
                  

Queue-Length Distributions for Multi-Priority
Queueing Systems

John N. Daigle

The University of Mississippi

University, MS 38677

wcdaigle@cotton.vislab.olemiss.edu

Matthew Roughan

RMIT University, 110 Victoria St.

Carlton, Vic 3053, AUSTRALIA

matt@serc.rmit.edu.au

Abstract— The bottleneck in many telecommunication systems has of-

ten been modeled by an M/G/1 queueing system with priorities. While the

probability generating function for the occupancy distribution of each traf-

fic classes can be readily obtained, the occupancy distributions have been

obtainable only rarely. However, the occupancy distribution is of great im-

portance, particularly in those cases where the moments are not all finite.

We present a method of obtaining the occupancy distribution from the

PGF and demonstrate its validity by obtaining the occupancy distributions

for a number of cases, including those with regularly varying service time

distributions.

I. INTRODUCTION

The bottleneck in telecommunication systems has often been

modeled by an M/G/1 queueing system having non-preemptive

priority service, where the probability generating function

(PGF) for the occupancies of the various traffic classes can be

obtained using either classical approaches [17] or Fuhrmann-

Cooper decomposition [13]. In principle, moments of the oc-

cupancy distributions may be obtained from the PGFs (PGFs).

However, several recent studies have shown that such properties

as long-range dependence (LRD) [18] and regular variation [6],

[10], [15] describe real properties of real data. And, if the ser-

vice times are regularly varying, the moments of the occupancy

distribution may be infinite. Hence, there is a real need to cal-

culate the occupancy distribution.

In this paper, we obtain the equilibrium marginal occupancy

distribution from PGFs for each class of an M/G/1 system hav-

ing J priority classes and head-of-the-line (HOL) service. The

method, described in Section II, is an extension of the tech-

niques described in [8], [9], and [20], which use discrete Fourier

transform techniques and the asymptotic properties of the tail of

the distribution for the single-class case.

In Section III, the desired PGFs are obtained from the

Laplace-Stieltjes transforms (LSTs) of the waiting time distribu-

tions. Section IV gives the asymptotic distributions of the reg-

ularly varying and standard cases. We see there that if service

times are regularly varying for even one class, the occupancy

distributions for all classes are regularly varying. This result

demonstrates that the HOL priority system cannot isolate the ef-

fects of customers with extreme behavior.

Section V uses the asymptotic results to complete the inver-

sion process, Section VI presents numerical examples, and Sec-

tion VII presents conclusions.

II. COMPUTATION OF THE OCCUPANCY DISTRIBUTION

Our method of inverting the PGF for the single-class case is

now summarized [8]. First the PGF for the occupancy distribu-

tion, Fñj
(·), is evaluated at K+1 points equally spaced around

the unit circle of the complex plane. From the sampled PGF,

the inverse fast Fourier transform (IFFT) coefficients, c
(K)
k for

0 ≤ k ≤ K, are obtained. The resulting set of coefficients,

c
(K)
k for 0 ≤ k ≤ K, forms a probability mass function [8][9];

c
(K)
k ≥ 0 and

∑K
k=0 c

(K)
k = 1. Furthermore,

c
(K)
k = pk +

∞
∑

m=1

pk+m(K+1), (1)

where pk is the occupancy probability–that is, c
(K)
k is an approx-

imation to pk corrupted by alias terms.

The computational algorithm includes choice of a suitableK,

computation of the c
(K)
k , removal of aliases from c

(K)
k to obtain

pk for 0 ≤ k ≤ K, and obtaining the pk for k > K. A summary

follows:

1. Initialize: choose initial K, and evaluate the pñj
(0) =

Fñj
(0).

2. While error E decreases do

(a) Evaluate the PGFFñj
(·), at points zk = e

−i2πk
K+1 for 0 ≤

k ≤ K.
(b) Determine c

(K)
o = 1

K+1

∑K
k=0 Fñj

(zk).
(c) Determine the error measurement E.

(d) Increase K.

3. Evaluate c
(K)
n using the IFFT of the PGF.

4. Evaluate the alias terms
∑∞

m=1 pk+m(K+1).

5. Recover the pn, 0 < n ≤ K by removing the aliased terms

from c
(K)
n using (1).

6. Compute any number of pn, n > K.

The following sections present the pieces of the algorithm for

the two possible cases: standard and regularly varying service

times. We note in passing that Abate and Whitt [21],[22] present

an altenative computational approach.

III. THE PGF OF THE OCCUPANCY DISTRIBUTION

Before proceeding, we review notation. Random variables

are indicated using a tilde–service times are denoted by x̃, the



              

lengths of busy periods are denoted by ỹ, nonnegative integer-

valued random variables are denoted by ñ, and subscripts are

used to denote specific service times, busy periods, and num-

bers. The distribution of a random variable, say x̃, is denoted

by Fx̃(x) and its LST is denoted by F ∗
x̃ (·), the default argument

being s. The PGF for the distribution of a nonnegative integer-

valued random variable, say ñ, is denoted by Fñ(·), the default

argument being z.

Class j has priority over class i if j < i. With respect to class

j, the group of messages having higher priority are referred to

as class H , while those messages having lower priority are re-

ferred to as class L. We define XL = {j + 1, j + 2, . . . , J} and

XH = {1, 2, . . . , j − 1}. The message arrival rates for classes

H and L and the corresponding traffic intensities, densities, dis-

tributions and LSTs are then defined, with C ∈ {L,H}, by

λC =
∑

i∈XC

λi,

ρC = λxE[x̃C ] =
∑

i∈XC

λiE[x̃i],

Fx̃C
(x) =

1

λC

∑

i∈XC

λiFx̃i
(x),

F ∗
x̃C

(s) =
1

λH

∑

i∈XC

λiF
∗
x̃i

(s) (2)

where it is understood that if XC = φ, then λC , E[x̃C ], ρC ,

Fx̃C
(x), and F ∗

x̃C
(s) are all interpreted to be identically zero.

Kleinrock [17, (3.32)] (and many others) gives the LST of the

distribution of the waiting time of an arbitrary class j message

as

F ∗
w̃j

(s) =
(1 − ρ)G∗

H(s) + λL

[

1 − F ∗
x̃L

(

G∗
H(s)

)]

s− λj + λjF ∗
x̃j

(

G∗
H(s)

) , (3)

where

G∗
H(s) = s + λH − λHF ∗

ỹHH
(s). (4)

Consider the busy period ỹHH . A busy period starts when a

message enters the system during an idle period and ends when

there are no more messages to serve. A sub-busy period is a type

of restricted busy period. In particular, ỹij denotes the length

of a sub-busy period of class j messages in which the service

time of the first message of the period is drawn from Fx̃i
, but

the remainder of the dynamics of the busy period are affected

by class j traffic only. Then, the random variable ỹHH denotes

the length of a sub-busy period of class H messages started by a

class H message, which is statistically identical to an ordinary

busy period in an M/G/1 system that has class H messages only.

That is, F ∗
ỹHH

(s) satisfies the well-known functional equation

F ∗
ỹHH

(s) = F ∗
x̃H

(s + λH − λHF ∗
ỹHH

(s)), (5)

which, except for limited cases, cannot be solved in closed form.

An additional useful result is as follows: let F ∗
x̃ (s) denote the

LST of the distribution of a random period of time, x̃. Suppose

observers of this period occur according to an independent Pois-

son process having rate λ and that the number of such observers

is denoted by ñ. Then, the PGF of ñ is given by

Fñ(z) = F ∗
x̃ (λ[1 − z]). (6)

Note that with first-in-first-out (FIFO) queueing, the class j
messages left in the queue at the time an arbitrary class j mes-

sage enters service are precisely those who arrive while that

same message is waiting. Also, the arrival process during that

message’s waiting and service periods is independent of the

length of those periods. Further, the number of arrivals that oc-

cur during the waiting and service periods are independent. The

PGF of the number of class j messages left by an arbitrary de-

parting class j message is then

Fñj
(z) = F ∗

w̃j
(λj [1 − z])F ∗

x̃j
(λj [1 − z]) (7)

where F ∗
w̃j

(s) is defined in (3).

In our computational algorithm, we need to evaluate Fñj
(z)

and, therefore, F ∗
ỹHH

(λj [1 − zk]), at points zk = e−j 2πk
K+1 in

the complex plane, but F ∗
ỹHH

(λj [1 − z]) is not given in closed

form. The following proposition, upon which a fast-converging

iterative procedure is based, is proved in Appendix A:

Proposition A: For a particular value of z on the unit cir-

cle of the complex plane, the value ν = F ∗
ỹHH

(λj [1 −
z]) can always be determined from the expression νi =
F ∗
x̃H

(λj [1− z] +λH [1− νi−1]) by iteration on i, starting

with ν0 = z.

IV. ASYMPTOTIC TAIL PROBABILITIES

We seek to remove the alias terms of (1) from c
(K)
k . The alias

terms, pk+m(K+1), can be obtained from the asymptotic behav-

ior of the occupancy distribution for sufficiently large K, which

we now examine for the standard and regularly varying cases.

A. Asymptotics: standard service times

If all moments of the service-time distributions are finite,

then, asymptotically, the probability masses of the occupancy

distribution decrease geometrically. The reason for this behav-

ior is readily explained, as for the standard M/G/1 case, through

the Laurent series expansion of Fñj
(z) [9].

Since the tail probability masses are geometrically decreas-

ing, for sufficiently large K, there exists a constant, r, such that

pn ≃ pKr(n−K) for n > K. (8)

Section V specifies an algorithm for computing r. Once r is

known, (8) can be used to remove the aliases from the c
(K)
k .

B. Asymptotics: regularly-varying service times

Next, we derive the asymptotic behavior of the occupancy

distribution for the M/G/1 queue with priority when one of the

classes of customers has regularly varying service times. The

development parallels that of the ordinary M/G/1 system[20].



            

B.1 Regular variation

Intuitively, regularly varying service times can be described

as power-law distributions, e.g. 1 − Fx̃(x) ∼ x−α. The

Pareto distribution is a typical example. Several recent studies

have shown that properties such as LRD [18] and regular vari-

ation [6], [10], [15] describe real properties of real data, espe-

cially packet traffic.

It has been shown that the tail of the occupancy distribution

for the M/G/1 queue with power-law service times is the re-

sult of rare arrivals [1] who each demand a single large chunk

of work, choking the system’s single server. An arriving cus-

tomer sees a workload dominated by the residual of this high-

demand customer. The residual of a power-law lifetime is also

power-law with an exponent one lower than the original distri-

bution. Hence, the asymptotic workload distribution takes the

form given in [2] Corollary 8.10.4, (from [4])

1 − Fw̃(x) ∼
λ

(α− 1)(1 − ρ)
L(x)x−α+1 (9)

and the asymptotic occupancy distribution takes the form

pñ(n) ∼
L(n)λα

1 − ρ
n−α. (10)

Thus, if the service times are regularly varying then the occu-

pancy distribution is also regularly varying with one less finite

moment than the service-time distribution.

Since the HOL system has no pre-emption, a class j customer

may be blocked by customers of any class. Hence, if even one

class has regularly varying service times, we might expect that

the tails of the queue lengths for each class would be dominated

by the class having regular variation. This expectation is correct

and unfortunate, as one of the obvious intentions of dividing the

customers into classes is isolation of the effects of one class’s

“pathological” behavior from the other classes.

The following subsections describe the asymptotic behavior

with at least one class having regularly varying service times.

For simplicity, we concentrate on the case α ∈ (1, 2), the most

realistic physical case, but note that the results can be general-

ized.

Before proceeding, we define some terms. We say h(t) is

asymptotically equivalence to g(t) if limt→t0 |h(t)|/|g(t)| = 1,

and we write h(t)
t0∼ g(t). We use t−0 as the limit as t0 is ap-

proached from below. If limt→t0 L(xt)/L(t) = 1 ∀ x > 0,

then L(t) is slowly varying at t0, and h(t) is said to be regularly

varying at ∞ with exponent p, if

h(t)
∞
∼ L(t)tp, (11)

where L(t) is slowly varying at ∞. A function g(t) is regularly

varying at zero if g(t) = h(1/t) with h(t) regularly varying at

∞. Where t0 is obvious (.i.e., 0 or ∞), we shall omit it.

B.2 The asymptotics of the workload distribution

We derive here the asymptotics of the workload distribution

for the case where at least one class has regularly varying service

times. We define the set of classes containing regular variation

by R = {j = 1, . . . , J |1 − Fx̃j
(x) ∼ Lj(x)x−αj}, where

Lj(x) is slowly varying. For all j ∈ Rc, the complement of R,

we define Lj(x) = 0. We consider only the case where the αj

are in (1, 2), but in fact only the min(αj) need be in the interval.

There are three points through which power-law tails may en-

ter the LST of the workload for customer type j (given in (3) and

(4)), and therefore influence class j.

1. Lower priority customers, through the term F ∗
x̃L

(·).
2. Same priority customers, through the term F ∗

x̃j
(·).

3. Higher priority traffic, through the term G∗
H(·) via F ∗

x̃H
(·).

The tails of the distributions Fx̃H
(x) and Fx̃L

(x) are dominated

by the Fk(x) which is regularly varying, where k ∈ Hor L. If

more than one Fk(x) is regularly varying, then the one with the

smallest exponent will eventually dominate.

For example, suppose one or more of the classes of priority

lower than j is regularly varying, then F ∗
L(x) is regularly vary-

ing with exponent αL = min(αk|k ∈ L), and slowly varying

function defined by λLLx̃L
(x) =

∑

i:αi=αL
λiLi(x), i.e.

1 − Fx̃L
(x) ∼ Lx̃L

(x)x−αL , (12)

with Lx̃L
(x) =

1

λL

∑

i:αi=αk

λiLi(x). (13)

A similar result (with L replaced by H) also holds for the higher

priority classes.

Note that when αL ∈ (1, 2) it has been shown [2], [3] that if

Fx̃L
(x) obeys (12) then

F ∗
x̃L

(s) ∼ 1 −
s

µL
+

Lx̃L
(1/s)Γ(2 − αL)

αL − 1
s−αL , (14)

where 1/µL = E[x̃L]. Again, we may replace the indices L in

the above relationship by j or H . However, F ∗
x̃H

(·) appears in

the PGF of interest throughG∗
H(s). Unlike in Section II, numer-

ical evaluation of F ∗
ỹHH

(·) is not sufficient; we require a closed

form. However, from de Meyer and Teugals ([2], p.388), we

have the following result for the M/G/1 busy period:

Theorem 1 (de Meyer and Teugals) For a stable M/G/1 queue

of traffic intensity ρ, regularly varying functionL(x) andα ≥ 1,

the following are equivalent:

(i) 1 − Fx̃(x)
x→∞
∼ L(x)x−α,

(ii) 1 − Fỹ(x)
x→∞
∼ (1 − ρ)−α−1L(x)x−α,

where Fx̃(x) is the distribution function of the service times,

and Fỹ(x) is the distribution function of the busy-period.

Furthermore, Little’s result and elementary renewal theory

tell us that for a stable queueing system E[ỹ] = E[x̃]/(1 − ρ).
Hence for αH ∈ (1, 2), the asymptotic form of the LST of the

busy period of class H customers is

F ∗
ỹHH

(s) ∼ 1 − s
µH(1−ρH) + Γ(2−αH)

(αH−1)(1−ρH)

Lx̃H

(

1
s

)

(

s
1−ρH

)αH

. (15)



              

Combining (12)-(15), we find the following:

Proposition B: Given the HOL priority system described

above, ρH + ρj < 1, αR = minj αj ∈ (1, 2), R =
{j|αj = αR}, and λRLR(x) =

∑

i∈R λiLx̃i
(x), the

LST of the workload distribution obeys

F ∗
w̃j

(s) ∼ 1 − Γ(2−αR)
(αR−1)(1−ρj−ρH)λR

LR

(

1
s

)

(

s
1−ρH

)αR−1

. (16)

The above proposition, which is proved in Appendix B, can

be transformed to give the following asymptotic workload

1 − Fw̃j
(x) ∼

(1 − ρH)−αR+1

(αR − 1)(1 − ρj − ρH)
λRLR(x)x−αR+1.

(17)

by using the following theorem from [12, pp.445-6]:

Theorem 2 (Tauberian) If 0 < p < ∞, and a positive mea-

sure concentrated on (0,∞) defined by the nondecreasing func-

tion H(t) has LST H̃(s), then

H(t)
∞
∼

L(t)

Γ(p + 1)
tp ⇔ H̃(s)

0
∼ L

(

1

s

)

s−p,

where L(t) is a slowly varying function at infinity.

Compare (17) to (9). The obvious similarity results from the

same cause–the queue is “clogged” by a single rare customer.

B.3 Asymptotic behavior of the PGF

As in Section 2, we use (7) to derive the PGF for the number

of customers. We construct F ∗
w̃j

(s)F ∗
x̃j

(s), noting that F ∗
x̃j

(s)
has terms with powers of s ≥ 1 only, and, except for a constant,

makes no contribution to the regularly varying terms. We then

substitute s = λj(1 − z), note the slowly varying LR, and get

Fñj
(z) ∼ 1 − Γ(2−αR)

(αR−1)(1−ρj−ρH)

(

λj

1−ρH

)αR−1

λR

LR

(

1
1−z

)

(1 − z)αR−1, (18)

B.4 Asymptotic occupancy distribution

We now transform (18) to obtain the asymptotic occupancy

behavior using the following Tauberian Theorem [12, p. 447].

Theorem 3: If {hn}, n = 0, 1, 2 . . . is an ultimately mono-

tone positive sequence with generating functionH∗(z) that con-

verges for 0 ≤ z < 1, and 0 ≤ p < ∞, then

hn
∞
∼

L(n)

Γ(p)
np−1 ⇔ H∗(z)

1−

∼ L

(

1

1 − z

)

1

(1−z)p
,

where L is slowly varying at infinity.

Since αR ∈ (1, 2), we may rearrange (18) so that p > 0.

Thus,

1 −Fñj
(z)

1 − z
∼ Γ(2−αR)

(αR−1)(1−ρj−ρH)

(

λj

1−ρH

)αR−1

λRLR

(

1
1−z

)

(1 − z)αR−2. (19)

The left-hand side of (19) is simply the LST of 1 − Pñj
(n) =

∑∞

i=n+1 pñj
(i). Applying the Tauberian theorem, we get

1 − Pñj
(n) ∼

λRLR (n)

(αR − 1)(1 − ρj − ρH)

(

λj

(1 − ρH)n

)αR−1

(20)

The following lemma, proved in [20] is then used to derive the

asymptotic form of the distribution

Lemma 1: Suppose that Ūn has ultimately monotone differ-

ence un = Ūn−1 − Ūn, for n > 0. If Ūn ∼ L(n)np with p < 0

then un ∼ −p Ūn

n .

The result of applying the lemma is the asymptotic form of the

occupancy distribution needed to remove the aliases from the

c
(K)
k :

pñj
(n) ∼

λRLR (n)

1 − ρ + ρL

(

λj

1 − ρH

)αR−1

n−αR . (21)

V. REMOVAL OF ALIASES

We now describe algorithms to compute complete occupancy

distributions for the standard and the regularly varying cases, re-

spectively.

An algorithm for using IFFT techniques to obtain the occu-

pancy probabilities for the M/G/1 system is fully described in

Daigle [8], and the major results from that reference are repeated

here. For a given K, compute c
(K)
k . As noted in (1), pk obeys

pk = c
(K)
k −

∞
∑

m=1

pk+m(K+1) (22)

for 0 ≤ k ≤ K. Thus, we must estimate the alias terms

pk+m(K+1) and removing them from c
(K)
k to get pk.

A. Standard case

In the standard case, the occupancy distribution decays geo-

metrically with some as yet unspecified decay constant r. The

coefficients c
(K)
k may be used to compute the decay constant

for the geometrically decreasing tail probabilities. To this end

p0 = Fñj
(0) is evaluated. Next, one computes the geometric

decay rate for the tail probabilities, r, from the following for-

mula:

r0 ≈
(

c
(K)
0 − p0

)

/c
(K)
K . (23)

The value of r may also be estimated using the c
(K)
n by comput-

ing r
(K)
n = c

(K)
n /c

(K)
n−1 for large n, e.g. n > 3K/4. By compar-

ing the differenceEr = max3K/4<n≤K

{

abs
(

r0 − r
(K)
n

)

/r0

}

,

we may assess the accuracy of r0. The accuracy of r0 as an esti-

mate for r depends on the correct choice of K and so we deter-

mine the best value of K by increasing it iteratively and com-

paring the new estimated decay constant with that obtained from

the smaller value of K. The best value of K varies from prob-

lem to problem, generally being quite small for standard prob-

lems. The method of comparing results and choosing the appro-

priate value of K is discussed further in [8].



                 

Once K and r0 are found, the sum term of (22) may be cal-

culated and removed from the c
(K)
k to give pk for 0 ≤ k ≤ K.1

Specifically,

∞
∑

m=1

pk+m(K+1) =
(

c
(K)
0 − p0

)

rn0 . (24)

Finally, one computes any desired number of remaining proba-

bilities according to

pn = pKr0
(n−K) for n > K. (25)

B. Regularly varying case

This case uses exactly the principles described in the previous

section. But, in this case we can predict the asymptotic behavior

exactly and therefore need not measure a decay constant. Since

the algorithm is described in detail in [20], we describe it here

only briefly.

For simplicity, consider LR(t) = LR. Then, from (21),

pñj
(n) ∼ Bn−αR , whereB =

λRLR

1 − ρ + ρL

(

λj

1 − ρH

)αR−1

.

(26)

Recall that c
(K)
n consist of pn plus tail terms. For K large

enough, pK+1, pK+2, . . ., are well approximated by the power-

law form, and the sum of aliased terms may be evaluated. Thus

from (26) we get

∞
∑

m=1

pk+m(K+1)
K→∞
∼ B(K + 1)−αRζ

(

αR, n+K+1
K+1

)

,(27)

where ζ(α, q) is a generalized Riemann zeta-function [14,

Equation 9.521]. When α is real and greater than 1 the function

is well approximated [19] by the lower bound

ζ(α, q) ≈

N
∑

n=0

1

(q + n)α
+

(q + N + 1)1−α

α− 1
, (28)

where the positive error term ǫ(N) satisfies ǫ(N) < (q+N)−α.

We have an analytic expression for the value ofB, but it is useful

to directly estimate it from Equations (1) and (27) with n = 0.

Using p0 = Fñj
(0), the estimate is

B̂(K) =
(c

(K)
0 − p0)(K + 1)αR

∑N
m=1 m

−αR + (N+1)1−αR

αR−1

. (29)

The discrepancy EB = abs
(

B − B̂(K)
)

/B, can be used to

choose an appropriate value of K as described above, and in

more detail in [20].

More complicated cases may be treated at the cost of replac-

ing the Riemann zeta-function used above by a non-standard

function expressed as an infinite sum, whose estimation may be

slightly more costly and whose error more difficult to control.

However, in [20] it was shown that, in some cases, the additional

difficulty does not prevent effective computation.

1We note that we start with a large K and store terms and use other tricks to
avoid redundant computations.

VI. NUMERICAL EXAMPLES

In [8] and [20], the application of the algorithm to the M/G/1

queue was demonstrated for the standard and regularly vary-

ing cases, respectively. A number of points have been demon-

strated, and we will not seek to duplicate the results here, as the

algorithm is identical in all essential details. For the standard

case,

• The algorithm could provide accurate results with relatively

little computation.

• The algorithm could be used to choose the best value of K.

And specifically for the regularly varying case,

• The algorithm is stable, except in the so called “heavy queue-

ing regime” which is of little interest in practice.

• The algorithm has important application to cases where the

occupancy distribution only slowly converges to the asymptotic

result.

• The algorithm can be applied to cases with non-trivial slowly

varying functions, L(x).
• There is a marked insensitivity in the occupancy distribution

to the form of the slowly-varying function L(x).
Rather than replicate these results for the priority queue we

simply present examples that illustrate the accuracy of this

method.

We present first an example with two customer classes. We

examine, in Figure 1, the four possible cases of this system:

namely where both classes, only class 1, only class 2, or neither

of the classes contain customers with regularly varying service

times. The figure shows the computed occupancy distribution

of both classes for these four cases (solid lines), and verifies the

results with simulation (shown as crosses).

It should be noted that simulation of queues with regularly

varying properties must be approached with great care [7]), and

that such simulations converge very slowly, for instance see [11]

and [16]. Typically the simulation results below are based on 10

million departures, and required about 1 hour to converge suffi-

ciently, whereas the algorithm described in this paper took less

than 10 seconds.

We have used the version of the Pareto distribution given by

1 − Fx̃j
(x) =

(

βj

x + βj

)αj

,

to provide a simply regularly varying distribution, and the distri-

butions for classes which are not regularly varying is an Erlang-

N distribution given by density

px̃j
(x) =

(x/µj)
N−1 exp(−x/µj)

µj(N − 1)!
.

Figure 2 shows two examples with more than two classes. Pa-

rameters are noted in the figures, where service times in these

figures are either Pareto or exponential as indicated by the ap-

propriate parameters, and the times taken for simulation and cal-

culation are shown in the captions. The simulaton and calcu-

lated results show excellent agreement.
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Non−preemptive priority simulation with 2 classes

 10000 iterations x 1000 simulations

c 1, ρ = 0.20, λ = 0.200, N =  3, µ =  3.00
c 2, ρ = 0.40, λ = 0.400, N =  3, µ =  3.00
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Non−preemptive priority simulation with 2 classes

 10000 iterations x 1000 simulations

c 1, ρ = 0.20, λ = 0.200, α = 1.50, β =   0.5
c 2, ρ = 0.40, λ = 0.400, N =  3, µ =  3.00         
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Non−preemptive priority simulation with 2 classes

 10000 iterations x 1000 simulations

c 1, ρ = 0.20, λ = 0.200, N =  3, µ =  3.00         
c 2, ρ = 0.40, λ = 0.400, α = 1.50, β =   0.5
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Non−preemptive priority simulation with 2 classes

 10000 iterations x 1000 simulations

c 1, ρ = 0.20, λ = 0.200, α = 1.50, β =   0.5
c 2, ρ = 0.40, λ = 0.400, α = 1.50, β =   0.5

Fig. 1. An example showing the application of the algorithm to the case with a

regularly varying tail. The parameters of the system (ρj , αj , βj , µj andλj )

as well as the simulation parameters (10,000 simulated departures in each

of 1000 independent simulations) are indicated in the figure.
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Non−preemptive priority simulation with 3 classes

 100000 iterations x 1000 simulations

class  1, ρ = 0.10, λ =  0.100, µ =  1.00                 
class  2, ρ = 0.40, λ =  0.200, µ =  0.50                 
class  3, ρ = 0.10, λ =  0.030, α = 1.30, β =   1.0

(a) A second example with 3 classes. Computa-

tions took∼ 12 seconds while the simulations took
nearly 9 hours.
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Non−preemptive priority simulation with 4 classes

 100000 iterations x 1000 simulations

c
 
1, ρ = 0.30, λ =  0.300, µ =  1.00                 

c
 
2, ρ = 0.30, λ =  0.300, α = 1.70, β =   0.7

c
 
3, ρ = 0.10, λ =  0.050, µ =  0.50                 

c
 
4, ρ = 0.10, λ =  0.100, α = 1.70, β =   0.7

(b) A third example with 4 classes. Computations

took ∼ 36 seconds while the simulations took
nearly 10 hours.

Fig. 2. Examples with three and four class systems.

VII. CONCLUSION

This paper has presented two main results: an algorithm for

calculating the complete occupancy distribution of a HOL pri-

ority queue and the asymptotic occupancy distribution of the

queue when the service times are regularly varying. Not sur-

prisingly, this asymptotic result very closely parallels that for

the standard M/G/1 queue. A consequence is that if any prior-

ity class contains customers with regularly varying service times

then all class feel the effect; their occupancy distributions are all

regularly varying!

The algorithm is in essence a method for inverting a PGF.

Note that the algorithm, as demonstrated in a number of numer-

ical examples, does not require a closed form expression for the

PGF, but rather an iterative procedure is used to evaluate the

PGF.

The methods presented here have been applied with suc-

cess to various systems, including one having eight priority

classes where the service times were represented by discrete



                 

random variables whose distributions were obtained from mea-

sured data. Thus there is good reason to think that this proce-

dure might be usable in more general settings, for instance other

queueing problems, or even problems outside of queueing.
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APPENDIX

I. PROOF OF PROPOSITION A

This appendix provides a proof of Proposition A which is re-

stated below. A minimum of notation and ideas are repeated in

this appendix to facilitate continuity.

Proposition A: For a particular value of z on the unit cir-

cle of the complex plane, the value ν = F ∗
ỹHH

(λj [1 −
z]) can always be determined from the expression νi =
F ∗
x̃H

(λj [1− z] +λH [1− νi−1]) by iteration on i, starting

with ν0 = z.

Proof: First, note that the right hand side of the expression νi =
F ∗
x̃H

(λj [1 − z] + λH [1 − νi−1]) is the joint probability gener-

ating function for the number of class j and class H customers

who arrive from independent Poisson processes during a period

of time x̃H . Therefore, if |z| ≤ 1 and |νi−1| ≤ 1, then |νi| ≤ 1.

The basis of the proof of Proposition A is Banach’s fixed

point theorem, which is as follows. If for any two points in

the domain of T (ν), ν0 and ν1, there exists some positive real-

valued α < 1, such that |T (ν0) − T (ν1)| ≤ α|ν0 − ν1|, then,

T (ν) is a contraction mapping of ν into itself, ν = T (ν) is a

unique fixed point, and ν = limi→∞ νi, where νi = T (νi−1).
With regard to the problem at hand, define

T (νi) = F ∗
x̃HH (λj [1 − z] + λH [1 − νi])

=
∫ ∞

0
e−(λj [1−z]+λH [1−νi])xdFx̃H

(x).

Define ai = λH [1 − νi]. Then, Re[ai] ≥ 0 and

T (ν0)−T (ν1) =

∫ ∞

0

e−(λj [1−z])x
[

e−a0x − e−a1x
]

dFx̃H
(x).

Assume first that Re[a0] ≤ Re[a1], and define b = a1 − a0

so that Re[b] ≥ 0. Then

T (ν0)−T (ν1) =

∫ ∞

0

e−(λj [1−z])xe−a0x
[

1 − e−bx
]

dFx̃H
(x).

Since, for all |ν| ≤ 1, |e−a0x| ≤ 1, |e−(λj [1−z])x| ≤ 1, it

follows that

|T (ν0) − T (ν1)| ≤

∫ ∞

0

∣

∣1 − e−bx
∣

∣ dFx̃H
. (A.1)

Since |1−e−bx| =
[

(1 − e−bx)(1 − e−bx)∗ + 2e−bix − 2e−bix
]

1
2 ,

we find after some algebra that

|1−e−bx| =

[

(

1 − e−brx
)2

+ 4e−brx sin2

(

bix

2

)]
1
2

, (A.2)

where br and bi denote the real and imaginary parts of b. Now,

since br ≥ 0 and x ≥ 0, 1 − e−brx ≤ brx, and e−brx ≤ 1.

Also, for any θ, | sin θ| ≤ |θ|. It then follows from (A.2) that

∣

∣1 − e−bx
∣

∣ ≤
[

(brx)2 + (bix)2
]

1
2 = |b|x. (A.3)



              

Using (A.3) in (A.1) then results in

|T (ν0) − T (ν1)| ≤

∫ ∞

0

|b|xdFx̃H
(x) = |b| E[x̃H ]. (A.4)

But from (A.3), |b| = |a0 − a1| = λH |ν0 − ν1|, so

|T (ν0) − T (ν1)| ≤ ρH |ν0 − ν1| (A.5)

Since ρH < 1 is required for stability, (A.5) implies that for

|ν| ≤ 1 and |z| ≤ 1, T (ν) is a contraction. If we now assume

Re[a0] > Re[a1] and define b = a0 − a1, the steps of the proof

are identical, and the proof is complete.

II. PROOF OF PROPOSITION B

This appendix provides a proof of Proposition B which is re-

stated below.

Proposition B: Given the HOL priority system described above,

ρH + ρj < 1, αR = minj=1,...,J αj ∈ (1, 2), R = {j =
1, . . . , J |αj = αR}, and λRLR =

∑

i∈R λiLx̃i
, then

1 − F ∗
w̃j

(s)

∼
Γ(2 − αR)

(αR − 1)(1 − ρj − ρH)
λRLR

(

1

s

) (

s

1 − ρH

)αR−1

.

Proof: The LST F ∗
w̃j

(s) is given in Equation (2). We start by

calculating G∗
H(s) = s + λH

[

1 − F ∗
yHH

(s)
]

which features

prominently in (2). We use the asymptotic form of F ∗
yHH

(s)
given in (15) and the fact that ρH = λH/µH to get

G∗
H(s) =

1

1 − ρH
s

−
Γ(2 − αH)

(αH − 1)(1 − ρH)
λHLx̃H

(

1

s

) (

s

1 − ρH

)αH

+ O
(

s2
)

. (B.1)

Now the asymptotic form of F ∗
x̃L

(s) is given in (14). Substitut-

ing (B.1) we get

λL

[

1 − F ∗
x̃L

(G∗
H(s))

]

=
ρL

1 − ρH
s

− ρL
Γ(2 − αH)

(αH − 1)(1 − ρH)
λHLx̃H

(

1

s

) (

s

1 − ρH

)αH

−
Γ(2 − αL)

αL − 1
λLLx̃L

(

1

s

) (

s

1 − ρH

)αL

+ O
(

s2
)

,(B.2)

which, leads to the numerator of (2) being given by

(1 − ρ)G∗
H(s) + λL

[

1 − F ∗
x̃L

(G∗
H(s))

]

=
1 − ρ + ρL

1 − ρH
s

−
Γ(2 − αH)(1 − ρ + ρL)

(αH − 1)(1 − ρH)
λHLx̃H

(

1

s

) (

s

1 − ρH

)αH

−
Γ(2 − αL)

αL − 1
λLLx̃L

(

1

s

) (

s

1 − ρH

)αL

+ O
(

s2
)

. (B.3)

We obtain the denominator of (2) by noting that the asymptotic

form of F ∗
x̃j

(s) is the same as that of F ∗
x̃L

(s) with L replaced by

j throughout. Hence, the denominator of (2) is given by

s− λj

[

1 − F ∗
x̃j

(G∗(s))
]

=
1 − ρH − ρj

1 − ρH
s

+ ρj
Γ(2 − αH)

(αH − 1)(1 − ρH)
λHLx̃H

(

1

s

) (

s

1 − ρH

)αH

+
Γ(2 − αj)

αj − 1
λjLx̃j

(

1

s

) (

s

1 − ρH

)αj

+ O
(

s2
)

. (B.4)

Now, 1 − ρ + ρL = 1 − ρj − ρH so we can divide both the

numerator and denominator of (2) by
1−ρj−ρH

1−ρH
s. We then ex-

ploit the fact that 1/(1 + s) ∼ 1− s and group terms of O(s) or

greater to get

1 − F ∗
w̃j

(s)

=
Γ(2 − αH)

(αH − 1)(1 − ρj − ρH)
λHLx̃H

(

1

s

) (

s

1 − ρH

)αH−1

+
Γ(2 − αL)

(αL − 1)(1 − ρj − ρH)
λLLx̃L

(

1

s

) (

s

1 − ρH

)αL−1

+
Γ(2 − αj)

(αj − 1)(1 − ρj − ρH)
λjLx̃j

(

1

s

) (

s

1 − ρH

)αj−1

+O(s) . (B.5)

Now, the above result has three different exponents αL, αj and

αH . If these are all different then the minimum will dominate

and therefore only one of the regularly varying terms above will

matter, but if two of the exponents above are equal then we must

include two of the terms above. However, this does not neces-

sarily complicate matters, for the following reason. From the

definition

λHLx̃H
(x) =

∑

i∈H

λiLx̃i
(x),

λLLx̃L
(x) =

∑

i∈L

λiLx̃i
(x),

where Lx̃i
is assumed to be identically zero unless class i cus-

tomers have regularly varying service times. We define R to be

the set of the classes i of traffic with αi equal to the dominant

exponent αR = minj=1,...,J αj . The terms in (B.5) may be ex-

panded as sums, and then the terms with dominant values of α
grouped together, and the rest discarded, to give

1 − F ∗
w̃j

(s)

∼
Γ(2 − αR)

(αR − 1)(1 − ρj − ρH)
λRLR

(

1

s

) (

s

1 − ρH

)αR−1

which is the required result.


