Malachite: Firewall Policy Comparison

Dinesha Ranathunga^{*}, Matthew Roughan^{*}, Phil Kernick^{**}, Nick Falkner^{*},

* University of Adelaide ** CQR Consulting

1/11

- Current networks depend on *firewalls* to mitigate cyber attacks
 - especially SCADA networks
- Supervisory Control And Data Acquisition networks
 - core to a nation's critical infrastructure *e.g.*, power, water, wastewater
 - designed for robustness, real-time performance
 - NOT secure

- Industry standards exist (*eg.*, Guide to Industrial Control Systems Security by NIST, ANSI/ISA-62443-1-1) for
 - firewall architectures
 - service-specific policies
 - network segregation
- NO standards for checking compliance
- Serious firewall misconfigurations are frequent
 - Wool studied 74 corporate firewalls, >80% had serious errors
 - we studied 9 real SCADA firewalls, 100% had serious errors

ANSI/ISA Zone-Conduit model [ANSI/ISA-62443-1-1]:

- Zone groups systems with similar security requirements
 single zone policy
- Conduit secure communication path between zones
 - firewalls are part of the conduits
- Allows to construct network-wide high-level security policy

Need automated firewall-policy comparison

Multiple benefits

- check best-practice compliance
- change-impact analysis
- evaluate multiple policy-designs
- Malachite: mathematical-framework based comparisons

イロト 不得下 イヨト イヨト 二日

5/11

- precise and unambiguous
- rule-order independent

Comparison of network policy: a simple example

Comparison of network policy: a simple example

• Is \mathcal{P} equally or more restrictive than \mathcal{RP} ?

Workaround: use Line Digraphs (LDs)

LD isomorphism ⇒ potential original-graph isomorphism
 Harary and Norman 1960

• Compliant if *included* or *incorporated* by best-practice policy

Definition (Partial Incorporation)

If $\mathcal{P} = (G_1, P_1)$, $\mathcal{RP} = (G_2, P_2)$, policy \mathcal{RP} partially incorporates \mathcal{P} iff G_1 is a subgraph of G_2 and $\forall e \in G_1$, $p_1^e \subset p_2^e$. We denote this by $\mathcal{P} \subset \mathcal{RP}(G_1)$.

Is $\mathcal{P} \subset \mathcal{RP}(G1)$? where $\mathcal{P} = (G_1, P_1)$, $\mathcal{RP} = (G_2, P_2)$

1. Derive semantic partitions SP₁, SP₂

- partitions policy into equivalence classes
- e.g., $SP1 = \{e_1, e_2\}; e_1 = \{p_{12}\}, e_2 = \{p_{21}\}$
- 2. Check $SP_1 \subset SP_2$
- 3. Find all feasible partition-mappings
- 4. Construct adjacency matrices A_1 , A_2 of LDs per mapping
- 5. If $A_1 = A_2$ then $\mathcal{P} \subset \mathcal{RP}(G1)$

SUC	Firewalls	Zones	Conduit-	Equivalence	Maximum	\mathcal{RP}
			policies	classes	class	Compliant?
					size	
1	3	7	22	12	7	×
2	6	21	162	87	8	×
3	4	10	34	15	8	×
4	3	9	32	16	5	×

• large equivalence class sizes \implies an inefficient network.

- Many obstacles to firewall-policy comparison
- Malachite addresses these challenges
 - network and vendor independent policy semantics
 - derives canonical policies for comparison
- Limitations
 - best practice may not always be correct
 - inclusion/incorporation may not always indicate compliance
 - some human intervention still required

- E. S. Al-Shaer and H. H. Hamed. "Discovery of policy anomalies in distributed firewalls". In: Annual Joint Conference of the IEEE CCS. INFOCOM. 2004, pp. 2605–2616.
- [2] ANSI/ISA-62443-1-1. Security for Industrial Automation and Control Systems Part 1-1: Terminology, Concepts, and Models. 2007.
- [3] L. Babai. "Graph isomorphism in quasipolynomial time". In: arXiv preprint arXiv:1512.03547 (2015).
- [4] E. Byres, J. Karsch, and J. Carter. "NISCC good practice guide on firewall deployment for SCADA and process control networks". In: NISCC (2005).
- K. D. Gourley and D. M. Green. "Polygon-to-rectangle conversion algorithm." In: IEEE CGA (1983), pp. 31–32.
- [6] J. D. Guttman and A. L. Herzog. "Rigorous automated network security management". In: IJIS 4.1-2 (2005), pp. 29–48.
- [7] F. Harary and R. Z. Norman. "Some properties of line digraphs". In: Rendiconti del Circolo Matematico di Palermo 9.2 (1960), pp. 161–168.
- [8] C. D. Howe. What's Beyond Firewalls? Forrester Research, Incorporated, 1996.
- [9] H. Hu et al. "Flowguard: Building robust firewalls for software-defined networks". In: Proceedings of the third workshop on Hot topics in software defined networking. ACM. 2014, pp. 97–102.

Bibliography (cont.)

- [10] D. S. Johnson. "The NP-completeness Column". In: ACM Transactions on Algorithms 1.1 (July 2005), pp. 160–176. ISSN: 1549-6325. DOI: 10.1145/1077464.1077476. URL: http://doi.acm.org/10.1145/1077464.1077476.
- [11] A. X. Liu and M. G. Gouda. "Diverse firewall design". In: Parallel and Distributed Systems, IEEE Transactions on 19.9 (2008), pp. 1237–1251.
- [12] D. Ranathunga et al. "Identifying the Missing Aspects of the ANSI/ISA Best Practices for Security Policy". In: 1st ACM Workshop on Cyber-Physical System Security (CPSS). ACM. 2015, pp. 37–48.
- [13] D. Ranathunga et al. "Malachite: Firewall policy comparison, http: //bandicoot.maths.adelaide.edu.au/public/PolicyComparison.pdf". In: 21st IEEE Symposium on Computers and Communications. 2016.
- [14] A. Wool. "A quantitative study of firewall configuration errors". In: Computer, IEEE 37.6 (2004), pp. 62–67.
- [15] A. Wool. "Architecting the Lumeta Firewall Analyzer." In: USENIX Security Symposium. 2001, pp. 85–97.

(中) (문) (문) (문) (문)

Firewall policy rule representation

$$p_{A}(s) = \begin{cases} s, & \text{if } s \in A, \ // \ accept \\ \phi, & \text{if } s \in A^{c}, // \ deny. \end{cases}$$
(1)

- $A \subset A$ where $A = \{$ Atomic packet sequences $\}$
- Only consider packet modifications that don't effect other rules (e.g., QoS, TTL changes)
 - no NAT, VPN functionality
 - no creation of packets by rules (e.g., logging)

Policy
$$p_0 \{ Z1 \rightarrow Z2: \text{ https, dns;} Z2 \rightarrow Z1: \text{ http;} \}$$

• Positive, explicit policies conditional on an implicit deny-all rule

Definition (Equivalence)

Two policies p^X and p^Y are equivalent on \mathcal{A} iff $p^X(s) = p^Y(s)$, $\forall s \in \mathcal{A}$. We denote this equivalence by $p^X \equiv p^Y$.

Definition (Inclusion)

A policy p^X is included in p^Y on \mathcal{A} iff $p^X(s) \in \{p^Y(s), \phi\}$, i.e., X has the same effect as Y on s, or denies s, for all $s \in \mathcal{A}$. We denote inclusion by $p^X \subset p^Y$.

<ロト <四ト <注入 <注下 <注下 <

Lemma

Policies
$$p^X \equiv p^Y$$
 iff $c(p^X) = c(p^Y)$.

• $c: \Phi \to \Theta$, where Φ is the policy space and Θ is the canonical space of policies

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Canonicalisation of distinct rule sets of a policy

 Policy polygon horizontally partitioned using a Polygon to Rectangle conversion algorithm

<ロト <四ト <注入 <注下 <注下 <

Time complexity analysis of policy equivalence

algorithm component	time complexity	comments
cannonicalise policy	<i>O</i> (<i>n</i>)	n = policy count
construct line digraph	$O(n^2)$	
derive SPs	$O(n^2)$	
check partitions are equal	$O(m^2)$	m = equiv class count
evaluate mappings	$O(\prod_{i=1}^m c_i!)$	$c_i = e_i $

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Worse case time complexity: O(n!), best case: $O(n^2)$

Definition

The semantic partition SP of a set of policies P is given by $SP = \{e_m\}$ where $P = \bigcup_m e_m$ and the $e_m \subset P$ are the minimal number of equivalence classes, i.e., for all $p_i, p_j \in e_m$ we have $p_i \equiv p_j$.

Definition (plain)

[SP Equivalence and Inclusion] The semantic partitions SP_1 and SP_2 of policies P_1 and P_2 , respectively, are equivalent iff $|SP_1| = |SP_2|$ and $\forall e_1 \in SP_1$, $\exists e_2 \in SP_2$ such that for any $p_1 \in e_1$ and $p_2 \in e_2$, we have $p_1 \equiv p_2$. We denote this by $SP_1 \equiv SP_2$. Semantic partition SP_1 includes SP_2 iff $\forall e_2 \in SP_2 \exists e_1 \in SP_1$ s.t. $e_2 \subset e_1$. We denote this by $SP_2 \subset SP_1$.

Definition

The semantic difference between policies p^X and p^Y is given by $p^X - p^Y = (p^X \oplus p^Y) \otimes (p^X \otimes p^Y)^c$, where $(p_A)^c = p_{A^c}$ and A^c is A's complement.

(日) (四) (코) (코) (코) (코)

Example SUC Zone-Conduit model

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで