ON-LINE GENERATION OF FRACTAL AND MULTIFRACTAL TRAFFIC

Darryl Veitch', Jon-Anders Bickar?, Jens Wall?> Jennifer Yates® and Matthew Roughan'

1 - Department of Electrical Engineering, University of Melbourne, Victoria 3010, Australia.
E-mail: {m.roughan,d.veitch}@ee.mu.oz.au

2 - Formally at SERC, RMIT University, Level 3, 110 Victoria St, Carlton, Vic 3053, Australia

3 - AT&T Research Laboratories, 180 Park Avenue, P.O. Box 971, Florham Park, NJ 07932-0000, USA
E-mail: jyates@research.att.com

Abstract— A general wavelet based framework is described
for the on-line generation of time-series, particularly fractal
and certain multifractal time series. A scalable method is
given to transmit a given time series as a cell stream over
ATM at OC3 rates on inexpensive hardware - a low end
PC. It is based on the CORAL system with FreeBSD drivers
written for a standard ATM NIC. The on-line systems were
then coupled to faithfully generate and transmit synthetic
fractal and multifractal traffic at high rates with very low
memory requirements. The system is highly scalable and
could be the basis of an inexpensive test traffic generator.

I. INTRODUCTION

Many studies of data traffic have confirmed its fractal or
self-similar nature [3], [4], [21], and more recently its multi-
fractal characteristics [7], [11], [27], [26]. Such characteris-
tics may have important consequences for the performance
of networks, and hence simplistic traffic models may pro-
duce misleading test results. However, most standard test
equipment used to generate reference loads for benchmark-
ing network elements is incapable of generating traffic with
fractal characteristics. Instead traditional models are used
which are very poor at describing the real fractal nature of
traffic.

This paper presents a system for generating realistic ag-
gregate test traffic, in particular for Asynchronous Trans-
fer Mode (ATM) operating over 155 Mbps OC3 links. The
method is highly adaptable, and allows generation of traffic
with fractal or multifractal characteristics. Among other
uses, such traffic could be employed to test QoS charac-
teristics of network equipment in the presence of realistic
traffic loads, rather than with the undemanding test traffic
most test and measurement devices generate.

At least one group has produced self-similar test traffic
using the heavy-tailed On/Off paradigm and variants, for
example [31], [33], [12], [13]. We have implemented this
method of traffic generation [32] and found it suffers from
several defects, including its inability to generalise to multi-
fractal behaviour. Instead, this paper will focus on using
the inverse discrete wavelet transform to construct a frac-
tal, or multi-fractal time series, as described by Riedi et
al [10]. Tt has been noted by several authors (for example
[35], [14]), that the wavelet transform is ideally suited for
such a purpose. In this paper we exploit one of its key ben-
efits, that it can be implemented on-line. The time-series
is generated in real-time and passed to a simple ATM Net-
work Interface Card (NIC) which uses purpose designed
firmware to generate a stream of ATM cells which very
closely match the traffic rate as specified by the time se-

123The majority of this work was conducted while the authors were

at the Software Engineering Research Centre at RMIT University,
Melbourne. The work was sponsored by Ericsson Australia.

ries. The advantage of this method is that a sequence of
test traffic of any length, with detailed fractal properties,
can be generated with scalable memory and processing re-
quirements. The decoupling of the time-series generation
and traffic generation phases is a key advantage. It means
that the series could be generated by alternative mecha-
nisms, and could even be generated off-line, or be derived
from high-resolution traffic logs. On the other hand the
time series generator output could be used to feed a simu-
lation, or be stored to file. Finally the on-line wavelet inver-
sion framework used is itself general and could be used to
synthesize according to other models, including non-fractal
models, on-line and in real-time.

The design of the traffic generation half of the system
is based on that of the CORAL project [5], [6], with a
FreeBSD transmission driver written for the first time based
on existing DOS drivers, with some corrections and modi-
fications. The aim is to reproduce as accurately as pos-
sible at the ATM cell level the bit rate specified by the
time series, here specified at a resolution of one value per
1ms (this parameter can be changed). To within the accu-
racy of the traffic measurement system used, this aim was
achieved. The approach is to generate IP packets which
are then transmitted via AAL5 over ATM. In the current
form the IP packets are generated at uniform intervals,
with the traffic rate being determined by the packet size,
though this rather simplified method of generation is not
a requirement of the hardware, merely a first stage in the
implementation. The hardware used in the generator is
based around a low end Intel PC running FreeBSD, and a
commodity off-the-shelf ATM NIC (from FORE Systems),
the total cost being very low at around $4000 (Australian).
The test generator can generate ATM traffic in real-time at
close to the line rate, making it a cheap, effective method
of generating traffic.

The current performance of the system indicates that it
would be possible to place multiple NICs in the PC to allow
generation of several simultaneous traffic sources from the
same box. This could lead to its use both as an effective test
mechanism for real networks as well as in benchmarking
isolated systems.

In section 2 we address the on-line generation of the time
series, including the necessary wavelet background. In sec-
tion 3 it is shown how a time series can be sent as an ATM
cell stream in real-time, by using purpose built firmware.
In section 4 these separate halves are combined into a work-
ing system and an example is given of a simple multifractal
model which falls naturally within the framework. Scalabil-
ity issues are also discussed, before concluding in section 5.

II. GENERATING THE TIME SERIES
A. Long Range Dependence and Multifractals

Models for traffic are often defined within the following
framework. Consider a stationary time series (discrete time
stochastic process) X (k), k =1, 2-- -, representing for ex-
ample the number of bytes per time interval observed on
a given link under steady traffic conditions. An important
fractal property found in such series is that of long-range
dependence, which can be defined as the slow, power-law
like decrease at large lag of the autocovariance function, or
equivalently as the power-law divergence at the origin of
its spectrum:

fo(v) ~ v,

This long memory property represents a replacement of the
paradigm of a time constant or characteristic time scale
by the notion of scale invariant, or ‘constant’ relationships
between scales, controlled by the dimensionless scaling ez-
ponent . This description is closely associated to self-
similarity and the associated exponent, the Hurst param-
eter (see [8], [20] for more details of these concepts and
their inter-relationships). Long-range dependence (LRD)
however, being a second order characterisation, is not a
complete description of the statistics of z(k), unless the se-
ries is Gaussian. This is frequently not the case, and it has
been observed [7], [27], [11] that richer scaling behaviour
known as multifractal scaling arises in wide area network
traffic, which implies non-trivial scaling behaviour not just
in the second order statistics, but in statistics of all orders.
This implies in turn that the single exponent a must be
replaced by a selection, indeed a spectrum, of exponents.
It is beyond the scope of this paper to describe multifrac-
tal processes in detail (see [9], [10], [22] for more details),
however we briefly describe a class of objects known as con-
servation binomial cascades, which constitute an important
subclass of multifractals. A (random) binomial cascade is
an iterative re-distribution of an originally uniform mass on
the interval, where line segments are repeatedly divided in
two, the masses being re-distributed via weights obtained
by multiplying the original weights by multipliers result-
ing from independent trials of a given random variable. If
the weights are such that the mass is conserved on average,
then the cascade is conservative. Continuing this procedure
recursively for a number of levels generates a highly irregu-
lar, non-Gaussian signal with scaling properties which is a
multifractal in the limit. Note that although a spectrum of
exponents is now involved, these can be expressed in spe-
cific examples as parametric functions of a small number of
‘model’ parameters, preserving the need for parsimony. A
wavelet implementation of a simple random binomial cas-
cade due to Riedi et al [10] will be described below.

v| = 0. (1)

B. Multiresolution Analysis and Wavelets

Wavelets are analysing functions which are localised in
both time and scale or frequency. Wavelets have become
a large subject in their own right and are used in diverse
ways. For our purposes only a subset of wavelets will be
considered, those falling within the Multiresolution Anal-
ysis (MRA) theory [25] leading to the Discrete Wavelet

Transform, where the primary object is not the mother
wavelet, 1o (t), but the scaling function ¢o(t), t € R.

The collection of integer translates of the scaling func-
tion, {¢o(t—k),k € Z} span an approzimation subspace Vp
of square integrable functions L?(R). The special, defining
property of ¢o(t) is that for any real function or sample
path of a stochastic process z(t) lying in Vj, the ‘coarser’
dilated function z(¢/2) is also in Vp, in a subset called V7.
This leads to the recursive definition of a set of nested sub-
spaces V; such that V; C V;_;, whose intersection is the
null set in the limit j = oo, and union the full space L*(R)
at j = —oo.

The multiresolution analysis of z involves successively
projecting it into each of the approximation subspaces V;:
approx;(t) = (Projy, 2)(t) = >_; a.(J, k)¢;k(t), where the
bjk, defined by {p;r(t) = 277/2¢5(277t — k), k € Z}
are scaled and translated versions of the scaling function
which act as basis functions, and the a,(j, k) are the cor-
responding approximation coefficients. It is not necessary
to perform all of these projections directly however. The
information removed when going from one approximation
to the next, coarser one, is called the detail: detail;(t) =
approx;_ (t) —approx;(t). The MRA shows that the detail
signals detail;(¢) belong to the complementary subspaces
W; = V;6V;_4, called the wavelet subspaces, for which the
mother wavelet 1y plays the role of canonical basis func-
tion, analogous to that of the scaling function for the V;. It
is therefore possible to decompose any given approximation
into a detail and a new, coarser, approximation. The end
result is a recursive decomposition of the initial approxi-
mation, which we call approx, by convention, into a set of
details of decreasing resolution, expanded in wavelet func-
tions with corresponding wavelet detail coefficients d, (7, k),
and a final, most coarse approximation, expanded in scal-
ing functions:

approxy(t) = approx;(t) + ijl detail;(t)
= Yraa(J,k)osk(t) (2)
X Tk e (G k)i (D).

Varying J simply means deciding if more or less informa-
tion contained in approx,(t) is written in details as opposed
to the final approximation approx, and involves no loss of
information. Information is unavoidably lost however in
the initialising projection of z(¢) into V. Indeed in prac-
tice one generally deals with discretized data z(k) and the
initialisation is approximated at the finest resolution avail-
able by setting ag(k) = z(k) (see however [17]).

If we expand dilated versions of ¥y and ¢y themselves in
terms of ¢g then we obtain the so called two-scale equa-

tions:
T s = VIS, udt-n) "
P2 = VIS ot —n)

from which the following relationships relating the approx-
imation and detail coefficients at adjacent levels follow eas-
ily:

Qi =

p 7 e takin (@)

Zn UnQj—1,2k+n-

O Polluted coefficient Dependence of coarser coefficients on

the approximation below.

N

® Non-polluted coefficient

Analysis

j=0

Fig. 1. Coefficient relationships, Analysis. Derivation of the
approximation and detail coefficients at the upper level j + 1,
from the approximation coefficients at the finer level j, for gener-
ating sequences u(k), v(k) of length four. Unfilled circles indicate
polluted coefficients, those calculated in part from missing data.

Two essential facts now emerge. First, we do not need to
deal with the time shapes of wavelets or scaling functions,
but only with the discrete filters u,, and v,, which are said
to generate the multiresolution, and control all its proper-
ties. In fact in wavelet design the sequence u,, is dealt with
directly. Because of the highly localized nature of ¢(t) and
(t), most of these sequence elements are negligible, and
in some cases, including all the examples in this paper, the
scaling function and mother wavelet have finite time sup-
port, so only a finite number are non-zero. Second, from
the initial approximation sequence ag(k), we can deduce
all of the other approximation and detail coefficients via
simple discrete operations.

The recursions given by (4) define the approximation and
detail coefficients at a coarser level j + 1, through the ap-
proximation coefficients at level j from which they came,
as illustrated in figure 1 in a case where the sequences
u(k) and v(k) are zero except for £ = 0, 1, 2 and 3. In
this figure, and in figures 2 and 3, the circles are on the
dyadic grid, a set of points given by {(¢,scale) = (k27,27%),
J,k € Z} in the time-scale plane, corresponding to the lo-
cations around which the ;1 and ¢; ;. are centred and the
details and approximation coefficients belong. Each row
corresponds to a fixed scale 2/, beginning with 5 = 0 on
the bottom, within which points are indexed by k. The
recursion relations above are in the direction required for
analysis, when one begins with a function z(t), initializes
to obtain ag(k), and then proceeds ‘upward’ to calculate
all the detail coefficients. The analysis then consists of
studing their statistical properties, for example the mea-
surement, of the exponent a can be made by considering
the logarithm of the variance of d;. as a function of j [20],
[24]. To invert this procedure, that is to begin from the
approximation and detail coefficients at the coarsest level
and to reconstruct the finer level approximations, we need
the inverse relation

aj = Zuk—2n0j+17n + vp—2ndjtin (5)

n
illustrated in figure 2, again for finite generating sequences
or filters of length four. This last relation assumes that the
details are already available, which would be the case if a
prior analysis phase had calculated and stored them. Our
interest however is in series generation, so the details must

UONEIAUID

Creation of:
even k:
=1
oddk : X
=0

Fig. 2. Coefficient relationships, Generation. Lines showing
dependence of the approximation coefficients only at the lower

(finer) level j, on the approximation and detail coefficients at
level j + 1, for generating sequences u(k), v(k) of length four.

k=0

somehow be generated at each level, as well as a J value
selected, and a most coarse sequence ay(k) = aj;, supplied.

It is important to clarify the issue of edge effects. If x(t)
were known for all time, then so would the detail coeffi-
cients d;, for each {j,k € Z}, and J could be arbitrarily
large. Since in practice the length n of ag(k) is finite, and
the density of coefficients halves with each increase in j as
can be seen in figures 1 and 2, only detail coefficients up
to roughly j = log,(n) can be calculated, and at all levels
there are discretisation effects at the edges. In analysis, as
in figure 1, this results in ‘polluted’ coefficients (unfilled cir-
cles) whose calculation involved points in the grid for which
there is no data. In generation, points such as those to the
left of £ = 0 in figure 2 have to be inserted artificially so
that, beginning at j = J and moving down, all coefficients
necessary to generate a series beginning at k¥ = 0 on level
j = 0 are available. Note that these extra coefficients are
set to zero but are necessary to avoid the recursion rela-
tions taking different forms near the edges. There are also
edge effects due to truncation of u(k) in the case where it
is not finite.

C. A General On-Line Generation Framework

We have discussed how a sample path z(t) can be recast
as a set of detail coefficients in the time-scale plane, and
a residual approximation sequence, and the relationships
between those coefficients. Since z(t) is a random process,
so are its wavelet coefficients stochastic processes in their
own right. Indeed since z(t) is stationary each detail se-
quence d;. and approximation sequence a;. is a discrete
time stationary process. In order to generate an accurate
approximation ag(k) = ao,r to z(k) therefore, the statisti-
cal nature of these processes must be understood, so that
samples paths from them can be generated in practice to
feed the general deterministic reconstruction algorithm de-
scribed above (henceforth we will treat the generation of
ap (k) as our aim and ignore the final, often impossible, step
to z(t)).

We first address the complexity of the reconstruction al-
gorithm itself. It is easy to see that, ignoring edge effects,
from a sequence ay (k) of length ny the number of operations
required to generate ag(k), which has length n = n;2”7, is
O(ny2’1,), where I, is the length of the filter u(k). The
computational complexity is therefore linear in the length
of the generated time series, which is acceptable, however

", @
" ®® 0 @
(1T Y Dooo

k=0 1 2 3 4 5

Time

Fig. 3. On-line generation order. The sixth point of the output
time series, ao(5), is about to be generated, the 11%h coefficient
overall. Of the first 10 (ignoring initialisation edge effects), those
with the oblique shading are no longer needed and can be dis-
carded, leaving only points 1, 8, 5 and 9 in memory. After point
11 is generated, 5 will be no longer needed.

so are the memory requirements of a direct off-line imple-
mentation where the a; are calculated row by row, which is
not good news for a high speed data generator. Fortunately
the short range nature of the relationships between coef-
ficients, as seen in figure 2, allow a natural on-line imple-
mentation where the coefficients are calculated in trees in
pre-order. Figure 3 shows the order in which the first 10 co-
efficients are generated in a scheme where J = 2, and again
I, = 4. Note that the first tree, that bounded by points 1,
3 and 7, was generated before the second begun with 8. In
this way only a small number of coefficients need ever be
stored in memory, of the order of JI,/2 =~ (log,(n) — 1)I,,.
An example is detailed in the caption of the figure. Nat-
urally, at the bottom level the emerging elements of ag(k)
are the desired time series output, and are not stored.

The natural linear complexity and logarithmic memory
requirements of the on-line algorithm however, although
ideal for on-line analysis [23], are not sufficient for gen-
eration. For the generation as a whole to be on-line and
scalable, this must be true of each of its component parts.
Thus each detail process must also be amenable to an on-
line implementation with no more than linear computa-
tional complexity and logarithmic memory requirements.
The same is true of ay(k) at the top level, whose elements
are calculated one by one as needed, although a more costly
algorithm would be possible there, as the rate will be 27
times slower than that of the output! This question of the
nature and complexity of the input processes is one which
is specific to the kind of final series one wishes to gener-
ate. Note however that typically the detail processes will
be of the same type at each scale, though with parameters,
such as variance, which will vary. The most difficult aspect
of their generation however is the potential correlations
across different scales. Although long term correlations
are not expected — it is one of the key advantages of the
wavelet representation that correlations between wavelet
coefficients are weak, even when there is long memory in
z(t) — reproducing the correct structure both across and
within scales could be time consuming. Two examples of
fractal processes are given next.

D. Two Fractal Models

The first model we choose is a member of perhaps the
simplest possible family with a fractal property. This prop-
erty is the defining feature of second order scaling behaviour
in the wavelet domain, the power-law progression of the
variance of the details with j:

Ed(j,)* ~ 2/°C (6)

where C is a positive constant. Provided a € (0, 1), such a
process can be viewed as an approximation to the canonical
LRD process, the fractional Gaussian noise (fGn). This
approximation is extremely computationally effective, as
exact generation is O(n?). The process a;(k) is set to a
constant corresponding to the mean traffic rate, which here
is just zero, and the details are each zero mean Gaussian
IID processes, corresponding to fluctuations in the rate.
That is, for each j fixed, the d; ; are mutually independent
Gaussian random variables with zero mean and variance
272, Thus in this simple model there are no correlations
in the wavelet plane at all, and on-line generation of the
component processes is trivial. The variance of d ;. is nor-
malised to 1 and for j =1, 2, ---J — 1, equation (6) will
be followed with a = 0.5. Daubechies wavelets [25] with
two vanishing moments, implying I,, = 4, are chosen, and
J = 10. The total memory requirement of the model is
around 20 floating point numbers for unlimited time series
output. The program is written in C and only n = 1024
points will be generated in this example, whose aim is to
illustrate the kind of processes included in the framework
(see also [14], [15]). The output is shown in figure 4. In
the top plot the time series ag(k) is shown, and below a
Logscale Diagram is given, that is a wavelet based estimate
of the detail variances in logarithmic coordinates, with con-
fidence intervals [20]. In both cases the results closely re-
semble those obtained for actual fGn processes. Note that
simply by changing « to fall within (1,2), this ‘IID’ model
family approximates another key fractal process, the frac-
tional Brownian motion.

The second example follows the work of Riedi et al, [10],
who implemented a multiplicative binomial cascade in the
wavelet domain. We do not modify their approach but
merely show how it fits into the on-line framework, in order
to provide what is perhaps the first real-time generator of
multifractal traffic, and to illustrate again the scope of the
method.

Their approach is very specific in a number of ways.
The first feature is that it depends fundamentally on the
use of the Haar Wavelet. For this simplest of wavelets
the scale function ¢(t) is just the indicator function of
the interval [0,1], and the corresponding generator only
has two elements: ug = u; = 1/ \/5, and for the wavelet
—v, = vy = 1/\/5; The use of Haar wavelets ensures the
positivity of each approximation sequence, an essential fac-
tor in their approach, and a useful one in terms of inter-
preting the final series — negative traffic rates are forbid-
den! The second key feature is that the binomial cascade
is a binomial tree structure growing from a single root.
In the MRA implementation this translates in the top ap-
proximation ay(k) consisting of just a single point, a single

,g Statistics: Mean = —0.002 and Variance = 0.077

(0]

o

S |
e

(0] 4
©

(0]

o |
3

~10 500 1000 1500 2000 2500 3000 3500 4000
Time
5 Logscale Diagram (g=2), estimated alpha = 0.543

Octave j

Fig. 4. Output of an IID model An approximation of a fGn is
given by using IID Gaussian details at all scales, with variances
obeying Ed(j,-)? ~ 2/C with a = 0.5. Daubechies wavelets
with filters of length 4 were used, and n = 1024 points are plotted
generated with J = 10 recursion levels. In the lower plot an
estimation of the variances confirms the designed power-law.

random variable a7(0). The immediate consequence of this
is that the method cannot be truly on-line, as points can
only continue to flow out at level j = 0 if more points can
be generated as needed at level .J. However, by choosing J
large enough, we can ensure that the finite length n of the
output is as large as desired. For example, with 32 levels,
and an output of one point per millisecond (assuming the
machine can support this), traffic could be generated for a
month, with a constant memory requirement of around 32
floating point numbers. Using the framework in this way,
where we eliminate the need for an on-line algorithm for
ay(k), we refer to as Almost On Line or ‘AOL’.

The mapping of the multiplicative weights of a cascade
model into the MRA structure is achieved by defining the
detail processes in an unusual way, as randomly rescaled
versions of their approximation coefficient ancestors:

djr = Rjrajr (7)

where the R;; are symmetric random variables on [—1, 1]
whose distribution can vary with j but which are identi-
cally distributed for j fixed. The symmetry ensures that in
an average sense, ‘mass’ is preserved at each stage of the
construction. This method of generating the details scales
well and has low computational needs. Note that because
of the tree-like structure, the R;; are independent along
lines of descendants, but can be dependent elsewhere, un-
like the complete independence of the IID example. It can
be shown [10] that if the R;. converge in distribution as
j — o0, then the output in the limit is a binomial cascade,
which has known multifractal properties.

The variance decay of the details across scales can be
freely controlled as follows. Let n; = E[d3,,]/E[d]] be
the desired variance ratios, 0 < j < J. They can be calcu-

Statistics: Mean = 0.056 and Variance = 0.024

Generated coefficients

1 2 3 5 6 9 10
Octave j
o Linear Multiscale Diagram : hq=Zq/ q
-0.2+ 4
0.3 ¢ o : i
-0.4f el J
-0.51 ; + B e
-0.6¢ | | j | i | | | | 7
1.5 2 2.5 3 35 4 4.5 5 5.5 6
q

Fig. 5. Output of a Binomial cascade model An approximation
J = 12 levels deep of a random conservative cascade is given using
beta multipliers with shape factor p = 10 at the coarsest, level
(nearly normal with small variance: 1/21). The detail variances
decays with @ = 0.5 and ay(0) is Gaussian with mean 2 and
unit variance. Top: the positive time series, Middle: estimates
of the variance with scale (log coordinates), Bottom: exponent
‘spectrum’ plot showing non-trivial multifractal behaviour.

lated as

2B[R7, ;]

5 = a2 T + B{R 1)) ®)

and initialized via E[R7] = E[d5_/E[a3]. The higher or-
der moments can also be controlled through those of the
multipliers, whilst always remaining multifractal by con-
struction.

In figure 5 an example is given of a construction J = 12
levels deep, with a controlled at a = 0.5 by selecting the
ratios as above. At each level the multipliers are chosen
to be symmetrically beta distributed, 8(p(5),p(j)), with
variance IE[R? | = 1/(2p(j) + 1). The value of p(J) is set
to give the first multiplier unit variance, and subsequently
p(j) evolves according to the set evolution of the detail
variances, reaching a steady state in the limit and thus
satisfying the above condition that the multipliers converge
in distribution. Finally the variance of a7(0) is unitary and
following [10] it is chosen as Gaussian (although this will
cause some sample paths to be negative, their probability
is low).

In the top plot the time series ag(k) is shown, which is
positive and noticeably non-Gaussian. In the middle plot
the Logscale Diagram shows the linear progession of vari-
ances with an accurate a estimate displayed in the title.
The multifractal nature of the series is revealed in the lower
plot, a Linear Multiscale Diagram [22], where scaling expo-
nents h, corresponding to several different moments ¢ are
plotted. These are analogous to « but have been rescaled
in such a way that a horizontal alignment would indicate
degenerate multifractal scaling, as would be the case for a

simple fGn process. The LMD for example of the ITD model
is a horizontal line. The distinct curve (note the confidence
intervals) shows that non-trivial multifractal scaling is in-
deed present as expected. Further details and other models
can be found in [1].

ITII. FroM TIME SERIES TO CELL STREAM

The aim of this section is to show how to take values from
a time series and, by interpreting them as byte counts after
an appropriate normalisation, to transmit them in real-
time as a concrete traffic stream whose measured bit rate
matches that of the time series as closely as possible.

For practical reasons of accessiblity we concentrate on
ATM over SONET (Synchronous Optical NETwork), a
common networking solution. However, we do not wish
to constrain our methods to one specific technology. Hence
we layer the approach by first translating the time series
into a sequence of TCP/IP packets for subsequent passing
to the transmission layer. In this way the lower layer could
be changed without affecting much of the system. Given
the looming ubiquity of the TCP/IP suite we expect this
to be a useful approach, especially as traffic models will
increasingly aim to model TCP/IP traffic directly.

A. Background

We must first understand the specifics of the network we
are using. We consider a TCP/IP over ATM over SONET
network. That is, TCP packets encapsulated in IP packets
are transmitted over the ATM Adaptation Layer 5 (AAL5)
as ATM cells, which are then sent across OC3 SONET
frames at a nominal 155 Mbps. Typically, each TCP/IP
packet is packaged as an AAL5 Protocol Data Unit (PDU)
by prepending a short LLC/SNAP header which identi-
fies that TCP/IP is being carried, and appending a short
trailer. The PDU is then segmented into 48 byte chunks
and a 5 byte header attached to each to form 53 byte ATM
cells, as illustrated in figure 6. A typical TCP/IP packet
has a 40 byte header, and the LLC/SNAP header is 8 bytes,
so all the header information is held in the first ATM cell,
whilst the trailer information is held in the last 8 bytes of
the final cell. A bit in the ATM header identifies it as the
last cell of the PDU.

Our desire to build an inexpensive, simple traffic gen-
erator strongly suggested that the monitor be based on
a PC architecture, using a commodity ATM Network In-
terface Card (NIC). We used a 330 Mhz machine running
FreeBSD. The FORE Systems PCA-200EPC ATM NIC has
been used for network monitoring and traffic generation by
MCT on the vBNS (very high performance Backbone Net-
work Service [28], [29]). In fact the CORAL group [5],
[6], [16], [18], specifically the OC3MON project [19] have
made the drivers for this NIC freely available, and they
form the basis for our work. Specifically, the existing DOS
transmit driver and the FreeBSD receive driver (the basis of
our traffic measurement infrastructure [30]) served as tem-
plates for a new FreeBSD transmit driver, a task seriously
complicated by the fact that details of the cards’ workings
and source for its firmware were unavailable. The resulting
C code was added to the kernal source file for the existing

‘ APPLICATION DATA ‘

TCP
‘ HEADER ‘ TCP DATA AREA ‘

Higher layel

P
‘ HEADER ‘ IP DATA AREA ‘

L/
SNAP AALS

TRAILER

‘ AALS5 DATA AREA

LITTTT]

ATM CELLS (INCLUDING ATM CELL HEADERS)

Fig. 6. Protocol Encapsulation. Application data is first packe-
tised into TCP packets transported by IP packets. For transmis-
sion these are assembled into AAL5 data units and finally split
into ATM cells, ready to be physically sent via SONET.

Packets
1ms

Fig. 7. Translation of time series to packet stream. A single
packet is sent at the beginning of each transmission interval (one
per time series element), which is 348 cells &~ 1ms long.

FreeBSD receive driver and can be used by the FreeBSD
CORAL code. Some bugs were also fixed, and of course
some details are specific to our application (see [2]).

The use of such hardware allowed us to build a very
powerful traffic generator for around $4000 Australian. In
principle, multiple NICs could be used, allowing multiple
traffic generators (and monitors) to run within the same
PC, further reducing costs.

B. From time series to packet stream

We have chosen a very simple, yet effective approach for
turning our time series into a packet stream. The basic
idea, illustrated in figure 7, is to transmit single packets
at uniformly separated transmission intervals, each corre-
sponding to an element of the time series. The variable
bit/cell rate is achieved by changing the packet sizes. This
has large processing advantages described in detail below.

The target transmission interval was chosen to be 1 ms.
In fact cells are the natural time unit here as they dictate
the finest resolution available for the final transmitted data
rate. One transmission interval was therefore set to 348
cells, which is just under 1 ms, and packets were generated
according to this quantisation. There are therefore 349 pos-
sible packet sizes and corresponding rate values (including
zero). If the transmission interval were smaller, which is
desirable from the point of view of specifying the traffic
rate very precisely, this quantisation would become notice-
able and eventually all details of the time series would be
lost. Furthermore when the sampling interval is smaller the
processing load on the system is increased. It was found
that 1ms gave an acceptable quantisation error, and good
performance.

The steps in creating such a packet stream are:

1. Normalize time series to desired traffic rate. The

1 TCP/IP PACKET IN AN AALS5 PDU

n =15 cells / ms

TCP/IP ATM AALS
HEADER HEADER TRAILER
START CELL END CELL
MIDDLE CELLS IDLE CELLS
ONE MILLISECOND

Fig. 8.

Structure of the 348 cell long transmission interval A single time series value is translated to a single TCP packet of the

corresponding size, to be sent in one transmission interval, & 1ms. The packet is converted to a sequence of 348 modified ATM cells

forming a pseudo AAL5 PDU.

unitless time series may be arbitrarily normalized. Either
by selecting the input parameters to the time series gener-
ator, and/or by linearly transforming the output series us-
ing user input parameters such as the mean and variance,
a normalized packet size sequence should be outputted in
units of cells per transmission interval.

2. Map the packet rates into the quantisation. The
packet size sequence is still real valued and must be mapped
to the discrete set {0, 1,---348}. Values are first rounded
up to the nearest integer, then negative values set to zero
(many traffic models allow unphysical negative rates), then
excess ‘cells’ over 348 are virtually buffered, that is, they
are stored until the first interval with spare capacity. In
this way the final traffic will reflect the real effects of traffic
bursts exceeding the output bandwidth (see figure 9).

3. Create TCP/IP packet headers. A template packet
header specified at the start of the program, containing the
TP addresses, TCP ports etc. is copied to each TCP/IP
packet header. The packet length is calculated from the
known total length of the packet in cell units and inserted
in the header, and finally the CRC is calculated.

4. Assemble the TCP/IP packets. This is not done
in our implementation as we assemble the AAL5 PDU di-
rectly, as described below. In any case for our purposes
the packets do not carry real data, they will be, in effect,
stuffed with zeros.

The program which performs these steps can be called
from the unix command line and acts as a filter; that is, it
reads the time series form standard input. It then generates
the packet sizes, and headers which are passed to a lower
level process to create and send the packets. This approach
is very flexible, it allows time series to be generated by
another program, or read from a file. Hence a particular
time series can be used again and again, or a very long time
series can be generated on-line continuously as we require.

C. From packet stream to cell stream

The previous process sent a series of requests to trans-
mit packets, which now need to be sent to the transmission
layer, in this case ATM. However, it would be time consum-
ing and inefficient to try to transmit each of these packets
individually. It would also be very hard to guarantee that
the packets are transmitted exactly 1 transmission interval
apart.

(a)

L L L
0 2000 4000 6000 8000 10000 12000 14000

x10* (b)

L L L L L L
0 2000 4000 6000 8000 10000 12000 14000
Packet number

Packet size (bytes)
- &
T

o
2
T
L

Fig. 9. Effect on rate of quantisation and virtual buffering.
A time series defining the un-normalised traffic rate (top), is con-
verted into a packet stream, one per & 1ms transmission interval
(bottom). After normalisation the zero (resp. maximum) traffic
rate is set to the central (resp. upper) horizontal line in the top
plot. The resulting quantisation effect (truncation below the zero
line) and virtual buffering (excess above the upper line being car-
ried over) are visible in the packet stream. Within the two lines
however the 349 rate levels gives good resolution.

The CORAL project provided the basis for a much more
efficient approach. The FORE card integrates the AALS5,
ATM and SONET layers, however rather than passing pack-
ets to it we took advantage of the fact that CORAL have
rewritten the firmware to allow the transmission of a pre-
cisely defined cell stream. Sets of pseudo AAL5 PDU’s
can be constructed externally and placed in a buffer. The
ATM card is programmed to read from the buffer using
Direct Memory Access (DMA) and transmit them contin-
uously, as long as buffer ‘blocks’ are available. The ‘cells’
in these pseudo PDU’s differ from normal ATM cells. First
the 1 byte HEC checksum is absent as it is later added by
the card and second, a four byte count field is prependend
which tells the card how many times to send that particu-
lar cell. These constructed ‘cells’ are thus 53 — 1 + 4 = 56
bytes long. The count field means that the amount of data
which need be written to the buffer is greatly reduced, and
furthermore, that the load on the packet generator process
above, and the PDU creation process, as well as the read-
ing time per PDU, is essentially independent of traffic rate
but depends only on the chosen transmission interval, an

inherent scaling feature.

Figure 8 illustrates the construction of one pseudo PDU,
corresponding to the transmission of a single TCP /IP packet
5 cells in length over a transmission interval 348 cells long.
It consists of a header cell containing the TCP/IP header
described above together with the LLC/SNAP header, a
trailer cell containing the AALS5 trailer at the end, and 3
empty body cells inbetween. Through the count field, only
one body cell need actually be written, with a count value
of 3. Similarly, the special blank cell, which tells the card
to send nothing for a cell-period, need only be written once,
with a count value of 348 — 5 = 343. It is possible to send
no packet in one transmission interval (blank cell with a
count of 348), and a packet just one cell long (a special cell
can be written including both the TCP /IP header and the
AALS5 trailer, with a count of 1).

The idea is that continuous reading of the pseudo PDU’s
by the card will result in a totally controlled output cell
stream, with no gaps. Good buffer management is clearly
important to ensure this. Because of the use of DMA at
least two buffer blocks are needed to safely separate read-
ing and writing. In fact 5 were chosen each 9325 cells long.
These were sufficiently large that request interupts, gen-
erated when passing from one block to another, were not
generated too often, and 5 seems sufficient to smooth out
scheduling effects of the user processes without taking up
too much memory. The management, itself has some sub-
tleties (see [2] for details) but essentially a series of pseudo
PDU’s are written to an available buffer block until full. Tt
is then marked as full and writing immediately moves to
the next free block. When the NIC finishes reading a buffer
it interrupts to find the address of the next full block and
moves to it. The NIC sends from an already loaded block
as it reads the next, so that no gaps form.

IV. THE WORKING SYSTEM
A. A Multifractal Example

The two independent components of the system, the on-
line time series generator and the packet-sender and kernal
routines, are linked simply via unix pipes. The output of
the card is sent over an optical link to another OC3Mon
based measurement system, with another FORE Systems
card, as described in [30]. This system operates on a ‘first
cell of TCP/IP packet’ mode, where only 1 cell per packet
is measured, and approximate bits rates are obtained with
the help of the Total Length field in the header. This does
not result in any loss of accuracy here, given the known
structure of the cell stream.

An example of the output, using the multifractal model
described in the previous section, is given in figure 10. In
contrast to figure 9, where the normalisation was chosen to
result in extreme quantisation and normalisation effects,
here the normalisation was chosen to fit the quantisation
well. The measured traffic, at least to the eye, appears
to be an exact copy in cells per millisecond of the original
target time series generated at the sender. Note that the
vertical scale is in cells per transmission interval, and that
high rates were achieved, in one case a burst comes very
close to the maximum of 348.

N

© = v

original values

e o 9o
2

0 0.5 1 15 2 25 3 3.5
time series index

(b)

o
=]

number of cells
- N
S
3

0 0.5 1 1.5 2 25 3 3.5
transmission interval (each ~1ms) x10*

Fig. 10. Multifractal time series and received cell rate.
The positive, normalised time series (top) is converted to a cell
stream, sent over an optic link, measured via first cell of TCP /IP
packet measurement mode, and plotted at the finest resolution
possible, one point per transmission interval. We see that the
reproduction is excellent.

Testing has shown that all cells sent to the card were
received at the receiver. Jitter in the packet arrival times
was measured with a GN Nettest Interwatch 95000 traffic
monitor, and was found to be no greater than +5us.

B. Scalability

As mentioned above, the packet and PDU generation
processes, which are user processes, have workloads which
are independent of traffic rate. Furthermore their work-
loads are small, for example only four pseudo cells (and
sometimes only 3, 2 or even 1) need to be written to a buffer
block per millisecond. Furthermore it was found that very
heavy workloads were needed before 5 buffer blocks were
insufficient to smooth out the effects of other processes on
the 330 Mhz machine used. The workload of the kernal
is negligeable, being restricted to the notification of full
blocks, as DMA is used. Problems therefore can only arise
if the transmission interval is made too small. Decreas-
ing this interval increases the rate at which the card must
read the blocks, and therefore the kernal interrupts and the
writing rate of the pseudo PDU’s in direct proportion. A
transmission interval of 1ms was very easily supported by
our modest PC. Higher rates were not tried as the quanti-
sation would be too coarse at OC3 rates. We believe that
the same system could support OC12 rates with a trans-
mission interval of at least as small as 100us, assuming that
the on-line time series generator could deliver values at this
rate also. This would depend on the speed of the machine,
the number of competing processes, and the computational
details of the detail process as described in the last section.

V. CONCLUSION

We have successfully combined two independent systems
to send traffic according to a sophisticated multi-fractal
traffic model across an ATM OC3 link in real time. Rates
close to link saturation are possible for indefinite periods, as

the load on the sending processes are independent of rate,
they are functions only of the rate resolution, the ‘trans-
mission interval’. This resolution can be freely chosen, and
was set here to 348 cells, which is just under 1ms, and no
processing difficulties we encountered. This rate is a rea-
sonable compromise between a fine resolution specification
of traffic rate, and quantisation effects of the target rate
values from the time series due to the size of ATM cells.

The first system is an on-line wavelet synthesis frame-
work, implemented in C. Many different traffic models can
be incorporated in it, and it is particularly suited to the
generation of fractal models. Examples were given of an
approximate fractional Gaussian noise, a long-range depen-
dent process, and an exact implementation of a simple mul-
tifractal model proposed in [10] (figure 10). Data can be
generated indefinitely with trivial memory requirements,
and could be used for a variety of purposes, for example to
drive simulations. The only difficulty, a topic for continued
research, is the specification and on-line generation of the
appropriate detail processes, which depend on the desired
traffic model.

The second system takes an input time series in real time,
normalises it, and converts it to an equivalent TCP/IP
packet stream at a rate of one packet at the beginning
of each transmission interval (this could be easily altered
to spread the traffic out more evenly). It then directly
constructs an AAL5 data unit in memory which carries
the packet. The firmware on the FORE Systems ATM
network interface card used, which the CORAL project has
made freely available, reads these PDU’s from a buffer, and
transmits them. A new FreeBSD driver was written to make
use of this firmware in transmit mode. Through sensible
buffering it was possible to send a continuous supply of
PDU’s to the card, without gaps. Furthermore the entire
system has a workload which is independent of the traffic
rate, thanks to the ability to give the card an instruction to
send the same cell multiple times. The system is therefore
inherently scalable.

REFERENCES

[1] J. Bakar, “A Framework for implementing fractal traffic models
in real-time” Master’s thesis, SERC Melbourne, 1999.

[2] J. Wall, “Implementing a tool for converting time series into
ATM traffic” Master’s thesis, SERC Melbourne, 1999.

[3] Will E. Leland, Murad S. Taqqu, Walter Willinger, and
Daniel V. Wilson, “On the self-similar nature of Ethernet traffic
(extended version),” IEEE/ACM Transactions on Networking,
vol. 2, no. 1, pp. 1-15, Feb 1994.

[4] V. Paxson and S. Floyd, “Wide-area traffic: The failure of pois-
son modeling,” IEEE/ACM Transactions on Networking, vol. 3,
no. 3, pp. 226-244, 1994, http://ee.lbl.gov/nrg-papers.html.

[5] “Coral network traffic analysis,” online: http://moat.nlanr.
net/Coral/.

[6] J. Dugan, “Coral — flexible, affordable, high performance
network statistics collection,” online: http://www.caida.org/
Tools/Coral/.

[7] A. Feldmann, A.C. Gilbert, W. Willinger, Data networks as
cascades: Investigating the multifractal nature of Internet WAN
traffic. Proceedings of the ACM/SIGCOMM’98, Sept. 1998,
Vancouver, Canada.

[8] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger, Long-
range dependence in variable-bit-rate video traffic, IEEE Trans.
on Comm., 43:1566-1579, 1995.

[9] R.H. Riedi, An improved multifractal formalism and self-similar
measures, J. Math. Anal. Appl., Vol.189, pp.462—490, 1995.

[10] R. Riedi, M.S. Crouse, V.J. Ribeiro, R.G. Baraniuk, A Mul-
tifractal Wavelet Model with Application to Network Traffic,
IEEE Trans. Inf. Th. special issue on ”Multiscale Statistical
Signal Analysis and its Applications”, vol. 45, no. 3, April 1999.

[11] R. Riedi, J.L. Lévy Véhel, TCP traffic is multifractal: a numer-
ical study, Preprint 1999.

[12] Bong K. Ryu and Mahesan Nandikesan, “Real-time generation
of fractal atm traffic: Model, algorithm and implementation,”
Tech. Rep. 440-96-06, Center for Telecommunications Research,
Columbia University, New York, 1996, Available at http://
comet.columbia.edu/comet/research/control/traffgen.html.

[13] A. A. Lazar and M. Nandikesan, “Real-time traffic generation
and QOS monitoring system,” Tech. Rep. 481-97-15, Center
for Telecommunications Research, Columbia University, New
York, 1997, Available at http://comet.columbia.edu/comet/
research/control/traffgen.html.

[14] Sheng Ma and Chuanyi Ji, “Modeling video traffic using
wavelets,” in ICC’98, 1998.

[15] Sheng Ma and Chuanyi Ji, “Modeling video traffic in the wavelet
domain,” in IEEE Infocom’98, 1998.

[16] G.J. Miller, K. Thompson, and R. Wilder, “Performance mea-
surement on the vBNS,” in Proceedings of the Interop’98 Engi-
neering Conference, Las Vegas, NV, May 1998.

[17] D. Veitch and M. S. Taqqu and P. Abry, “Meaningful MRA ini-
tialisation for discrete time series” To appear, Signal Processing,
2000.

[18] Kevin Thompson, Gregory J. Miller, and Rick Wilder, “Wide-
area Internet traffic patterns and characteristics,” IEEE
Networks, 1997, Extended Version: http://wuw.vbns.net/
presentations/papers/index.html.

[19] J. Apisdorf, K. Claffy, K. Thompson, and R. Wilder,
“OC3MON: Flexible, affordable, high performance statistics col-
lection,” in INET’97 Conference, June 1997.

[20] Darryl Veitch and Patrice Abry, “A wavelet based joint estima-
tor of the parameters of long-range dependence,” IEEE Trans.
Inf. Th. special issue on ”Multiscale Statistical Signal Analysis
and its Applications”, vol. 45, no. 3, April 1999.

[21] P. Abry and D. Veitch, “Wavelet analysis of long-range depen-
dent traffic,” IEEE Trans. on Info. Theory, vol. 44, no. 1, pp.
2-15, 1998.

[22] P. Abry, P. Flandrin, M.S. Taqqu and D. Veitch. Wavelets for
the analysis, estimation and synthesis of scaling data. To appear
in Self-Similar Network Traffic and Performance Evaluation, K.
Park and W. Willinger, eds., Wiley Interscience, 1999.

[23] Matthew Roughan, Darryl Veitch, and Patrice Abry, “On-line
estimation of parameters of long-range dependence,” in IEEE
GLOBECOM’98, Sydney, Australia, Nov. 1998, pp. 3716-3721.

[24] P. Abry, P. Gongalves, and P. Flandrin, Wavelets and Statistics,
vol. 105 of Lecture Notes in Statistics, chapter Wavelets, Spec-
trum estimation, 1/f processes., pp. 15-30, Springer-Verlag,
New York, 1995.

[25] I. Daubechies, Ten Lectures on Wavelets, STAM, Philadelphia
(PA), 1992.

[26] A.Feldmann, A.C.Gilbert, W.Willinger, and T.G.Kurtz, “The
changing nature of network traffic: Scaling phenomena,” Com-
puter Communications Review, vol. 28, no. 2, 1998.

[27] D. Veitch, P. Abry, P. Flandrin and P. Chainais. “Infinitely
divisible cascade analysis of network traffic data,” to appear,
proceedings of ICASSP 2000, Istanbul Turkey, June 2000.

(28] “Very high performance backbone network service,” http://
www.vbns.net/.

[29] “The university of waikato, atm group page,” online: http://
atm.cs.waikato.ac.nz/atm/.

[30] Matthew Roughan, Darryl Veitch, Martin Ahsberg, Hans El-
gelid, Maurice Castro, Mick Dwyer, Patrice Abry “Real-Time
Measurement of Long-Range Dependence in ATM Networks” in
PAM2000, Workshop on Passive and Active Networking, New
Zealand, 2000.

[31] Bong K. Ryu and Steven B. Lowen, “Point process approaches to
the modelling and analysis of self-similar traffic - part i: Model
construction,” in IEEE INFOCOM’96: The Conference on
Computer Communications, San Francisco, California, March
1996, vol. 3, pp. 1468-1475, IEEE Computer Society Press, Los
Alamitos, California.

[32] M.Roughan, J.Yates, and D.Veitch, “The mystery of the missing
scales: Pitfalls in the use of fractal renewal processes to simulate
Ird processes,” in Applications of Heavy Tailed Distributions
in Economics, Engineering and Statistics, American University,
Washington, DC, June 1999.

33]

(34]

(35]

Steven B. Lowen and Malvin C. Teich, “Estimation and simu-
lation of fractal stochastic point processes,” Fractals, vol. 3, no.
1, pp. 183-210, 1995.

Matthew Roughan and Darryl Veitch, “A study of the daily vari-
ation in the self-similarity of real data traffic,” in Proceedings of
the 16th International Teletraffic Congress - ITC 16, P. Key and
D. Smith, Eds. 1999, vol. 3b, pp. 67-76, Elsevier, Amsterdam.
P. Abry, F. Sellan, “The wavelet based synthesis for fractional
Brownian motion proposed by F. Sellan and Y. Meyer: remarks
and implementation,” in Applied and Computational Harmonic
Analysis, 3:377-383, 1996.

