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Abstract: The interest sparked by observations of long-range de-

pendent tra�c in real networks has lead to a revival of interest in

non-standard queueing systems. One such queueing system is the

M/G/1 queue where the service-time distribution has in�nite vari-

ance. The known results for such systems are asymptotic in nature,

typically providing the asymptotic form for the tail of the workload

distribution, simulation being required to learn about the rest of the

distribution. Simulation however performs very poorly for such sys-

tems due to the large impact of rare events. In this paper we provide

a method for numerically evaluating the entire distribution for the

number of customers in the M/G/1 queue with power-law tail service-

time. The method is computationally e�cient and shown to be accu-

rate through careful simulations. It can be directly extended to other

queueing systems and more generally to many problemswhere the in-

version of probabilitygenerating functions complicatedby power-laws

is at issue. Through the use of examples we study the limitations of

simulation and show that information on the tail of the queue-length

distribution is not always su�cient to answer signi�cant performance

questions. We also derive the asymptotic form of the number of cus-

tomers in the system in the case of a service-time distribution with

a regularly varying tail (eg in�nite variance) and thus illustrate the

techniques required to apply the method in other contexts.

I. Introduction

Recent analysis of network data (such as that of Lo-

cal Area Networks, ISDN and Frame Relay) has demon-

strated that tra�c arrival processes in real systems have

self-similar or long range dependent (LRD) or fractal prop-

erties [15]. Erramilli et al. [10] showed that such tra�c can

result in signi�cant degradation of performance in real sys-

tems at loads much lower than predicted by traditional

models having only short range dependence. In particular,

large queues fed by long range dependent tra�c may have

heavy tails, implying that bu�ers dimensioned using con-

ventional models may be signi�cantly under-provisioned,

and more seriously, that increasing bu�er size is not a prac-

tical method to reduce loss. Furthermore, analysis of World

Wide Web data has shown that the distribution of �le sizes

on the Internet has a heavy tail. In fact the weight in the

tail is such that the distribution has a variance so large

that it is best modelled as in�nite [7].

Although far less tractable than traditional queueing sys-

tems, a body of analytical results are now available, a non-

exhaustive list of which is [5], [16], [3], [20], [13], [19], [2].

These studies emphasize asymptotic properties, and in par-

ticular focus on the form of the tail of the workload dis-

tribution in in�nite bu�er queues. They are intrinsically

incapable however of providing insight into the behaviour

of the `head' and `body' of the queue. On the other hand

simulation is poorly equiped to �ll this gap, as in such

systems events of relatively low probability can have an

extremely high impact on queueing dynamics. This is es-

pecially true when in�nite variance is involved, as in prac-

tice such distributions must be truncated to �nite variance

approximations, leading to results which can be markedly

truncation level dependent. Simulations must therefore be

constructed very carefully, and run over long periods of

time before they converge, a fact noted in [9] and [14].

When, in addition, the simulation is intended to study the

tail of a queue, additional care must be taken, and even

longer runs are required, because the discussed di�culties

are exaggerated in the tail.

The main contribution of this paper is the provision of a

numerical method for calculating the entire distribution of

the number of customers in the FIFO M/G/1 queue with

service-time distribution having a heavy tail of power-law

type. In particular we concentrate on the case with in-

�nite variance. Although we focus on the FIFO M/G/1

system, the method can be extended to other queueing

systems, for example the batch arrival M/G/1 queue, or

applied to systems with imbedded M/G/1 queues such as

the uid queue fed by independent On/O� constant rate

sources with heavy-tailed On times [2], [19]. More gen-

erally, the basic elements of the method can be applied

to many systems, not necessarily queues, where the inver-

sion of a known Probability Generating Function (PGF),

rendered impossible by normal techniques because of the

presence of power law behaviour, is required. We show the

method to be computationally e�ective and accurate over

a wide range of parameters, and capable of revealing the

de�ciencies of both the simulation and asymptotic analytic

approaches. Indeed, the knowledge of the complete distri-

bution is a vital tool in the testing of simulation methods

in such di�cult situations. Furthermore, investigations of

the queue-length distributions calculated using this method

have provided insight indicating that neither the tail nor

head of the queue-length distribution is su�cient to an-

swer all of the performance questions of interest, primarily

because convergence to the tail behavior of the queue is

extremely slow for some parameter values.

A further aim of the paper, and a necessary step in the

achievement of the �rst, is to derive the form of the asymp-

totic number of customers in the M/G/1 queue above with

power-law service-times. Our result, although essentially

obtained through the application of existing results, illus-

trates the steps and tools which would be required in the

application of our method to new systems which are not

as well studied as the FIFO M/G/1 queue. Due to space

restrictions, only a sketch of the derivation can be provided

(see [17] for full details).



II. Background

We consider the M/GI/1 queue, that is, a queue with

Poisson arrivals, independent generally distributed service-

times, one server, and an in�nite waiting room. This sys-

tem, and many of its variants, have been carefully stud-

ied [4], [6], and many analytical results for these systems

are well known. However, numerical solutions are not al-

ways easy to obtain from analytic results. Often such re-

sults are in the form of PGFs, from which it is easy to

derive the �rst few moments of a distribution, the tradi-

tional quantities of interest. In the cases we consider here

however where the �rst or second moments may not exist,

the most useful performance measures can only be derived

from the distribution itself, and so inversion of the PGF

becomes a necessity.

A. Preliminaries

Throughout this paper we refer to several transforms

which we now de�ne. The Probability Generating Func-

tion (PGF) of a discrete probability distribution p

n

on the

non-negative integers is de�ned by

P

�

(z) =

1

X

n=0

p

n

z

n

; z 2 C : jzj � 1:

We will also deal with the generating functions H

�

(z) of se-

quences fh

n

g which are de�ned in the same way but which

do not correspond to probability distributions.

The Laplace-Stieltjes transform [11, p. 432] of a distri-

bution with cumulative probability function F (t), concen-

trated on (0;1) is given by the Riemann-Stieltjes integral

~

F (s) =

Z

1

0

e

�st

dF (t); s 2 C : <s � 0:

When F (t) is di�erentiable the above transform becomes

the ordinary Laplace transform of the probability density

f(t) = dF=dt, that is

~

F (s) =

R

1

0

e

�st

f(t)dt. Finally

the characteristic function of F (t) is given by the Fourier-

Stieltjes transform [11, pp. 499-511]

^

�

F

(�) =

Z

1

0

e

i�t

dF (t); � 2 R;

which reduces to the ordinary Fourier transform of f if it

exists, and for a discrete distribution p

n

reduces to the sum

^

�

p

(�) =

1

X

n=0

p

n

e

i�n

:

In the latter case the characteristic function may be in-

verted through the integral [11, pp. 505-506]

p

n

=

Z

1

0

^

�

p

(2��)e

�i2��n

d�:

Apart from transforms, the other theory of interest in

this paper is that of regular variation, which is that of

asymptotic power-law behavior. First recall the nota-

tion h(t)

t

0

� g(t) for asymptotic equivalence, which means

lim

t!t

0

jh(t)j=jg(t)j = 1. Where t

�

0

is used it refers to the

limit as t

0

is approached from below. Now de�ne functions

as slowly varying at t

0

if they satisfy lim

t!t

0

L(xt)=L(t) =

1, for every x > 0. We can now de�ne a function h(t) as

being regularly varying at 1, with index p, if

h(t)

1

� L(t)t

p

;

where L(t) is slowly varying at 1. A function g(t) is reg-

ularly varying at zero if g(t) = h(1=t) with h(t) regularly

varying at 1. The obvious discrete analogy may be made

for a sequence h

n

.

Some of the key results we use are Tauberian theo-

rems. Tauberian theorems are relations between the possi-

ble power-law behavior of the tail of a function with certain

properties to the power-law behavior of its transform near

the origin. We have need of the following two.

Theorem II.1: If fh

n

g, n = 0, 1, 2 : : : is an ulti-

mately monotone positive sequence with generating func-

tion H

�

(z) that converges for 0 � z < 1, and 0 � p < 1,

then

h

n

1

�

L(n)

�(p)

n

p�1

, H

�

(z)

1

�

� L

�

1

1� z

�

1

(1�z)

p

;

where L is slowly varying at in�nity.

Proof: See Feller [11, p. 447] 2

We now extend the Tauberian result of Feller to obtain

the following useful lemma.

Lemma II.1.1: Suppose that

�

U

n

has ultimately mono-

tone di�erence u

n

=

�

U

n�1

�

�

U

n

, for n > 0. If

�

U

n

� L(n)n

p

with p < 0 then

u

n

� �p

�

U

n

n

:

Proof: See the detailed report [17] 2

Also used extensively in this paper is the generalised Rie-

mann zeta-function, which can be de�ned as [12, Equation

9.521]

�(�; q) =

1

X

n=0

1

(q + n)

�

:

When � is real and greater than 1 the function is well

approximated by the lower bound

�(�; q) �

N

X

n=0

1

(q + n)

�

+

(q +N + 1)

1��

�� 1

; (1)

where the positive error term "(N ) satis�es "(N ) < (q +

N )

��

. For a derivation of this approximation see [17].

B. The M/G/1 queue

We consider the M/G/1 queue with Poisson arrival rate

�, mean service-time 1=�, and tra�c intensity � = �=�. It

is known [6, pp. 151{174] that the stationary PGF for the

number of customers in the stable (� < 1) M/G/1 queueing



system with the First In First Out (FIFO) service discipline

is given by the Pollaczek-Khintchine equation

P

�

(z) = (1� �)

(z � 1)

~

G

�

�(1� z)

�

z �

~

G

�

�(1 � z)

� ; (2)

where

~

G(s) is the Laplace-Stieltjes transform of the service-

time distribution.

C. Daigle's method of PGF inversion

Daigle's method [8] of estimating the queue-length dis-

tribution relies on the general fact that the PGF of a dis-

crete probability distribution evaluated on the unit circle

is precisely the characteristic function of that distribution.

That is, given a PGF P

�

(z) of a discrete distribution with

masses p

n

, n = 0, 1, 2; : : :, the characteristic function of

the distribution function is

^

�

p

(2��) = P

�

(e

i2��

) =

1

X

n=0

p

n

e

i2��n

:

As noted above, inversion may be performed by

p

n

=

Z

1

0

^

�

p

(2��)e

�i2��n

d�:

The integral may be numerically approximated by sam-

pling the transform on the unit circle at K + 1 points and

summing. That is

c

(K)

n

=

1

K + 1

K

X

k=0

P

�

�

e

i2�k=(K+1)

�

e

�i2�nk=(K+1)

;

for n = 0, 1; : : : ;K, which is just the inverse discrete

Fourier transform, which can be e�ciently calculated using

the Inverse Fast Fourier Transform (IFFT).

The terms c

(K)

n

calculated from the PGF are shown by

Daigle [8] to obey

c

(K)

n

= p

n

+

1

X

m=1

p

n+m(K+1)

:

It is readily seen that the estimate c

(K)

n

of p

n

is contam-

inated by alias terms, a typical e�ect of discrete sampling.

In the present context p

n

is the stationary probability

of n customers being in the queueing system. For large

K the summation terms aliased into the c

(K)

n

are drawn

from the tail of this queue. The asymptotic tail and hence

the aliased terms can be calculated and subsequently sub-

tracted from the IFFT estimates to give p

n

. Daigle consid-

ers the case when the tail is asymptotically geometric, esti-

mates the parameters of the tail, and subtracts the aliased

terms through a standard geometric summation.

We consider the case when there is a power-law governing

the tail behavior of service-times, and hence a power-law

governing the tail behavior of the number of customers in

the system. We then derive a formula for the sum of tail el-

ements aliased into the IFFT terms and then remove them

to recover the p

n

.

III. The Method

This section contains the main results of the paper.

First, we calculate the form of the tail of the queue-length

distribution when the service-time distribution is regularly

varying. We then present the main contribution: a method

for inverting the PGF of the M/G/1 queue to obtain the

entire queue-length distribution when this distribution has

a power-law tail.

A. Calculating the tail of the queue

We assume that the service-time distribution G(t) has a

power-law tail, that is

1� G(t)

1

� L(t)t

��

; (3)

where L(t) is slowly varying at in�nity, and � > 0. Only

the �rst n moments of such a distribution are �nite, where

n = b�c, the largest integer less than �. In particular, when

� 2 (0; 1] all moments are in�nite, and when � 2 (1; 2]

only the mean is �nite. Henceforth only the latter case

will be treated, although other cases with � > 2 present no

di�culties.

We wish to calculate the form of the tail of the queue-

length distribution. The answer to the closely related ques-

tion of the form of the workload distribution in the more

general GI/G/1 case was answered some time ago by Cohen

[5] (see also [3] for a waiting time calculation in a simple

M/G/1 context). It states essentially that the waiting time

distribution is regularly varying if and only if the service

distribution is regularly varying, with an index which is one

less (that is, there exists one less �nite moment for the wait-

ing time distribution). Rather than using Cohen's result as

a basis for our calculation of the queue-length distribution,

we derive it directly from the Tauberian theorems quoted

in the previous section. In this way the basic tools needed

to apply our inversion approach to other problems where

PGF's are known will be illustrated, rather than restricting

the �rst part of the method to a simple queueing context.

To determine the tail behaviour of the queue-length we

need to know the behaviour near z = 1 of P

�

(z), and hence,

from Equation (2), the form of the Laplace-Stieltjes dis-

tribution

~

G(s) for small s. From Bingham, Goldie and

Teugels [1] (see also Brichet et al. [3]) this is given by

~

G(s)

0

� 1�

s

�

+ L(1=s)

�(2 � �)

�� 1

s

�

; (4)

where 1=� is the mean service-time, and � 2 (1; 2).

Denote the complementary distribution function of the

queue by

�

P

n

=

P

1

k=1

p

n+k

. It is not di�cult to show

that its PGF is given by

�

P

�

(z) = (1� P

�

(z))=(1� z) and

clearly p

n

=

�

P

n�1

�

�

P

n

.

The following theorem uses the Laplace-Stieltjes trans-

form above to derive the tail behavior of the distribution

of the number of customers in the queue.

Theorem III.1: For the M/G/1 queue where the service-

time distribution has a power law tail given by Equation( 3)



with � 2 (1; 2), the tail of the stationary queue-length dis-

tribution is given by

�

P

n

1

�

�

n

�� 1

n

1��

; (5)

and its discrete density by

p

n

1

� �

n

n

��

; (6)

for large n, where �

n

= L(n=�)�

�

=(1� �).

Proof: Setting s = �(1 � z) in Equation (4) and then

substituting into Equation (2), retaining only the �rst two

terms yields

P

�

(z)

z!1

�

� 1�

K

1

(z)

1� �

(1� z)

��1

:

where K

1

(z) = L(1=�(1 � z))�(2 � �)�

�

=(� � 1). Now

�

P

�

(z) = (1�P

�

(z))=(1�z) satis�es the conditions of The-

orem II.1 with p = 2� � > 0 and therefore

�

P

n

n!1

�

L(n=�)�

�

(�� 1)(1� �)

n

1��

:

Applying Lemma II.1.1 to this relation we obtain the stated

results for large n. 2

Remark 1: The key step in the proof is obtaining a re-

lation with an exponent in the appropriate range so that

Theorem II.1 can be applied.

Remark 2: The above result holds for � 2 (1; 2), where

the service-time distribution has �nite mean, but in�nite

variance. Just as for the workload distribution [5], the

result implies that the mean queue-length is in�nite, and

thus that the queue-length distribution has one less �nite

moment than the service-time distribution in this case.

B. Evaluating the entire distribution

For simplicity in the calculations below we shall con-

sider the simple case where L(t) = L. Hence �

n

= � =

L�

�

=(1 � �), a constant. More complicated cases can

be treated in the same way, at the cost of replacing the

Riemann zeta-function below with another, non-standard

function expressed as an in�nite sum, whose estimation

may be slightly more costly and whose error more di�cult

to control.

It was seen in Section II-C that we can evaluate the c

(K)

n

,

which consist of p

n

plus tail terms. If K is large enough so

that p

K+1

; p

K+2

; : : :, are well approximated by the power-

law form in Theorem 5, then the sum of aliased terms may

be evaluated. Thus

c

(K)

n

= p

n

+

1

X

m=1

p

n+m(K+1)

K!1

� p

n

+ �

1

X

m=1

�

n+m(K + 1)

�

��

= p

n

+ �(K + 1)

��

�

�

�;

n

K + 1

+ 1

�

;

where �(�; q) is a generalized Riemann zeta-function. We

use the approximation to the Riemann zeta-function given

in Equation (1) to write

c

(K)

n

K!1

� p

n

+ �(K + 1)

��

N

X

m=1

�

n

K + 1

+m

�

��

+

�

�

(N + 1)(K + 1) + n

�

1��

(�� 1)(K + 1)

+ "(N );

where "(N ) < (n=(K + 1) +N )

��

, and thus

p

n

K!1

� c

(K)

n

� �

N

X

m=1

�

n+m(K + 1)

�

��

�

�

�

(N + 1)(K + 1) + n

�

1��

(�� 1)(K + 1)

� "(N ): (7)

Although from Theorem III.1 we have an analytic expres-

sion for the value of �, it is useful to directly estimate it

from Equation (7) with n = 0, using the fact that p

0

is

known to equal 1� � [6]. The estimate is

^

�(K) =

(c

(K)

0

� p

0

)(K + 1)

�

P

N

m=1

m

��

+

(N+1)

1��

��1

:

The discrepancy between � and

^

�(K) can be used to

choose an appropriate value of K. More precisely, note

that the absolute error in the calculation of the largest alias

term is essentially j��

^

�j � (K+1)

��

, and we are therefore

interested in minimizing this quantity with respect to K.

Although in theory the error will decrease monotonically

with K, in practice there will be an optimal K due to

numerical errors. The following algorithm is an e�cient

way of choosing a suitable K.

(1) i = 3

(2) K = 2

i

� 1

(3) while j� �

^

�j � (K + 1)

��

> � do

(3a) evaluate c

(K)

o

=

1

K+1

P

K

k=0

P

�

�

e

�2�ik

K+1

�

(3b) determine

^

� =

(c

(K)

0

�p

0

)(K+1)

�

P

N

m=1

m

��

+

(N+1)

1��

��1

(3c) i = i + 1

(3d) K = 2

i

� 1

(4) Evaluate c

(K)

n

using the IFFT

(5) Recover the p

n

by removing the aliased

terms from c

(K)

n

using Equation (10)

where N is determined by the required accuracy of the

�nite sum approximation to the generalized Riemann zeta-

function. The algorithm may be made even more e�cient

by using the fact that, although at each iteration of the

loop the number (K + 1) of sampling points of the PGF

P

�

increases by a factor of two, half of these have already

been computed (and summed) in the previous iteration. It

is possible that the optimum value of K can be skipped

over, leading to divergence. A test for this possibility was

added to the above algorithm.



IV. Two Numerical examples

This section provides some numerical examples of the

method described above, both for veri�cation through sim-

ulation, and to test its stability. The examples illustrate

the calculation procedure, as well as the numerical be-

haviour of the method, for two service times distributions

with very di�erent behaviour around the origin. The ex-

amples were chosen to be simple to limit the number of

parameters which must be chosen, and to have continuous

distribution functions. As we shall see, they are nonethe-

less rich enough provide the opportunity to demonstrate

a number of interesting new observations about power-law

tail queues.

A. Example 1

The probability density function of a continuous heavy-

tailed distribution suggested in [18] is given below

p

G

(x) =

�

�B

�1

e

�

�

B

x

; for x � B;

�B

�

e

��

x

�(�+1)

; for x > B;

where B > 0 marks where the tail `begins', and � 2

(1; 2). The lemma of [11, p. 446] shows that the tail

of the distribution function is 1 � G(x) � B

�

e

��

x

��

,

and standard arguments show that the mean is E[X] =

B f1 + e

��

=(�� 1)g =�, that the variance is in�nite, and

has Laplace-Stieltjes transform

G

�

(s) = �

�

1� e

�(sB+�)

(sB + �)

�

+ �B

�

e

��

s

�

�(��; sB);

where �(x; z) is the incomplete gamma function [12, 8.350].

Furthermore the �

n

in Theorem III.1, are constant and

equal to

� =

�

B�e

�1

�

�

1� �

: (8)

The Laplace-Stieltjes transform above may be used in

the Pollaczek-Khintchine formula for the PGF of the num-

ber of customers in the system, and thence via the method

described above, used to calculate the stationary distribu-

tion of the number of customers in the queue.

Figure 1 below shows examples of calculated results com-

pared with simulated results, for three sets of parameters

(� = 1:4; � = 0:3), (� = 1:8; � = 0:3), and (� = 1:5; � =

0:8), with B = 4:0 in all three cases. Straight lines in the

log-log graph correspond to power-law curves, examples of

which are the asymptotes of the three distributions calcu-

lated using Equations (6) and (8), shown in the �gure as

dashed lines. The short vertical lines mark the boundary

between values calculated by the method (to the left) and

those given by the analytic asymptotic tail.

Each simulation of the embedded process was based on

100,000,000 departures. For clarity only a representative

sample of simulation points have been plotted on the �gure.

It is noteworthy that the simulation follows the predicted

results until it reaches a probability of approximately 10

�5

.

At roughly this point each simulation diverges up from the
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Fig. 1. Three examples of queue-length distributions are shown here,

each showing the calculated results (solid line) the correspond-

ing simulations (circles, crosses and x's) and the asymptotic tail

(dashed line).

predicted result, and slightly later drops suddenly (not seen

on �gure). This divergence is a direct e�ect of the trun-

cation of the service-time distribution to a �nite variance

distribution, and the point at which the simulation diverges

can be altered by changing the truncation point. To shift

the truncation point out further than here, much more so-

phisticated methods of simulation are required.

Simulation con�dence intervals have not been shown on

the graphs because they are so tight that they would not

be visible. In fact the maximum of the standard devia-

tion of the simulations results (based on ten simulations)

was 1.7e-04. This is comfortably larger than the maximum

absolute di�erence (taken over the entire queue-length con-

sidered before errors in the simulation enter in) between the

simulation and calculation based values of p

n

, which were

3.2e-05, 3.3e-05, and 5.9e-05 respectively.

An interesting check is provided by the fact that the

mean value of this service-time is proportional to B, and

thus, setting B ! B

0

= cB we must take �

0

= �=c to keep

� constant. This transformation corresponds to a scaling

of time, and therefore the stationary queue distribution

should not be a�ected. We have checked this invariance

numerically for � = 0:3, � = 1:5, for the pairs (B; �) =

(0:1; 3:11) and (B; �) = (100:0; 0:00311). The results for

the two are identical up to numerical accuracy (� 10

�16

),

demonstrating that our method for calculating the queue-

length distribution accurately reects the invariance with

respect to B.

B. Stability

Of interest when investigating any numerical algorithm

is its performance over a range of parameters. The perfor-

mance measures of interest are the accuracy and stability

of the method. The accuracy of the method, as far as possi-



ble, has been veri�ed through simulation, but the stability

of the algorithm is not guaranteed over the entire range of

parameters investigated here. There are some parameter

values for which the number of required sampling points

K + 1 blows up, to the point where obtaining accurate re-

sults is computationally infeasible. This is shown below to

occur in the `heavy tra�c' limit, but only in regimes which

would be unrealistic for operation of any modern system.

� K + 1 time

a

p

�

Q>10

12

�

j��

^

� j(K+1)

��

1.9 8

b

1.04 2.18e-11 6.93e-03

1.8 8

b

0.92 3.57e-10 2.87e-03

1.7 10

b

1.50 5.91e-09 2.31e-06

1.6 32

b

1.84 9.91e-08 1.83e-05

1.5 2048 4.40 1.69e-06 3.18e-08

1.4 8192 3.44 2.92e-05 7.63e-08

1.3 32768 11.20 5.18e-04 6.47e-08

1.2 131072 41.10 9.48e-03 6.52e-08

1.1 524288 146.88 1.82e-01 6.60e-08

Table 1: Stability with respect to �, for � = 0:8.

� K + 1 time

a

p

�

Q>10

12

�

j��

^

� j(K+1)

��

0.1 128 0.43 1.66e-08 4.32e-08

0.2 256 0.51 5.27e-08 2.36e-08

0.3 256 0.54 1.11e-07 4.66e-08

0.4 256 0.53 1.99e-07 7.20e-08

0.5 256 0.54 3.33e-07 7.75e-08

0.6 256 0.51 5.48e-07 3.50e-08

0.7 1024 1.00 9.20e-07 2.40e-08

0.8 2048 4.40 1.69e-06 3.18e-08

0.9 4096 7.03 4.02e-06 7.58e-08

Table 2: Stability with respect to �, for � = 1:5.

a

The time indicates CPU time (in seconds) required by the algo-

rithm, coded in MATLAB, running on a Sun Ultra Server 2.

b

The cases where divergence forced the iteration to stop before the

correct � was reached. A search then found the best number of sam-

pling points.

Table I illustrates the stability of the method with re-

spect to � while � = 0:8 is kept constant. The table shows

the number of sampling points chosen by the algorithm for

a range of parameters. As �! 1

+

the number of sampling

points grows exponentially, and the computation time re-

quired by the algorithm grows at a similar pace. As shown

in Table II the number of sampling points also grows as

�! 1

�

, but not nearly as quickly.

The instabilities arise because in the heavy tra�c regime

the queue-length distribution converges only slowly to its

asymptotic tail behavior. An example of the slow conver-

gence can be seen in Figure 2, which shows the calculated

and simulated queue-length distribution for � = 1:2 and

� = 0:8 next to the exact asymptotic tail. The curves are

converging, but very slowly, particularly in view of the log

scale on the abcissa.

In order for the algorithm to work, K must be large

enough so that the p

K

; p

K+1

; : : : ; are well approximated

by their asymptotic power-law tail. Obviously if the distri-

bution converges only slowly to its asymptotic tail, which

is the case here for small �, K must be very large as in

Figure 2.

These instabilities do not negate the usefulness of the

method because the heavy-tra�c regimes in which they

occur have unacceptably high loss rates even for very long

bu�ers. Table II illustrates this fact by also giving the

probability that the queue-length exceeds 10

12

customers

p

�

Q>10

12

�

, derived by summing over the asymptotic tail

of the distribution. The probability grows far more quickly

than the number of sampling points, until for � = 1:1, and

� = 0:8 the probability is greater than 0.1. Furthermore the

average waiting time in a such a queue (truncated at 10

12

customers) would result in an unacceptably large delay.
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Fig. 2. An example which shows the queue-length distribution fp

n

g

converging only slowly to its asymptotic behavior. The calcu-

lated results (solid line), the corresponding simulations (points),

and the asymptotic tail (dashed line) are shown. The number of

sampling points in this example K + 1 = 131;072.

Furthermore it is worth noting that the computation

times in Table II (measured in seconds) are still orders of

magnitude less than the time required by the simulations

which, although written in C (rather than MATLAB) still

took of the order of hours to complete.

The instability is in fact instructive because it illustrates

well the limitations of both simulation and asymptotic re-

sults. Neither method provides the insight that the distri-

bution may converge very slowly: asymptotic results are

intrinsically unsuitable for such a deduction unless they in-

clude some idea of their rate of convergence, whilst sim-

ulation of the tail behavior is inherently untrustworthy

due to the di�culty of performing such simulations cor-

rectly. Only a method which allows computation of the

whole queue-length distribution could provide the valuable

insight that the queue converges only slowly to its tail be-

havior.

In illustrating the slow convergence of the tail to its

asymptotic behavior, Figure 2 also demonstrates that mea-



surements of tail behavior, based on real data or simulated,

might be misleading. For instance, a linear least-squared-

error estimate of the slope the simulated data in Figure 2

results in an estimate for � of 1.03, whereas the actual

value is 1.2.

A second problem with the method occurs when the

divergence test stops the algorithm before the error in

^

� has become small enough. Cases where this has hap-

pened include the examples in Table I with � = 0:8 and

� = 1:6; : : : ; 1:9. Figure 3 compares the predictions with

the simulations for the case � = 0:8 and � = 1:9. The

errors in this case are noticeable but not large compared

with typical modeling errors such as uncertainties in pa-

rameter estimates. The reason(s) for this problem are not

fully understood.
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Fig. 3. The calculated values of fp

n

g (solid line) and the corre-

sponding simulations (crosses) for � = 1:9, � = 0:8, B = 4:0,

K + 1 = 8.

C. Example 2

In this example we consider a case with L(t) non-

constant. Speci�cally the service-time distribution is given

by

g(x) =

b

�

e

�b=x

�(�)x

�+1

;

where b > 0 and � 2 (1; 2). This density drops to zero at

the origin and therefore has a maximum at some positive

value, in contrast to the �rst example where the density

was monotonically decreasing. The complementary dis-

tribution function [11, p. 446] is given by 1 � G(x) �

b

�

e

�b=x

=�(�+ 1) � x

��

, the mean by b=(�� 1), and it has

in�nite variance. The Laplace-Stieltjes distribution is given

by [12, 3.471]

G

�

(s) =

2(bs)

�=2

�(�)

K

�

(2

p

bs);

for <s > 0, where K

�

is a Bessel function of an imaginary

argument [12, Equation 8.407]. From Theorem III.1, and

the fact that in this example L(x) = b

�

e

�b=x

=�(�+ 1),

p

n

1

� �

n

n

��

;

�

n

=

(b�)

�

e

�b�=n

(1� �)�(� + 1)

:

Although �

n

is no longer constant, the summation terms

in c

(K)

n

remain the same because e

�b�=(n+m(K+1))

1

� 1, and

therefore the algorithmabove may be used unmodi�ed with

� =

(b�)

�

(1� �)�(�+ 1)

: (9)

Similar numerical results in terms of accuracy, stability,

and the slow approach to tail behaviour for small �, are

obtained for this second example. In addition it was found

that queue-length distribution depends only on � and �,

not upon b. An interesting feature is that when comparing

the queueing distributions across the two examples with

�, � �xed, very similar results are found despite the quali-

tatively di�erent behaviours of the service distributions at

the origin. Two examples of this are given in Figure 4(a)

and (b), where in each B was chosen to match the mean

service-times. Note that the range of the �gures has been

deliberately truncated to highlight the di�erences between

the distributions, which are not easily discernible on a �g-

ure with the same range as Figure 1.

V. Conclusion

A method has been presented for numerically calculat-

ing the entire stationary queue-length distribution for the

M/G/1 queue when the service-time distribution has a reg-

ularly varying tail. Although we gave explicit results for the

in�nite variance case with a slowly varying function which

was simply a constant, the method is essentially the same

in the case of an arbitrary regularly varying tail with ex-

ponent � > 1. The method is not restricted to the M/G/1

queue, but with minor modi�cations could be applied to

any other queueing system for which the PGF of the dis-

tribution is known, for instance the batch arrival M/G/1

queue with power-law batch sizes. Even more generally, if

a PGF is known but can not be inverted because of in�-

nite moments, then it is likely that the approach illustrated

here: �rst the calculation of the asymptotic behaviour of

the PGF via Tauberian theorems, followed by the applica-

tion of Daigle's method, can be followed through.

The method inverts the transform e�ciently for most

parameter values of interest, though instability of the

method in the heavy-queueing regime reduces its e�ective-

ness there. The heavy queueing regime, by which is meant

a region in (�; �) space where the queueing tail has high

mass, is of little interest for these systems in any case as

it implies very high model loss probabilities, translating to

high loss and/or long delays in real systems of interest.

A numerical method which gives the whole distribution

is especially important in the case of power-law tail queues

because

1. simulation of such systems is di�cult and slow,
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Fig. 4. A comparison of the results for the second distribution: calculated (solid line) and simulated (crosses), with parameters shown in

the �gures. The dashed line shows the results for the �rst distribution with the parameters chosen so that � and � are the same for both

distributions.

2. the tail of the queue can contain a signi�cant part of the

mass of the queue-length distribution,

3. whilst the tail may be estimated using asymptotic re-

sults, slow convergence of the distribution to its asymptotic

tail limits the practical applicability of the latter, and

4. understanding the pitfalls of simulations in such a di�-

cult context requires knowledge of the real answer.

The second last point is of particular interest, as it may be

a general feature of such systems which has not previously

been discovered because of the reliance on asymptotic re-

sults or simulations to provide insight into power-law tail

queues.

Another interesting feature noted in this study is that the

head of the service-time distribution, including the point

at which the power-law tail begins to dominate, has very

little e�ect on both the head and tail of the queue-length

distribution. The insensitivity to such short-range e�ects

has been noted before in other contexts, for example in [14].
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