Gm} where each of the graphs Gl represents
the connectivity of nodes with label l in the PoPs. The set of
labels assigned to nodes in the PoP graph Hi is denoted by
Li. Note that Li ⊆ {1, . . . ,m}.
The graphs {G1, . . . ,Gm} are called the G-fibers of the

network. The links in each G-fiber are called Cartesian links.
We call links that connect routers with different labels between
PoPs cross links.
We can define the Cartesian and cross links by functions on

the node labels. For a pair of PoPs Hi and Hj and two nodes
k ∈ V (Hi), l ∈ V (Hj), let s(k,Hi, l,Hj) be the function
that takes two labels (k and l) and two PoP graphs and returns
a matrix that specify whether the two nodes with these two
labels are directly connected by a link. That is,

s(k,Hi, l,Hj) = Dk,l , (11)

where Dk,l is a matrix of dimension ni × nj with 1 at the
(k, l)-entry and 0 everywhere else.
The adjacency matrix now takes the form

Adj(((G1, . . . ,Gm), FG, GG)⊗ (H1, . . . ,Hn)) =⎡
⎢⎣
a11f11(AH1

, AH1
,L1,L1) · · · a1nf1n(AH1

, AHn
,L1,Ln)

...
. . .

...
an1fn1(AHn

, AH1
,Ln,L1) · · ·annfnn(AHn

, AHn
,Ln,Ln)

⎤
⎥⎦

+

⎡
⎢⎣
g11(AH1

, AH1) 0

...
. . .

...
0 gnn(AHn

, AHn
)

⎤
⎥⎦ ,

with the g(·) functions are the same functions in (10) and
Table II, but the f(·) functions now take node labels in addition
to AHi

, AHj
as variables. The functions f(AHi

, AHj
,Li,Lj)

(for i �= j) for different products are given in Table III with
f(AHi

, AHi
,Li,Li) = 0ni×ni

. We omit the lexicographical,
rooted, Corona and star products in the table as we do not use
them for the networks in the Topology Zoo.
Figure 9 shows the G-fibers for AARNET. These can be

used with the generalized product to accurately generate the
AARNET network. This generalized product can be used to
model most networks in the Topology Zoo, for example the
ACOnet network as shown in Figure 10 and the Internode
network in Figures 11. We have also applied it to larger

86

Product Notation fij(AHi
, AHj

,Li,Lj)

Cartesian (G1, . . . ,Gm) � (H1, . . . ,Hn)
∑

k∈Li∩Lj
s(k,Hi, k,Hj)

Tensor (G1, . . . ,Gm) × (H1, . . . ,Hn)
∑

k∈Li

∑
l∈Lj,l �=k s(k,Hi, l,Hj) (AHi

(k, l) ∨ AHj
(k, l))

Strong (G1, . . . ,Gm) � (H1, . . . ,Hn)
∑

k∈Li∩Lj
s(k,Hi, k,Hj) +

∑
k∈Li

∑
l∈Lj,l �=k s(k,Hi, l,Hj) (AHi

(k, l) ∨ AHj
(k, l))

TABLE III
FUNCTIONAL BASIS FOR THIRD GENERALIZATION OF GRAPH PRODUCTS.

�

�

���

�

��

�

�

�

��

��

�

�

�

	

��

Fig. 9. The AARNET network consists of three G-fibers (indicated by
line types) and 13 H-fibers (PoPs). The H-fibers are connected mostly using
Cartesian links except the two cross links from A to AS and M to H. For
clarity, we omit the intra-PoP links in the graphs.

networks such as SUNET, the Swedish Academic Network,
with 25 PoPs and 3 G-fibers, though we omit the plots due
to space constraints. This factorization into G and H fibers
is closely aligned with the design requirement for operational
simplicity in section III-B3. We believe the number of G-fibers
in a network is one measure of simplicity. In fact, AARNET
have told us that they manage software updates by taking
advantage of G-fibers.

�

�

�

� ��

�

�

�

�

�

�	

�	

�

�

�

Fig. 10. The ACOnet network has two G-fibers and 11 H-fibers. All of the
H-fibers are interconnected using Cartesian links except three cross links at
St. Polten (P) to Vienna (V), Leoben (Le) to Graz (G), and Dornbirn (D) to
Innsbruck (I).

VII. USEFUL PROPERTIES

The work above may seem to be more of a notational con-
venience than a real change to the way we approach network
modeling and design. However, the advantage of algebraic
descriptions is that they can be more easily manipulated. To
this end we have developed a prototype graphical user interface
We will consider one particular example: assigning weights

to links. We have only been dealing with adjacency matrices,
but the algebraic structures we have developed are easily

applied to the problem of assigning values to each link. Before
we can specify exactly how to assign link weights we need to
decide what purpose these link weights should achieve.
In a network constructed using the graph product, there are

two types of links: intra-PoP links (links within each H-fiber,
on the diagonal blocks of the adjacency matrix) and inter-
PoP links (links between H-fibers on the off-diagonal blocks).
We shall allow an operator to specify the intra-PoP weights
on each H-fiber, and aim to assign weights to the inter-PoP
links to achieve high-level management requirements. One
such requirement is making one G-fiber the main fiber for
traffic between POPs, and the others provide backups. If we
are using shortest path routing, then we want to assign a lower
weight to the main fiber than to the others.
Another purpose for the link weights is ensuring that local

traffic remains local, e.g. that traffic between two routers in
the same POP does not go via another POP. To do this it is
merely necessary to ensure that the links in G-fibers have a
sufficiently high weight compared to those in the H-fibers. We
can satisfy both this locality and backup criterion together.
We start with matrices of link weights instead of adjacency

matrices. Let each link weight w be a positive real number
or 0 for links that do not exist. Define matrices BHi

such
that the (j, k)th entries are the weights of link (j, k) in graph
Hi. Assume for now that each G-fiber is identical, and define
BG similarly to BHi

. We also define v, a vector of weights,
with one entry for each G-fiber. The purpose of v is to
allow separate weights to be assigned to different G-fibers. Let
diag(v) be the matrix with the entries of v on its diagonal.
We start with assigning weights to a simple Cartesian

product graph. The weight matrix of G � H is

BG � H = BG ⊗ diag(v) + In ⊗BH .

Compare this to equation (1). We have replaced the adjacency
matrices AG, AH with the weight matrices BG, BH , and we
have replaced Im with diag(v). This formulation gives each
G-fiber a distinct, tunable weight.
With appropriate choice of weights, BG � H can be used

to ensure both locality and make one G-fiber a main fiber,
and the other ones backup G-fibers. Let the ith fiber be the
main fiber. Let h+ be any number greater than the sum of the
weights in H, and the number of nodes in G be n and set the
BG = AG. Then set vi = h+ and vj = (n−1)×h+ for j �= i.
Locality is ensured as every G-fiber link has greater weight
than all the links in a single H-fiber combined, and G-fiber i
will be used preferentially.
Another application for such link weights is load-balancing

where we simple set vj = 1 for all j so that “parallel” links
(links travelling between the same two H-fibers) are all the
same weight.

87

This method of assigning link weights extends naturally to
the generalised graph product. We can still use Equation (10),
however replace AHi

with BHi
and in the definition of f in

Table III replace s(k,Hi, k,Hj) with vks(k,Hi, k,Hj). An
example on the Internode network topology is given in figure
11. This uses G-fiber 2 as the main G-fiber, and the other
G-fibers as backup. Here v = [50, 10, 50].

�

�

���

�

�

�

�

�

��

��

�

��

��
��

�

�� ��

��

�

��

�
��

��

� �

�

��
�

Fig. 11. The Internode network can be modelled as a generalised Cartesian
product of 3 G-fibers and 7 H-fibers (PoP graphs). Link weights are shown
on the edges. Here the H-fibers labeled P, A, M, H, B each consist of a single
link of weight 3. The H-fiber labeled S is 3 links of weight 2. G-fiber 2 has
a lower weight than G-fibers 1 and 3 because it’s the primary fiber in this
weight assigment. Here v = [50, 10, 50].

VIII. CONCLUSION AND FUTURE WORK

This paper describes several generalized graph products that
allow the mathematical design of a network in terms of small
subgraphs. We have applied these products to construct and
analyze several real world networks and in sections IV-B
and VI discuss how these results are related to the high-
level design requirements of section III-B. We also give
an example of the use of these products to automate tasks
such as weight assignment consistent with some high-level
requirement. We have created a prototype GUI for creating
algebraic descriptions of a network generated using graph
products and vice versa.
Here the decomposition of existing networks was done

manually by removing all intra pop links from a router level
graph. The remaining graph generally represents the disjoint
G-fibers of the network. However there are exceptions where
nodes within a PoP are still connected due to links that
cross G-fibers. This leads to cases where the decomposition
is not unique. Future work would include the development
of algorithms that calculate decompositions based on some
optimization criteria. In order to maximize the benefit of this
formalization, future work will also include the development
of techniques that allow for auto-configuration, network syn-
thesis and optimization.

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of the
Australian Research Council through grants DP0985063 and
DP110103505, and two Australian Postgraduate Awards.

REFERENCES

[1] B. Waxman, “Routing of multipoint connections,” Selected Areas in
Communications, IEEE Journal on, vol. 6, pp. 1617 –1622, dec 1988.

[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the Internet topology,” in ACM SIGCOMM, pp. 251–262, 1999.

[3] A. Barabási and R. Albert, “Emergence of scaling in random networks,”
Science, vol. 286, 1999.

[4] R. Albert, H.Jeong, and A.-L. Barabási, “Error and attack tolerance of
complex networks,” Nature, vol. 406, pp. 378–382, 2000.

[5] S.-H. Yook, H.Jeong, and A.-L. Barabási, “Modeling the Internet’s large-
scale topology,” PNAS, no. 99, pp. 13382–13386, 2002.

[6] E. W. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE Infocom ’96, (San Francisco,
CA), 1996.

[7] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, “Network topology generators: degree-based vs. structural,” SIG-
COMM Comput. Commun. Rev., vol. 32, pp. 147–159, August 2002.

[8] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov,
R. Tanaka, and W. Willinger, “The “robust yet fragile” nature of the
Internet,” Proceedings of the National Academy of Sciences of the USA
(PNAS), vol. 102, pp. 14497–502, October 2005.

[9] E. Ravasz and A.-L. Barabási, “Hierarchical organization in complex
networks,” Phys. Rev. E, vol. 67, p. 026112, Feb 2003.

[10] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A first-principles
approach to understanding the Internet’s router-level topology,” in SIG-
COMM ’04, (New York, NY, USA), pp. 3–14, ACM, 2004.

[11] D. Alderson, L. Li, W. Willinger, and J. Doyle, “Understanding internet
topology: principles, models, and validation,” Networking, IEEE/ACM
Transactions on, vol. 13, pp. 1205 – 1218, dec. 2005.

[12] T. Griffin and J. Sobrinho, “Metarouting,” ACM SIGCOMM, vol. 35,
no. 4, pp. 1–12, 2005.

[13] T. G. Griffin, “The stratified shortest-paths problem,” in COMSNET,
2009.

[14] G. Sabidussi, “Graph multiplication,” Math.Zeitschr., vol. 72, pp. 446–
457, 1960.

[15] F. Gurski, “Graph operations on clique-width bounded graphs.”
arXiv:cs/0701185v1http://arxiv.org/pdf/cs.DS/0701185, 2007.

[16] P. M. Weichsel, “The Kronecker product of graphs,” Proceedings of the
American Mathematical Society, vol. 13, no. 1, pp. 47–52, 1962.

[17] D. Geller and S. Stahl, “The chromatic number and other functions of
the lexicographic product,” Journal of Combinatorial Theory, Series B,
vol. 19, no. 1, pp. 87–95, 1975.

[18] C. Godsil and B. McKay, “A new graph product and its spectrum,”
Bulletin of the Australian Mathematical Society, vol. 18, no. 1, pp. 21–
28, 1978.

[19] H. Kwong and S.-M. Lee, “On the integer-magic spectra of the corona
of two graphs,” Congressus Numerantium, pp. 207–222, 2005.

[20] K. Yoshida, Y. Kikuchi, M. Yamamoto, Y. Fujii, K. Nagami, I. Naka-
gawa, and H. Esaki, “Inferring PoP-level ISP topology through end-to-
end delay measurement,” in PAM 2009, pp. 35–44, 2009.

[21] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahra-
mani, “Kronecker graphs: An approach to modeling networks,” J. Mach.
Learn. Res., vol. 11, pp. 985–1042, March 2010.

[22] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 0:
Introduction to Combinatorial Algorithms and Boolean Functions (Art
of Computer Programming). Addison-Wesley Professional, 1 ed., 2008.

[23] Topology zoo website: http://www.topology-zoo.org, 1st January 2011.
[24] P. Baran, “On distributed communications: 1. introduction to distributed

communications network.” RAND Memorandum, August 1964.
[25] P. Sebos, J. Yates, G. Hjalmtysson, and A. Greenberg, “Auto-discovery

of shared risk link groups,” in Optical Fiber Communication Conference
and Exhibit, 2001. OFC 2001, vol. 3, pp. WDD3–1 – WDD3–3 vol.3,
2001.

[26] R. Bush and D. Meyer. Request for Comments: 3439: http://tools.ietf.
org/html/rfc3439, December 2002.

[27] G. Korporaal, AARNet — 20 years of the internet in Australia. http:
//mirror.aarnet.edu.au/pub/aarnet/AARNet 20YearBook Full.pdf, 2009.

[28] G. Sabidussi, “Graphs with a given group and given graph-theoretical
properties,” Canad. J. Math., vol. 9, pp. 515–525, 1957.

[29] B. Bresar and S. Spacapan, “Edge-connectivity of strong products of
graphs,” Discussiones Mathematicae, Graph Theory, vol. 27, pp. 333–
343, 2007.

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

