
Malachite: Firewall Policy Comparison
Dinesha Ranathunga∗, Matthew Roughan∗, Phil Kernick† and Nick Falkner‡

∗ACEMS, University of Adelaide, Australia
†CQR Consulting, Australia

‡School of Computer Science, University of Adelaide, Australia
Email: {dinesha.ranathunga, matthew.roughan, nick.falkner}@adelaide.edu.au, phil.kernick@cqr.com

Abstract—Firewalls are a crucial element of any modern day
business; they protect data and resources in a communications
network from unauthorised access. In particular domains, such as
SCADA networks, there are guidelines for firewall configuration,
but currently there are no automated means to test compliance.
Our research tackles this from first principles: we ask how
firewall policies can be described at a high-level, independent of
firewall-vendor and network minutiae. The semantic foundations
we propose allow us to compare network-wide firewall policies
and check if they are equivalent; or one is contained in the
other in meaningful ways. These foundations also enable policy
change-impact analysis and help identify functional discrepancies
between multiple policy designs from users in distinct policy sub-
domains (e.g., SCADA engineers, Corporate admins).

Index Terms—SCADA network security, Zone-Conduit model,
firewall policy, best-practice compliance, change-impact analysis

I. INTRODUCTION

Firewalls are a standard mechanism for enforcing network
security. They protect data and resources in a communications
network from unauthorised access by filtering out unwanted
network traffic. These filtering decisions are based on a set
of ordered filtering rules defined to meet the security policy
requirements of an organisation. Security administrators may
naturally wish to compare the semantics of two firewall access-
control policies (i.e., firewall policies), for instance, to:

• compare a policy to industry recommended practices;
• study change impact, i.e., how policies evolve over time;
• identify discrepancies between multiple policy designs;
• check an implemented policy is the intended policy; or
• change the underlying firewalls (e.g., vendor), but ensure

the policy remains the same.

The ability to compare firewall policies meaningfully is
particularly important in Supervisory Control and Data Acqui-
sition (SCADA) networks, which control the distributed assets
of many critical systems such as power generation and water
distribution. These networks often incorporate highly vulner-
able devices such as Programmable Logic Controllers (PLCs)
that control physical devices such as gas valves. As a result,
in this domain there are industry-recommended standards [3],
[8] to which we would like to make comparisons.

Checking firewall policies for compliance with recom-
mended practices has challenges:

• there is a lack of common standards or languages for
firewall policy specification;

• equivalent policies can be specified in many ways (e.g.,
either through accept or deny rules);

• extraneous network details impinge on current means of
specifying policies; and

• comparisons between two policies could be computation-
ally expensive.

Our tool – Malachite – provides the means to automatically
perform such comparisons algebraically. In building it, we
have derived many of the properties and constraints that a
formal description of firewall policies must satisfy.

First, firewall policies are described at a high-level, in-
dependent of vendor and network intricacies to provide a
common ground for comparisons. We propose a policy algebra
to efficiently compare these high-level firewall policies. The
two most significant advantages of such a framework are: (i) its
algebraic structure helps determine the semantics required of a
policy language to make comparisons rule-order and firewall-
implementation independent; and (ii) it provides a formalism
to compute the composition of rule sets.

Secondly, canonical forms of policies are derived, for ef-
ficient comparisons, and we develop an implementation that
can perform checks on real firewall configurations.

We demonstrate the use of our proposed algebras by com-
paring policies deployed in real networks. Particularly, we
show its value in protecting SCADA networks from cyber at-
tacks. Additionally, our algebras promote easy change-impact
analysis of network-wide firewall policies by administrators.

II. BACKGROUND AND RELATED WORK

Firewalls are a front-line defence mechanism against net-
work intrusion and attacks, and guidelines have been prepared
to help with their deployment [3], [8]. These suggest several
high-level policy abstractions. In particular, we refer to the
Zone-Conduit abstraction as a way of segmenting and isolating
the various sub-systems [3].

A zone is a logical or physical grouping of an organisation’s
systems with similar security requirements so that a single
policy can be defined for all zone members. A conduit provides
the secure communication path between two zones, enforcing
the policy between them [3]. A conduit could consist of
multiple links and firewalls but, logically, is a single connector.

The Zone-Conduit model intuitively decouples policy from
topology, relieving policies of firewall-vendor and network
intricacies. It allows user to specify policies at a high-level; a

1

feature most desirable in auto-configuration; but importantly,
it provides a common ground for comparing policies.

The ISA Zone-Conduit model in its original specification
is too flexible for policy specification. We use the extensions
proposed in [19] to increase its precision, e.g., it is necessary
to enforce a 1:1 mapping between policies and conduits. This
property allows us to specify a conduit-policy unambiguously
using two inter-zone flow policies. For instance, the policy p0
of a conduit that interconnects zones Z1 and Z2 can be defined
using flow-policies pA and pB , e.g.,

Policy p0 { pA :: Z1→ Z2: https, dns;
pB :: Z2→ Z1: https; }

We can derive the zone-flow model, which is a directed
graph, by replacing each undirected-conduit with a directed-
conduit pair in this manner. The policy of an entire network
can then be defined as a collection of directed conduits.

Firewall analysis is a well studied problem, various debug-
ging tools [16], [20], [21] have been developed to check fire-
wall configuration behaviour. Tools have also been proposed
[13], [22] to detect firewall policy violations and ensure in-
tended policy is correctly implemented on distributed firewalls.
These tools test a given set of predefined firewall rules, but do
not compare policies and standards.

Related works use a bottom-up comparison to analyse
single-firewall rulesets (i.e., ACLs) and evaluate change im-
pact [15]. Our interest is to compare firewall policies not
their implementations, and ACLs contain network and vendor
intricacies like IP addresses. So, ACL differences can occur
even when the policy’s intent remains unchanged.

Network policy comparisons require firewall topology to
be accounted for. In some works [15], topology needs to be
accounted for manually; an impractical consideration when
comparing policies of complex networks. Some (bottom-up)
approaches overcome the problem by automatically incorpo-
rating topology to construct a network-wide ACL tree [1], [22].
Their methods help detect implementation errors (i.e., redun-
dancies and conflicts), but lack support for policy comparisons.

A better, less tedious approach is a top-down comparison. To
do so, a single network-wide policy needs to be maintained, so,
security administrators can easily determine who gets in and
who doesn’t [12]. These network-wide policies need to be free
of network-centric minutiae, so changes to the policy’s intent
can be clearly distinguished from changes to the network.
Network-wide firewall policy changes are also more useful
to administrators than per-firewall changes when analysing
change impact, because the latter can be made redundant by
other firewalls’ policy through rule interactions. Current top-
down solutions allow creation of network-wide policies [2],
[6], [10] but lack ability to compute their semantic differences.

Our top-down comparisons use Zone-Conduit based firewall
policies, to generate network-wide policy changes. These
policies are decoupled from the network, so the reduced policy
complexity allows them to be easily understood by humans.
We make the policies firewall-implementation independent and
comparable, through the formalisms discussed in §III and §IV.

We couldn’t find any related works that validated firewall
policies against industry-recommended practices. Doing so, is
critical in SCADA networks where more restrictive practices
are required to minimise their vulnerability to threats from
less secure networks (e.g., the Internet) [3], [8]. Malachite
supports validation of firewall policies against recommended
practices and provides users of assurance of compliance prior
to deploying policies to the physical firewalls.

III. POLICY ON A SINGLE DIRECTED CONDUIT

We now outline policy comparison on a single directed
conduit of a network. We start by considering policies in
general, and then restrict our attention to a computationally
tractable (and typical) set of policies.

A firewall policy is constructed from an ordered series of
rules [p1, p2, . . . , pn] that act on packet sequences to accept,
deny, or modify them. We formally define these rules starting
with S = {all packet sequences}, which implicitly includes
φ (no packets). In principle, a firewall could delay its decision
on a packet sequence until it can decide if the whole sequence
is valid, but practical limitations (on stored state, and packet
delays) mean that decisions must be made on short sequences,
and often on single packets. So, we define rules to operate
on S∗ = {complete packet sequences}, where we define
complete in a moment.

We define the operation s = s1 + s2, to mean that s is the
concatenation of the two subsequences. Both S and S∗ are
closed under + (an associative operator) and φ is the identity.
Hence S and S∗ are monoids.

A policy rule p is a function p : S∗ → S∗. The formal
meaning of complete with respect to a family F of possible
rules is that ∀s1, s2 ∈ S∗ and policy rules p ∈ F

p(s1 + s2) = p(s1) + p(s2). (1)

So, complete means a decision on two concatenated complete
subsequences would be the same as that on the joint sequence.

Hence, valid policy rules p(·) are monoid endomorphisms
on S∗, i.e., they are mappings from S∗ to itself that preserve
the semigroup structure of the operator + and the identity φ.

A packet sequence also includes packet timings. For in-
stance, imagine a packet u that is fragmented into two com-
ponent packets ua and ub. A firewall might perform fragment
reassembly in order to test the packet’s validity. So it might
allow u = ua + ub, but not allow either fragment by itself.
This appears to break (1). However, if the firewall sees ua “by
itself” what it has really done is observe ua + timeout, where
the timeout is used to decide when to give up on the second
fragment. And ua + timeout + ub 6= ua + ub, hence timing
information is a crucial component of the packet sequences.

We will often define policy rules on the set A of atomic
packet sequences, i.e., complete packet sequences that cannot
be decomposed into smaller complete subsequences (except
themselves and φ). Typical policy rules accept or deny packets,
i.e., for some A ⊂ A (which can be extended to S∗)

pA(s) =

{
s, if s ∈ A, // accept
φ, if s ∈ Ac, // deny.

(2)

2

This type of rule doesn’t allow modification or creation of
packets. Real firewall rules can modify or create packets. For
instance a firewall might
• update certain header fields related to QoS; or
• might defragment, or fragment packets; or
• be integrated with Network Address Translation (NAT)

or Virtual Private Network (VPN) functionality.
The scope for packet modification is huge, but within a
firewall, many modifications don’t change fields that would
affect further rules in subsequent firewalls, e.g., QoS or TTL
changes. Hence, we restrict rules to such modifications, and
thus consider them to be in the form given in (2).

Firewall rules can also generate packets through event
logging. We exclude logging from the scope of this paper –
see [18] for an extended discussion of this and related issues.

We also cannot construct a policy rule for any arbitrary
subset of A, due to the limitations of technology used in a
firewall. The subsets of A for which rules can be defined is
actually a sigma algebra σ(A) [7].

This sigma algebra is generated by the finest possible
partition of A determined by the firewall technology. For a
given firewall, A can be broken into sets Ai ⊂ A such that
Ai∩Aj = φ and ∪iAi = A, and we can implement rules pAi ,
but cannot define any rule pB s.t. B is a strict subset of Ai.

A. Positive, explicit policies

A firewall policy, in practice, is made up of multiple
predicate-matching rules that can be combined using several
strategies: first match, last match or all match. If we presume
here the conservative security option: an implicit deny-all
rule, then an accept rule qam defines accept packet set A =
{s ∈ A | s ≺ m}, where s ≺ m denotes s matches predicate
m (likewise a deny packet set for deny rule qdm).

When we combine two (ordered) rules (q
a/d
m1 , q

a/d
m2) we

define operators depending on the matching order: e.g.,
1) first match

qa/dm1
� qa/dm2

=


q
a/d
m1 , if s ≺ m1

q
a/d
m2 , if s ≺ m2 and s 6≺ m1

deny, otherwise,

2) last match

qa/dm1
	 qa/dm2

=


q
a/d
m2 , if s ≺ m2

q
a/d
m1 , if s ≺ m1 and s 6≺ m2

deny, otherwise.

The operations � and 	 are associative, e.g., (q1�q2)�q3 =
q1 � (q2 � q3), but not commutative or equivalent. This is a
problem. Our interest is whether a policy is equivalent, not
an implementation, else we cannot easily check, for instance,
if the policy remains static when firewall-vendor changes. So,
we restrict ourselves to accept rules, conditional on an
implicit deny-all rule. This restriction (see theorems below)

1) is rich enough to represent all rules of the form (2); and
2) if we restrict to this family of rules, then the operators

above are all commutative and equivalent.

Similar results also hold if we only allow deny rules, but
this option is less secure as it is easier to accidentally leave
something out of a deny list than to explicitly include it.
Theorem 1 (Commutativity). The order of matching is ir-
relevant iff the match rules are all accept rules plus an
implicit deny-all rule (or visa versa).

Proof. First note that if we allow only accept rules, with an
implicit deny-all, then the operators above become

qam1
� qam2

= qam1
	 qam2

= pA,

where A1, A2 ∈ σ(A) such that Ai = {s ∈ A | s ≺ mi},
and A = A1 ∪ A2. Hence when we limit ourselves to accept
rules the operators are commutative (via commutativity of set
intersection) and equivalent.

If we have one accept, and one deny rule, with an implicit
deny-all, then for a non-trivial rule space we can construct
an example that violates commutativity and equivalence. Take
two sets A1, A2 ∈ σ(A) with matching predicates m1 and m2

such that A1 6= A2 6= φ. Then under

qam1
� qdm2

= pA1 ,

qdm2
� qam1

= pA1\A2
,

qam1
	 qdm2

= pA1\A2
,

qdm2
	 qam1

= pA1
.

Combinations yield different composite rules, implying a non-
commutative and non-equivalent counter-example.

Theorem 2 (Completeness). Any rule (2) for A ∈ σ(A) can
be represented by a series of accept rules (qam1

, qam2
, . . . , qamn

).

Proof. When we constructed σ(A) from the Ai we defined
these as the finest partition of A. This means that there is at
least one predicate that matches Ai within the ruleset available.

By construction all elements A ∈ σ(A) can be constructed
by finite unions on the sets Ai, and any rule combination
generates a union, i.e., (qami

, qamj
) defines set Ai∪Aj ⊂ A, so

we can define any set A by listing rules for each member.

The key advantage of restricting attention to accept rules, is
that rule order doesn’t matter, and neither does implementa-
tion strategy. A policy holds the same semantics, irrespective
of how its rules are organised, removing dependencies from
the policy specification. So, we can add or remove a rule
without considering the complete rule set and the potential
interactions. By being explicit, we also guard against services
being accidentally enabled implicitly or by default.

We now simplify the notation we use in this context to:
1) (pA ⊕ pB)(s) = pA∪B(s) denotes within-firewall com-

position, or construction through parallel firewalls;
2) (pA ⊗ pB)(s) = pB(pA(s)) = pA∩B(s) denotes the

action of sequential firewalls.
Under the restrictions above, these are associative, commuta-
tive binary operators, with identities φ and A respectively, and
the identity of the ⊕ operator is the annihilator of the ⊗ opera-
tor. Thus, they define a commutative semiring across the policy
space Φ = {p : A → A | p is a monoid endomorphism}.

3

B. Conduit policy comparison

A policy can be a single rule or as a set of rules and
operators, i.e., we can write a policy as a single mapping
function pX ∈ Φ or as its components pX = (pX1 ⊕· · ·⊕pXm).
There are many ways to combine rules to achieve a given
affect, so we define two policies to be equivalent as follows.

Definition 3 (Equivalence). Two policies pX and pY are
equivalent on A iff pX(s) = pY (s), ∀s ∈ A. We denote this
equivalence by pX ≡ pY .

When we compare policies on two networks, it is also
useful to be able to partition the policies on the networks in
equivalence classes [4]. We call this a semantic partition (SP),
which is formally defined as follows.

Definition 4 (Semantic partition). The semantic partition SP
of a set of policies P is given by SP = {em} where P =
∪mem and the em ⊂ P are the minimal number of equivalence
classes, i.e., for all pi, pj ∈ em we have pi ≡ pj .

An equivalence class groups a set of conduits with identical
policies. Large equivalence class sizes in a network imply
many zones with identical reachability. This indicates a badly
designed Zone-Conduit model, to overcome it, the said zones
may need to be amalgamated (at least at a logical level).
Semantic partitions also help to write better policies, for they
allow to check if a collection of conduits have a given policy.

Two policies with different rule sets, can have the same
underlying semantics (i.e., they allow the same set of services
between zones). For instance, Figures 1(a) and 1(b) illustrate
the idea based on TCP port filtering of single packets. Each
rectangle indicates the allowed packets of a single rule. Com-
bined, the rules cover the same set of allowed packets.

We could compare policies by exhaustive comparison, but
that would be highly inefficient. A more efficient approach
would be to derive a unique, canonical, representation of each
policy. We can represent canonicalisation of policies through
a mapping c : Φ → Θ, where Θ is the canonical space
of policies, in which all equivalent policies of Φ map to
a singleton. Given a canonicalisation mapping, we note the
following (the proof being the direct result of the definitions).
Lemma 5. Policies pX ≡ pY iff c(pX) = c(pY).

Thus, comparison is eased by the canonicalisation of poli-
cies. Figure 1(c) illustrates the idea using TCP policy rules
and dissect the polygon formed in our example policy into
horizontal partitions, using a Rectilinear-Polygon to Rectangle
conversion algorithm [9]. Each partition is chosen to provably
guarantee its uniqueness. We derive canonical policy elements
by translating each partition back to a rule and ordering the
resulting rule-set uniquely in increasing IP protocol number
and source, destination port numbers. We find a unique par-
tition quickly rather than a guaranteed minimal partition. The
result is a deterministic, ordered set of non-overlapping rules.

We need to evaluate our policies against industry-
recommended guidelines. When two flow-policies are equiva-
lent, they essentially accept and deny the same IP packets, but

it will be common that some customisation of policies must
be conducted locally. A policy complies with another if it is
more restrictive. In that context we define inclusion as follows.

Definition 6 (Inclusion). A policy pX is included in pY on A
iff pX(s) ∈ {pY (s), φ}, i.e., X has the same effect as Y on s,
or denies s, for all s ∈ A. We denote inclusion by pX ⊂ pY .

In order to make practical use of this definition (via
canonicalisation), we restrict our attention to the accept rules
considered above, where the following lemma applies.

Lemma 7. If policy pX ⊂ pY then pX ⊕ pY ≡ pY .

Proof. We can describe all accept rules by functions such as
(2) and pA ⊂ pB means that A ⊂ B. Moreover pA ⊕ pB =
pA∪B , and A ⊂ B implies A∪B = B. Hence the result.

We define the semantic difference of two policies as follows
(again restricting to accept rules for practical use).

Definition 8 (Semantic Difference). The semantic differ-
ence between policies pX and pY is given by pX −
pY = (pX ⊕ pY) ⊗ (pX ⊗ pY)c, where (pA)c =
pAc and Ac is A’s complement.

We present c(pX − pY) in our results. Clearly, when two
policies are equivalent, their semantic difference yields φ.
If pX ⊂ pY , the result will contain elements from pY that
are not in pX . This notation is particularly useful in change
impact analysis. It helps administrators understand in detail
how a policy has evolved with time. Equivalence and inclusion
notations on the other hand, allow fast, high-level checks.

IV. COMPARISON OF NETWORK POLICIES

We considered policy rules on a single directed conduit in
§ III. Now we generalise policies to a network, or rather the
simplified Zone-Conduit model of the network.

When we apply a policy to a conduit, we explicitly label the
address space of allowed sources and destinations. Thus, we
now consider policy rules to act as part of a (edge, rule) pair,
where the rule excludes details of sources and destinations,
which are incorporated through the Zone-Conduit model.

The Zone-Flow model, derived from the Zone-Conduit
model (§ II), is a directed graph G = (Z,C), where Z is the
set of zones, and C ⊂ Z × Z is the set of directed conduits.
Note that we include here indirect conduits that may be built
up from multiple physical paths.

Definition 9 (Network Policy). A network policy P = (G,P)
means a directed-graph G(Z,C) with policy functions pij ∈ Φ
for (i, j) ∈ C.

The policy function pij here does not involve addresses,
which are implicit in the directed-conduit label (i, j), and the
mapping from zone to addresses.

We test if a policy complies with a larger ruleset, by
extending flow-policy equivalence, inclusion and difference
definitions to compare policies of an entire network.

Definition 10 (Equivalence). A policy P1 = (G,P1) is
equivalent to P2 = (G,P2) iff ∀e ∈ C, pe1 ≡ pe2. We denote
this by P1 ≡ P2.

4

(a) Four rules indicated by (overlapping) rectangles. (b) Five rules producing an equivalent policy to (a). (c) Horizontal partitions of polygon in (a) or (b).

Fig. 1: Canonicalisation of distinct rule sets of the same policy. Rectangles indicate the packets allowed by a particular rule.

Definition 11 (Inclusion). A policy P2 = (G,P2) includes
P1 = (G,P1) iff ∀e ∈ C, pe1 ⊂ pe2. We denote this by P1 ⊂ P2.

Definition 12 (Semantic Difference). The semantic difference
between P1 = (G,P1) and P2 = (G,P2) is given by P1 −
P2 =

⊕
{(pe1 − pe2);∀e ∈ C}.

Similarly, we also extend the idea of a SP to a network. An
SP groups together the set of directed conduits with equivalent
policies. These groups partition in the sense that they cover P
with disjoint sets. We now extend the notion of comparison
of two network policies to the comparison of their SPs.

Definition 13. The semantic partitions SP1 and SP2 of poli-
cies P1 and P2, respectively, are equivalent iff |SP1| = |SP2|
and ∀e1 ∈ SP1, ∃e2 ∈ SP2 such that for any p1 ∈ e1 and
p2 ∈ e2, we have p1 ≡ p2. We denote this by SP1 ≡ SP2.

Semantic partition SP1 includes SP2 iff ∀e2 ∈ SP2 ∃e1 ∈
SP1 s.t. e2 ⊂ e1. We denote this by SP2 ⊂ SP1.

Definitions 10 to 13 assume that the underlying networks
are the same. We may wish to make comparisons between
different networks, or one network as it evolves over time.
So we also extend the definitions to the case where the two
graphs G1 and G2 are isomorphic, i.e., G1 ' G2.

The essential property of our high-level language is that
it has a 1:1 mapping between policies and conduits, so
comparing policies of two networks is a matter of comparing
policies of each conduit. The difficulty is that the zone labels
are arbitrary. So, two networks might have completely different
labels and policies cannot be compared directly. Ultimately, we
must evaluate if the two (unlabelled) digraphs have the same
graph structure and identify a mapping between the zones of
the two networks. This is the graph isomorphism problem.

The complexity of the graph isomorphism problem is
unknown, but there are no known polynomial-time algo-
rithms [14] (the best being a recent quasi-polynomial time
algorithm [5]), so there is a practical difficulty to overcome.

We also need to compare two different graphs (i.e., G1 6'
G2), for one, to see the effect of a network change. For another,
to check if firewall policies are deployed consistently across
an organisation’s multiple SCADA sites. Here, the policies
can’t be strictly equivalent, but it would be confusing to talk
of inclusion, so we introduce a new concept: incorporation.

Definition 14 (Incorporation). Policy P2 strictly incorporates
P1 iff G1 is isomorphic to a subgraph of G2 and ∀e ∈ C1,

pe1 ≡ pe2. We denote this by P1 ≡ P2(G1). Policy P2 partially
incorporates P1 iff G1 is a subgraph of G2 and ∀e ∈ C1,
pe1 ⊂ pe2. We denote this by P1 ⊂ P2(G1).

A network policy P is compliant with recommended prac-
tice RP if P ⊂ RP , through either inclusion or incorporation.

To check compliance, we must now solve the subgraph
isomorphism problem, which is NP-complete. The two iso-
morphism problems seem intractable, but the Zone-Conduit
policy model is not a completely unlabelled digraph. We have
edge labels in the form of policies.

We exploit this information to avoid the graph isomorphism
problem. The mathematical tool we will work with is called
the line digraph (directed graph), defined as follows [11]:

Definition 15 (Line Digraph). Given a digraph D = (N,E),
its line digraph L(D) = (P,L) is defined by the non-empty set
of points P = E, and edges (uv, vw) ∈ L wherever (u, v) ∈
E and (v, w) ∈ E.

The line-digraph is formed by taking one node for each edge
in D, and creating edges between these new nodes wherever
the original edges connected through the same node, i.e.,
form part of a length-2 path. Finding an isomorphism in the
line-digraphs allows to identify isomorphism in the original
digraphs as per Theorem 16 (which generalises the Whitney
graph isomorphism theorem to multi-digraphs) [11]:

Theorem 16. Let D be a multi-digraph. If D
′

is a multi-
digraph such that L(D) ' L(D

′
), then the digraphs formed

by D and D
′

by deleting all sources and sinks are isomorphic.

A multi-digraph is a digraph that allows multiple directed
edges between graph nodes [11]. So, Theorem 16 applies to
our model. Conduits in the Zone-Conduit model are always
formed from a directed pair (to allow for different policies),
so, our digraphs are source and sink free. We need not delete
any nodes to apply Theorem 16: i.e., if the line digraphs are
isomorphic then the original policy digraphs are isomorphic.

In our case, the constructed line digraphs also have a (non-
unique) node-labelling defined by the policies that labelled
the original conduits (Figure 2). We can use this labelling to
avoid the full complexity of the graph isomorphism problem.
The resulting algorithms are described in detail in §V, but it
essentially involves (i) converting to the labelled line digraph,
and (ii) testing these for isomorphism or subgraph isomor-
phism, using the labels to reduce the potential search space.

5

(a) Zone-Flow model. (b) Line digraph of (a).

Fig. 2: A policy digraph and its corresponding line digraph.
Nodes in the line digraph are the edges of the original digraph.

V. IMPLEMENTATION

Malachite is currently implemented in Python, and allows
comparison of high-level firewall policies written in our own
policy specification language. Throughout we use the rectilin-
ear canonicalisation described earlier. We will make the system
open source in the near future.

We now describe our implementation – semantic partition-
ing method – which groups equivalent policies. We compare
it with an exhaustive method [17] used as a benchmark.

A. Check whether P1 ≡ P2

For policy equivalence, digraphs G1 and G2 need to be
isomorphic, and we must derive all possible bijections between
the two, and test for policy equivalence given the bijection. So,
we derive the line digraphs L(G1), L(G2) and check if they
can be isomorphic (i.e., equal node and edge counts). We then
find the possible bijections between the two graphs as follows.

We derive the semantic partitions of P1, P2 (i.e., SP1

and SP2). If SP1 ≡ SP2, we find all feasible mappings
between these partitions (need O(m2) comparisons where
m = |SP1| = |SP2|). A feasible mapping only exists between
two equivalent classes of SP1 and SP2 with equal cardinality
(e.g., between e1 and e′1 in Table I). So, the search space is
reduced compared to the exhaustive approach.

All Feasible Mappings (FMs) between P1, P2 stem from
the cross product of the class-level mappings in Table I:

FMs = M1 ×M2 × . . .×Mm. (3)

Finally, we construct the adjacency matrices A1, A2 of
L(G1) and L(G2) for each mapping in FMs. If there exists
a mapping for which A1 = A2, then P1 ≡ P2.

The time complexity of the algorithm components are given
in Table II. The dominant component of the algorithm in the
worst case is the evaluation of FMs, with time complexity
O(
∏m

i=1 ci!). In the worst case this is no better than that of
the exhaustive algorithm (O(n!) [17]), but in the best case
where the equivalence classes are singular, then the algorithm
performance is O(n2). We will describe below why, in real
networks, this is the typical real performance.

B. Check whether P1 ⊂ P2

Here, we derive SP1, SP2 as before, but check SP1 ⊂ SP2

(Definition 13). If so, we determine feasible mappings between
the two networks, however, the process is now complicated

TABLE I: Generate mappings between equivalent
equivalence-classes of semantic-partitions SP1 and SP2.

SP1 class equivalent
SP2 class

class size number of
mappings

mappings-
set

e1 e′1 c1 c1! M1

...
...

...
...

...
em e′m cm cm! Mm

TABLE II: Time complexity of the semantic-partitioning
algorithm components used to check policy equivalence.

algorithm component time
complexity

comments

cannonicalise policy O(n) n = # of flow-policies
construct line digraph O(n2)

derive semantic partitions O(n2)

check partitions are equal O(m2) m = # of partitions
evaluate mappings in FMs O(

∏m
i=1 ci!) ci = |ei|

because we need to find inclusive policy mappings, not just
equivalences. Table III illustrates the process with an example.

We determine the cardinality of each Mi’s in the table,
by taking equal number of elements from the corresponding
classes and then considering all permutations. For instance,

|M1| = (c1)!×
(
c′1 + c′2
c1

)
, (4)

where we know that c′1 + c′2 ≥ c1 in order for the cardinality
constraints to be satisfied. More generally

|Mi| = (ci)!×
(
c′′i
ci

)
, (5)

where c′′i ≥ ci is total size of all matching classes.
We determine FMs as in § V-A, construct adjacency

matrices for each mapping and check equality.
The dominant component of the algorithm in the worst case

again has time complexity O(
∏m

i=1 c
′′
i !). But as before, this

worst case is unlikely, and the typical case is much better.

C. Check whether P1 ≡ P2(G1)

For strict incorporation, the node-count (NC) and edge-
count (EC) must be such that (NCG2 > NCG1 and ECG2 ≥
ECG1) OR (NCG2 = NCG1 and ECG2 > ECG1).

We derive SP1 and SP2 and check if every SP1 class has
an equivalent SP2 class (with equal or higher class size). P2

can strictly incorporate P1, only if this requirements is met.
We then generate FMs by examining all of the permutations
of policies within equivalent partitions. For each FM , we
construct and check their adjacency matrices for equality.

D. Check whether P1 ⊂ P2(G1)

Again, we follow the approach in §V-C, but check if SP1 ⊂
SP2. We derive Table III and use (3) to get FMs. Finally, we
determine the adjacency matrices for each mapping in FMs
and check for equality. If equal, then P1 ⊂ P2(G1).

The algorithms in § V-C and § V-D have the same time
complexity of §V-B, with similar best and worst-case values.

6

TABLE IV: High-level summary of SCADA case studies adapted from [19].

SUC Configuration
date

Firewall type Firewalls∗ Zones Conduits Flow-
policies

Equivalence
classes

Minimum
class size

Maximum
class size

Policy

1 Sep 2011 Cisco IOS 3 7 11 22 12 1 7 P1 = (G1, P1)

2 Aug 2011 Cisco ASA 6 21 81 162 87 1 8 P2 = (G2, P2)

3 Oct 2011 Cisco PIX 4 10 17 34 15 1 8 P3 = (G3, P3)

4 Mar 2011 Cisco ASA 3 9 16 32 16 1 5 P4 = (G4, P4)

TABLE III: Mappings between inclusive equivalence-classes
of semantic partitions SP1 and SP2, e.g., the first line of the
table implies that e1 ⊂ e′1 and e1 ⊂ e′2.

SP1

class
class
size

included in
SP2 class(es)

total size of
SP2 class(es)

mappings-
set

e1 c1 e′1, e
′
2 c′1 + c′2 M1

e2 c2 e′2 c′2 M2

...
...

...
...

...
em cm e′1, e

′
3, e
′
m c′1 + c′3 + c′m Mm

VI. A SERIES OF CASE STUDIES

We now demonstrate the use of our proposed algebras,
through four real case studies summarised in Table IV. The
data was provided by the authors of [19], and comes from real
firewall-network configuration case studies.

There are four Systems Under Consideration (SUCs), in-
volving various firewall architectures and models. We use
them to demonstrate several properties, most notably that the
computational complexities of our algorithms are tractable.

The most important feature is the size of the equivalence
classes in the semantic partitions of the firewall policies of
each network. Table IV lists the minimum and maximum class
sizes. We see that the maximum equivalence class size of a
semantic partition is small relative to the flow-policy count.

This is to be expected. An equivalence class groups a set of
conduits with identical policies. It is easy to argue that if many
conduits have identical policies then the zone-conduit diagram
of a network is badly designed. Many equivalent policies
leads to zones with identical reachability, which might be
amalgamated. The subsequent reduction in complexity makes
policy specification easier and less error prone.

As a result, in the real networks we studied, the maximum
equivalence class size was 8. Moreover, most of the class sizes
are small (the majority have only one member). That makes
the algorithms presented above computationally feasible. We
describe such networks as close to being semantically disjoint.

We demonstrate this in detail below by comparing the
policies of P1 and P4 whose zone-flow models are shown in
Figure 3. We have performed similar tests on the other pairs.

The two policies cannot be equivalent or inclusive as the
node and edge counts don’t match, so we immediately proceed
to test incorporation, i.e., P1 ≡ P4(G1) and P1 ⊂ P4(G1).

The node and edge counts (NC and EC) of L(G1) and
L(G2) meet the incorporation criteria in §V-C. So, we proceed
to derive and compare the equivalence classes of SP1 with
those of SP4 and find that not every SP1 class has an
equivalent SP4 class. So, P4 does not strictly incorporate P1.
But as Table V illustrates, SP1 ⊂ SP4.

Since |e12| > |e′17| = 5, every policy in e12 cannot be in-
cluded in a policy in e′17. So, P1 policy tuple (p1, p2, . . . , p22)
cannot be included in any P4 tuple (with 22 elements). We
can conclude that P4 does not partially incorporate P1, with-
out further evaluation. So, the policy between, for instance,
SCADA and Corporate zones across both networks enable
non-equivalent and non-inclusive sets of traffic services.

Malachite automates all of these comparisons, and in this
case takes 24 seconds to run on a standard desktop computer
(e.g., Intel Core CPU 2.7-GHz computer with 8GB of RAM
running Mac OS X). We sought to compare Malachite’s
performance to previous work [15] that enabled less compre-
hensive firewall policy comparisons, but have been unable to
obtain their software, to date.

We checked each policy in Table IV for compliance with
the industry-recommended policy (RP) [3] through inclusion.
Malachite generates the semantic-partitions SPi and SPRP

and checks whether SPi ⊂ SPRP . Alarmingly none of the
above policies were included by RP , indicating potential
non-compliance. Hence, every real-world SCADA network we
studied was significantly vulnerable to cyber attack!

We used Malachite to compute the semantic difference
between each policy and RP . We could then identify the
recommended-practice violations in detail and rectify them to
reduce each SUC’s vulnerability to cyber attack (see Listing 1).

At the time of our analysis, we were unable to obtain time
evolved versions of the policies in Table IV. So, we used
synthetic policy versions instead and derived the semantic
difference for each case to observe how easily interpretable
our output results are (see [17] for details).

Malachite can also accurately compute the functional dis-

TABLE V: Mappings between inclusive equivalence-classes
of semantic partitions SP1 and SP4.

SP1 class ⊂ SP4 class(es) total size mappings
e1 = {p1} e′1 1 M1

e2 = {p2} e′2 1 M2

e3 = {p4} e′3 1 M3

e4 = {p5, p6} e′4 4 M4

e5 = {p7} e′4 − e′7, 15 M5

e6 = {p8, p22} e′7 − e′9 7 M6

e7 = {p11, p13} e′1, e
′
10 2 M7

e8 = {p16} e′2, e
′
3, e
′
5, e
′
11 − e′14 9 M8

e9 = {p17} e′1, e
′
15 2 M9

e10 = {p19} e′1, e
′
12, e

′
14 3 M10

e11 = {p12, p20} e′1, e
′
16 2 M11

e12 = {p3, p9, p10, p14, e′17 5 M12

p15, p18, p21}

7

(a) Zone-Flow model of SUC1. (b) Zone-Flow model of SUC4.

Fig. 3: Zone-Flow models of two real SCADA case studies.

Listing 1: Malachite output of the recommended-practice
violations of SUC1 firewall policy (partial listing).
WARNING suc_policy1.policyml violates ISA practices
WARNING policy violations::
corp−>scada: {prot=17; udp.dst_port=53; udp.src_port=1024−65535;}
corp−>scada: {prot=6; tcp.dst_port=53; tcp.src_port=1024−65535;}
corp−>scada: {prot=6; tcp.dst_port=21; tcp.src_port=1024−65535;}
corp−>scada: {prot=6; tcp.dst_port=20; tcp.src_port=1024−65535;}
corp−>scada: {prot=6; tcp.dst_port=80; tcp.src_port=1024−65535;}

crepancies between multiple policy designs from users in
distinct policy sub-domains (e.g., SCADA engineers, Corpo-
rate admins). By doing so, these users can clearly identify
the design differences and negotiate on what variations are
acceptable and so on.

However, Malachite also has several limitations, for one,
checking a policy against a best-practice policy relies on
the best-practices being correct to begin with. Also, when
a policy is a subset of a best-practice policy that may not
always mean the policy is compliant. For instance, the best-
practices recommend enabling TCP port 443 (i.e., HTTPS)
inbound to the SCADA-Zone as it’s deemed as a safe protocol.
But allowing so, doesn’t guarantee compliance as non-HTTPS
traffic can still be tunnelled through this port. The final
mapping of subsets also need to be manually examined for
correctness, so, some human intervention is still required.

VII. CONCLUSION

There are various obstacles that hinder the meaningful
comparison of firewall policies. Most prominent is the lack of
standards for firewall policy specification which makes policy
semantics rule-order and firewall-implementation dependent.
To compound the problem, a firewall policy with a given
semantic can also be constructed using different rule sets.

Malachite addresses these challenges, allowing direct com-
parisons of firewall policies. We employ it to check that
firewall policies are recommended-practices compliant and to
analyse their change impact.

ACKNOWLEDGMENT

The authors would like to thank input and suggestions from
Tim Griffin. This project was supported by an Australian
Postgraduate Award, Australian Research Council Linkage
Grant LP100200493, and CQR Consulting.

REFERENCES

[1] E. S. Al-Shaer and H. H. Hamed. Discovery of policy anomalies in
distributed firewalls. In Annual Joint Conference of the IEEE CCS,
pages 2605–2616. INFOCOM, 2004.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. Netkat: Semantic foundations for
networks. ACM SIGPLAN Notices, 49(1):113–126, 2014.

[3] ANSI/ISA-62443-1-1. Security for industrial automation and control
systems part 1-1: Terminology, concepts, and models, 2007.

[4] C. Avelsgaard. Foundations for Advanced Mathematics. Scott, Fores-
man/Little, Brown Higher Education, 1990.

[5] L. Babai. Graph isomorphism in quasipolynomial time. arXiv preprint
arXiv:1512.03547, 2015.

[6] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall
management toolkit. ACM TOCS, 22(4):381–420, 2004.

[7] P. Billingsley. Probability and measure. A Wiley-Interscience Publica-
tion, John Wiley & Sons, New York, 1995.

[8] E. Byres, J. Karsch, and J. Carter. NISCC good practice guide on firewall
deployment for SCADA and process control networks. NISCC, 2005.

[9] K. D. Gourley and D. M. Green. Polygon-to-rectangle conversion
algorithm. IEEE CGA, pages 31–32, 1983.

[10] J. D. Guttman and A. L. Herzog. Rigorous automated network security
management. IJIS, 4(1-2):29–48, 2005.

[11] F. Harary and R. Z. Norman. Some properties of line digraphs.
Rendiconti del Circolo Matematico di Palermo, 9(2):161–168, 1960.

[12] C. D. Howe. What’s Beyond Firewalls? Forrester Research, Incorpo-
rated, 1996.

[13] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao. Flowguard: Building robust
firewalls for software-defined networks. In Proceedings of the third
workshop on Hot topics in software defined networking, pages 97–102.
ACM, 2014.

[14] D. S. Johnson. The NP-completeness column. ACM Transactions on
Algorithms, 1(1):160–176, July 2005.

[15] A. X. Liu and M. G. Gouda. Diverse firewall design. Parallel and
Distributed Systems, IEEE Transactions on, 19(9):1237–1251, 2008.

[16] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis engine.
In IEEE Symposium on Security and Privacy, pages 177–187, 2000.

[17] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner. Malachite:
Firewall policy comparison, http://tinyurl.com/o2ke3py. Technical Re-
port, 2015.

[18] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner. Towards
standardising firewall reporting. In 1st Workshop on the Security of
Cyber Physical Systems (WOS-CPS). LNCS, 2015.

[19] D. Ranathunga, M. Roughan, P. Kernick, N. Falkner, and H. Nguyen.
Identifying the missing aspects of the ANSI/ISA best practices for
security policy. In 1st ACM Workshop on Cyber-Physical System
Security (CPSS), pages 37–48. ACM, 2015.

[20] A. Tongaonkar, N. Inamdar, and R. Sekar. Inferring higher level policies
from firewall rules. LISA, 7:1–10, 2007.

[21] A. Wool. Architecting the Lumeta firewall analyzer. In USENIX Security
Symposium, pages 85–97, 2001.

[22] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra.
FIREMAN: A toolkit for firewall modeling and analysis. In IEEE SSP,
pages 15–213, 2006.

8

