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Abstra
t|A general wavelet based framework is des
ribed

for the on-line generation of time-series, parti
ularly fra
tal

and 
ertain multifra
tal time series. A s
alable method is

given to transmit a given time series as a 
ell stream over

ATM at OC3 rates on inexpensive hardware - a low end

PC. It is based on the CORAL system with FreeBSD drivers

written for a standard ATM NIC. The on-line systems were

then 
oupled to faithfully generate and transmit syntheti


fra
tal and multifra
tal traÆ
 at high rates with very low

memory requirements. The system is highly s
alable and


ould be the basis of an inexpensive test traÆ
 generator.

I. Introdu
tion

Many studies of data traÆ
 have 
on�rmed its fra
tal or

self-similar nature [3℄, [4℄, [21℄, and more re
ently its multi-

fra
tal 
hara
teristi
s [7℄, [11℄, [27℄, [26℄. Su
h 
hara
teris-

ti
s may have important 
onsequen
es for the performan
e

of networks, and hen
e simplisti
 traÆ
 models may pro-

du
e misleading test results. However, most standard test

equipment used to generate referen
e loads for ben
hmark-

ing network elements is in
apable of generating traÆ
 with

fra
tal 
hara
teristi
s. Instead traditional models are used

whi
h are very poor at des
ribing the real fra
tal nature of

traÆ
.

This paper presents a system for generating realisti
 ag-

gregate test traÆ
, in parti
ular for Asyn
hronous Trans-

fer Mode (ATM) operating over 155 Mbps OC3 links. The

method is highly adaptable, and allows generation of traÆ


with fra
tal or multifra
tal 
hara
teristi
s. Among other

uses, su
h traÆ
 
ould be employed to test QoS 
hara
-

teristi
s of network equipment in the presen
e of realisti


traÆ
 loads, rather than with the undemanding test traÆ


most test and measurement devi
es generate.

At least one group has produ
ed self-similar test traÆ


using the heavy-tailed On/O� paradigm and variants, for

example [31℄, [33℄, [12℄, [13℄. We have implemented this

method of traÆ
 generation [32℄ and found it su�ers from

several defe
ts, in
luding its inability to generalise to multi-

fra
tal behaviour. Instead, this paper will fo
us on using

the inverse dis
rete wavelet transform to 
onstru
t a fra
-

tal, or multi-fra
tal time series, as des
ribed by Riedi et

al [10℄. It has been noted by several authors (for example

[35℄, [14℄), that the wavelet transform is ideally suited for

su
h a purpose. In this paper we exploit one of its key ben-

e�ts, that it 
an be implemented on-line. The time-series

is generated in real-time and passed to a simple ATM Net-

work Interfa
e Card (NIC) whi
h uses purpose designed

�rmware to generate a stream of ATM 
ells whi
h very


losely mat
h the traÆ
 rate as spe
i�ed by the time se-
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ries. The advantage of this method is that a sequen
e of

test traÆ
 of any length, with detailed fra
tal properties,


an be generated with s
alable memory and pro
essing re-

quirements. The de
oupling of the time-series generation

and traÆ
 generation phases is a key advantage. It means

that the series 
ould be generated by alternative me
ha-

nisms, and 
ould even be generated o�-line, or be derived

from high-resolution traÆ
 logs. On the other hand the

time series generator output 
ould be used to feed a simu-

lation, or be stored to �le. Finally the on-line wavelet inver-

sion framework used is itself general and 
ould be used to

synthesize a

ording to other models, in
luding non-fra
tal

models, on-line and in real-time.

The design of the traÆ
 generation half of the system

is based on that of the CORAL proje
t [5℄, [6℄, with a

FreeBSD transmission driver written for the �rst time based

on existing DOS drivers, with some 
orre
tions and modi-

�
ations. The aim is to reprodu
e as a

urately as pos-

sible at the ATM 
ell level the bit rate spe
i�ed by the

time series, here spe
i�ed at a resolution of one value per

1ms (this parameter 
an be 
hanged). To within the a

u-

ra
y of the traÆ
 measurement system used, this aim was

a
hieved. The approa
h is to generate IP pa
kets whi
h

are then transmitted via AAL5 over ATM. In the 
urrent

form the IP pa
kets are generated at uniform intervals,

with the traÆ
 rate being determined by the pa
ket size,

though this rather simpli�ed method of generation is not

a requirement of the hardware, merely a �rst stage in the

implementation. The hardware used in the generator is

based around a low end Intel PC running FreeBSD, and a


ommodity o�-the-shelf ATM NIC (from FORE Systems),

the total 
ost being very low at around $4000 (Australian).

The test generator 
an generate ATM traÆ
 in real-time at


lose to the line rate, making it a 
heap, e�e
tive method

of generating traÆ
.

The 
urrent performan
e of the system indi
ates that it

would be possible to pla
e multiple NICs in the PC to allow

generation of several simultaneous traÆ
 sour
es from the

same box. This 
ould lead to its use both as an e�e
tive test

me
hanism for real networks as well as in ben
hmarking

isolated systems.

In se
tion 2 we address the on-line generation of the time

series, in
luding the ne
essary wavelet ba
kground. In se
-

tion 3 it is shown how a time series 
an be sent as an ATM


ell stream in real-time, by using purpose built �rmware.

In se
tion 4 these separate halves are 
ombined into a work-

ing system and an example is given of a simple multifra
tal

model whi
h falls naturally within the framework. S
alabil-

ity issues are also dis
ussed, before 
on
luding in se
tion 5.



II. Generating the Time Series

A. Long Range Dependen
e and Multifra
tals

Models for traÆ
 are often de�ned within the following

framework. Consider a stationary time series (dis
rete time

sto
hasti
 pro
ess) X(k), k = 1, 2 � � �, representing for ex-

ample the number of bytes per time interval observed on

a given link under steady traÆ
 
onditions. An important

fra
tal property found in su
h series is that of long-range

dependen
e, whi
h 
an be de�ned as the slow, power-law

like de
rease at large lag of the auto
ovarian
e fun
tion, or

equivalently as the power-law divergen
e at the origin of

its spe
trum:

f

x

(�) � 


f

j�j

��

; j�j ! 0: (1)

This long memory property represents a repla
ement of the

paradigm of a time 
onstant or 
hara
teristi
 time s
ale

by the notion of s
ale invariant, or `
onstant' relationships

between s
ales, 
ontrolled by the dimensionless s
aling ex-

ponent �. This des
ription is 
losely asso
iated to self-

similarity and the asso
iated exponent, the Hurst param-

eter (see [8℄, [20℄ for more details of these 
on
epts and

their inter-relationships). Long-range dependen
e (LRD)

however, being a se
ond order 
hara
terisation, is not a


omplete des
ription of the statisti
s of x(k), unless the se-

ries is Gaussian. This is frequently not the 
ase, and it has

been observed [7℄, [27℄, [11℄ that ri
her s
aling behaviour

known as multifra
tal s
aling arises in wide area network

traÆ
, whi
h implies non-trivial s
aling behaviour not just

in the se
ond order statisti
s, but in statisti
s of all orders.

This implies in turn that the single exponent � must be

repla
ed by a sele
tion, indeed a spe
trum, of exponents.

It is beyond the s
ope of this paper to des
ribe multifra
-

tal pro
esses in detail (see [9℄, [10℄, [22℄ for more details),

however we brie
y des
ribe a 
lass of obje
ts known as 
on-

servation binomial 
as
ades, whi
h 
onstitute an important

sub
lass of multifra
tals. A (random) binomial 
as
ade is

an iterative re-distribution of an originally uniform mass on

the interval, where line segments are repeatedly divided in

two, the masses being re-distributed via weights obtained

by multiplying the original weights by multipliers result-

ing from independent trials of a given random variable. If

the weights are su
h that the mass is 
onserved on average,

then the 
as
ade is 
onservative. Continuing this pro
edure

re
ursively for a number of levels generates a highly irregu-

lar, non-Gaussian signal with s
aling properties whi
h is a

multifra
tal in the limit. Note that although a spe
trum of

exponents is now involved, these 
an be expressed in spe-


i�
 examples as parametri
 fun
tions of a small number of

`model' parameters, preserving the need for parsimony. A

wavelet implementation of a simple random binomial 
as-


ade due to Riedi et al [10℄ will be des
ribed below.

B. Multiresolution Analysis and Wavelets

Wavelets are analysing fun
tions whi
h are lo
alised in

both time and s
ale or frequen
y. Wavelets have be
ome

a large subje
t in their own right and are used in diverse

ways. For our purposes only a subset of wavelets will be


onsidered, those falling within the Multiresolution Anal-

ysis (MRA) theory [25℄ leading to the Dis
rete Wavelet

Transform, where the primary obje
t is not the mother

wavelet,  

0

(t), but the s
aling fun
tion �

0

(t), t 2 R.

The 
olle
tion of integer translates of the s
aling fun
-

tion, f�

0

(t�k); k 2 Zg span an approximation subspa
e V

0

of square integrable fun
tions L

2

(R). The spe
ial, de�ning

property of �

0

(t) is that for any real fun
tion or sample

path of a sto
hasti
 pro
ess x(t) lying in V

0

, the `
oarser'

dilated fun
tion x(t=2) is also in V

0

, in a subset 
alled V

1

.

This leads to the re
ursive de�nition of a set of nested sub-

spa
es V

j

su
h that V

j

� V

j�1

, whose interse
tion is the

null set in the limit j =1, and union the full spa
e L

2

(R)

at j = �1.

The multiresolution analysis of x involves su

essively

proje
ting it into ea
h of the approximation subspa
es V

j

:

approx

j

(t) = (Proj

V

j

x)(t) =

P

k

a

x

(j; k)�

j;k

(t), where the

�

j;k

, de�ned by f�

j;k

(t) = 2

�j=2

�

0

(2

�j

t � k); k 2 Zg

are s
aled and translated versions of the s
aling fun
tion

whi
h a
t as basis fun
tions, and the a

x

(j; k) are the 
or-

responding approximation 
oeÆ
ients. It is not ne
essary

to perform all of these proje
tions dire
tly however. The

information removed when going from one approximation

to the next, 
oarser one, is 
alled the detail: detail

j

(t) =

approx

j�1

(t)�approx

j

(t). The MRA shows that the detail

signals detail

j

(t) belong to the 
omplementary subspa
es

W

j

= V

j

	V

j�1

, 
alled the wavelet subspa
es, for whi
h the

mother wavelet  

0

plays the role of 
anoni
al basis fun
-

tion, analogous to that of the s
aling fun
tion for the V

j

. It

is therefore possible to de
ompose any given approximation

into a detail and a new, 
oarser, approximation. The end

result is a re
ursive de
omposition of the initial approxi-

mation, whi
h we 
all approx

0

by 
onvention, into a set of

details of de
reasing resolution, expanded in wavelet fun
-

tions with 
orresponding wavelet detail 
oeÆ
ients d

x

(j; k),

and a �nal, most 
oarse approximation, expanded in s
al-

ing fun
tions:

approx

0

(t) = approx

J

(t) +

P

J

j=1

detail

j

(t)

=

P

k

a

x

(J; k)�

J;k

(t)

+

P

J

j=1

P

k

d

x

(j; k) 

j;k

(t):

(2)

Varying J simply means de
iding if more or less informa-

tion 
ontained in approx

0

(t) is written in details as opposed

to the �nal approximation approx

J

, and involves no loss of

information. Information is unavoidably lost however in

the initialising proje
tion of x(t) into V

0

. Indeed in pra
-

ti
e one generally deals with dis
retized data x(k) and the

initialisation is approximated at the �nest resolution avail-

able by setting a

0

(k) = x(k) (see however [17℄).

If we expand dilated versions of  

0

and �

0

themselves in

terms of �

0

then we obtain the so 
alled two-s
ale equa-

tions:

�(t=2) =

p

2

P

n

u

n

�(t � n)

 (t=2) =

p

2

P

n

v

n

�(t� n)

(3)

from whi
h the following relationships relating the approx-

imation and detail 
oeÆ
ients at adja
ent levels follow eas-

ily:

a

j;k

=

P

n

u

n

a

j�1;2k+n

d

j;k

=

P

n

v

n

a

j�1;2k+n

:

(4)
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Fig. 1. CoeÆ
ient relationships, Analysis. Derivation of the

approximation and detail 
oeÆ
ients at the upper level j + 1,

from the approximation 
oeÆ
ients at the �ner level j, for gener-

ating sequen
es u(k), v(k) of length four. Un�lled 
ir
les indi
ate

polluted 
oeÆ
ients, those 
al
ulated in part from missing data.

Two essential fa
ts now emerge. First, we do not need to

deal with the time shapes of wavelets or s
aling fun
tions,

but only with the dis
rete �lters u

n

and v

n

, whi
h are said

to generate the multiresolution, and 
ontrol all its proper-

ties. In fa
t in wavelet design the sequen
e u

n

is dealt with

dire
tly. Be
ause of the highly lo
alized nature of �(t) and

 (t), most of these sequen
e elements are negligible, and

in some 
ases, in
luding all the examples in this paper, the

s
aling fun
tion and mother wavelet have �nite time sup-

port, so only a �nite number are non-zero. Se
ond, from

the initial approximation sequen
e a

0

(k), we 
an dedu
e

all of the other approximation and detail 
oeÆ
ients via

simple dis
rete operations.

The re
ursions given by (4) de�ne the approximation and

detail 
oeÆ
ients at a 
oarser level j + 1, through the ap-

proximation 
oeÆ
ients at level j from whi
h they 
ame,

as illustrated in �gure 1 in a 
ase where the sequen
es

u(k) and v(k) are zero ex
ept for k = 0, 1, 2 and 3. In

this �gure, and in �gures 2 and 3, the 
ir
les are on the

dyadi
 grid, a set of points given by f(t; s
ale) = (k2

j

; 2

j

),

j; k 2 Zg in the time-s
ale plane, 
orresponding to the lo-


ations around whi
h the  

j;k

and �

j;k

are 
entred and the

details and approximation 
oeÆ
ients belong. Ea
h row


orresponds to a �xed s
ale 2

j

, beginning with j = 0 on

the bottom, within whi
h points are indexed by k. The

re
ursion relations above are in the dire
tion required for

analysis, when one begins with a fun
tion x(t), initializes

to obtain a

0

(k), and then pro
eeds `upward' to 
al
ulate

all the detail 
oeÆ
ients. The analysis then 
onsists of

studing their statisti
al properties, for example the mea-

surement of the exponent � 
an be made by 
onsidering

the logarithm of the varian
e of d

j;�

as a fun
tion of j [20℄,

[24℄. To invert this pro
edure, that is to begin from the

approximation and detail 
oeÆ
ients at the 
oarsest level

and to re
onstru
t the �ner level approximations, we need

the inverse relation

a

j;k

=

X

n

u

k�2n

a

j+1;n

+ v

k�2n

d

j+1;n

(5)

illustrated in �gure 2, again for �nite generating sequen
es

or �lters of length four. This last relation assumes that the

details are already available, whi
h would be the 
ase if a

prior analysis phase had 
al
ulated and stored them. Our

interest however is in series generation, so the details must

k=0

even k:

odd k  :
j=0

j=1

j=2

j=J

S
ca

le
 

Creation of:

G
en

eratio
n

Fig. 2. CoeÆ
ient relationships, Generation. Lines showing

dependen
e of the approximation 
oeÆ
ients only at the lower

(�ner) level j, on the approximation and detail 
oeÆ
ients at

level j + 1, for generating sequen
es u(k), v(k) of length four.

somehow be generated at ea
h level, as well as a J value

sele
ted, and a most 
oarse sequen
e a

J

(k) = a

J;k

supplied.

It is important to 
larify the issue of edge e�e
ts. If x(t)

were known for all time, then so would the detail 
oeÆ-


ients d

j;k

for ea
h fj; k 2 Zg, and J 
ould be arbitrarily

large. Sin
e in pra
ti
e the length n of a

0

(k) is �nite, and

the density of 
oeÆ
ients halves with ea
h in
rease in j as


an be seen in �gures 1 and 2, only detail 
oeÆ
ients up

to roughly j = log

2

(n) 
an be 
al
ulated, and at all levels

there are dis
retisation e�e
ts at the edges. In analysis, as

in �gure 1, this results in `polluted' 
oeÆ
ients (un�lled 
ir-


les) whose 
al
ulation involved points in the grid for whi
h

there is no data. In generation, points su
h as those to the

left of k = 0 in �gure 2 have to be inserted arti�
ially so

that, beginning at j = J and moving down, all 
oeÆ
ients

ne
essary to generate a series beginning at k = 0 on level

j = 0 are available. Note that these extra 
oeÆ
ients are

set to zero but are ne
essary to avoid the re
ursion rela-

tions taking di�erent forms near the edges. There are also

edge e�e
ts due to trun
ation of u(k) in the 
ase where it

is not �nite.

C. A General On-Line Generation Framework

We have dis
ussed how a sample path x(t) 
an be re
ast

as a set of detail 
oeÆ
ients in the time-s
ale plane, and

a residual approximation sequen
e, and the relationships

between those 
oeÆ
ients. Sin
e x(t) is a random pro
ess,

so are its wavelet 
oeÆ
ients sto
hasti
 pro
esses in their

own right. Indeed sin
e x(t) is stationary ea
h detail se-

quen
e d

j;�

and approximation sequen
e a

j;�

is a dis
rete

time stationary pro
ess. In order to generate an a

urate

approximation a

0

(k) = a

0;k

to x(k) therefore, the statisti-


al nature of these pro
esses must be understood, so that

samples paths from them 
an be generated in pra
ti
e to

feed the general deterministi
 re
onstru
tion algorithm de-

s
ribed above (hen
eforth we will treat the generation of

a

0

(k) as our aim and ignore the �nal, often impossible, step

to x(t)).

We �rst address the 
omplexity of the re
onstru
tion al-

gorithm itself. It is easy to see that, ignoring edge e�e
ts,

from a sequen
e a

J

(k) of length n

J

the number of operations

required to generate a

0

(k), whi
h has length n = n

J

2

J

, is

O(n

J

2

J

I

u

), where I

u

is the length of the �lter u(k). The


omputational 
omplexity is therefore linear in the length

of the generated time series, whi
h is a

eptable, however
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Fig. 3. On-line generation order. The sixth point of the output

time series, a

0

(5), is about to be generated, the 11

th


oeÆ
ient

overall. Of the �rst 10 (ignoring initialisation edge e�e
ts), those

with the oblique shading are no longer needed and 
an be dis-


arded, leaving only points 1, 8, 5 and 9 in memory. After point

11 is generated, 5 will be no longer needed.

so are the memory requirements of a dire
t o�-line imple-

mentation where the a

j

are 
al
ulated row by row, whi
h is

not good news for a high speed data generator. Fortunately

the short range nature of the relationships between 
oef-

�
ients, as seen in �gure 2, allow a natural on-line imple-

mentation where the 
oeÆ
ients are 
al
ulated in trees in

pre-order. Figure 3 shows the order in whi
h the �rst 10 
o-

eÆ
ients are generated in a s
heme where J = 2, and again

I

u

= 4. Note that the �rst tree, that bounded by points 1,

3 and 7, was generated before the se
ond begun with 8. In

this way only a small number of 
oeÆ
ients need ever be

stored in memory, of the order of JI

u

=2 � (log

2

(n)� 1)I

u

.

An example is detailed in the 
aption of the �gure. Nat-

urally, at the bottom level the emerging elements of a

0

(k)

are the desired time series output, and are not stored.

The natural linear 
omplexity and logarithmi
 memory

requirements of the on-line algorithm however, although

ideal for on-line analysis [23℄, are not suÆ
ient for gen-

eration. For the generation as a whole to be on-line and

s
alable, this must be true of ea
h of its 
omponent parts.

Thus ea
h detail pro
ess must also be amenable to an on-

line implementation with no more than linear 
omputa-

tional 
omplexity and logarithmi
 memory requirements.

The same is true of a

J

(k) at the top level, whose elements

are 
al
ulated one by one as needed, although a more 
ostly

algorithm would be possible there, as the rate will be 2

J

times slower than that of the output! This question of the

nature and 
omplexity of the input pro
esses is one whi
h

is spe
i�
 to the kind of �nal series one wishes to gener-

ate. Note however that typi
ally the detail pro
esses will

be of the same type at ea
h s
ale, though with parameters,

su
h as varian
e, whi
h will vary. The most diÆ
ult aspe
t

of their generation however is the potential 
orrelations

a
ross di�erent s
ales. Although long term 
orrelations

are not expe
ted { it is one of the key advantages of the

wavelet representation that 
orrelations between wavelet


oeÆ
ients are weak, even when there is long memory in

x(t) { reprodu
ing the 
orre
t stru
ture both a
ross and

within s
ales 
ould be time 
onsuming. Two examples of

fra
tal pro
esses are given next.

D. Two Fra
tal Models

The �rst model we 
hoose is a member of perhaps the

simplest possible family with a fra
tal property. This prop-

erty is the de�ning feature of se
ond order s
aling behaviour

in the wavelet domain, the power-law progression of the

varian
e of the details with j:

IEd(j; �)

2

� 2

j�

C (6)

where C is a positive 
onstant. Provided � 2 (0; 1), su
h a

pro
ess 
an be viewed as an approximation to the 
anoni
al

LRD pro
ess, the fra
tional Gaussian noise (fGn). This

approximation is extremely 
omputationally e�e
tive, as

exa
t generation is O(n

2

). The pro
ess a

J

(k) is set to a


onstant 
orresponding to the mean traÆ
 rate, whi
h here

is just zero, and the details are ea
h zero mean Gaussian

IID pro
esses, 
orresponding to 
u
tuations in the rate.

That is, for ea
h j �xed, the d

j;k

are mutually independent

Gaussian random variables with zero mean and varian
e

2

j�

C. Thus in this simple model there are no 
orrelations

in the wavelet plane at all, and on-line generation of the


omponent pro
esses is trivial. The varian
e of d

J;�

is nor-

malised to 1 and for j = 1, 2, � � � J � 1, equation (6) will

be followed with � = 0:5. Daube
hies wavelets [25℄ with

two vanishing moments, implying I

u

= 4, are 
hosen, and

J = 10. The total memory requirement of the model is

around 20 
oating point numbers for unlimited time series

output. The program is written in C and only n = 1024

points will be generated in this example, whose aim is to

illustrate the kind of pro
esses in
luded in the framework

(see also [14℄, [15℄). The output is shown in �gure 4. In

the top plot the time series a

0

(k) is shown, and below a

Logs
ale Diagram is given, that is a wavelet based estimate

of the detail varian
es in logarithmi
 
oordinates, with 
on-

�den
e intervals [20℄. In both 
ases the results 
losely re-

semble those obtained for a
tual fGn pro
esses. Note that

simply by 
hanging � to fall within (1; 2), this `IID' model

family approximates another key fra
tal pro
ess, the fra
-

tional Brownian motion.

The se
ond example follows the work of Riedi et al, [10℄,

who implemented a multipli
ative binomial 
as
ade in the

wavelet domain. We do not modify their approa
h but

merely show how it �ts into the on-line framework, in order

to provide what is perhaps the �rst real-time generator of

multifra
tal traÆ
, and to illustrate again the s
ope of the

method.

Their approa
h is very spe
i�
 in a number of ways.

The �rst feature is that it depends fundamentally on the

use of the Haar Wavelet. For this simplest of wavelets

the s
ale fun
tion �(t) is just the indi
ator fun
tion of

the interval [0; 1℄, and the 
orresponding generator only

has two elements: u

0

= u

1

= 1=

p

2, and for the wavelet

�v

1

= v

0

= 1=

p

2; The use of Haar wavelets ensures the

positivity of ea
h approximation sequen
e, an essential fa
-

tor in their approa
h, and a useful one in terms of inter-

preting the �nal series { negative traÆ
 rates are forbid-

den! The se
ond key feature is that the binomial 
as
ade

is a binomial tree stru
ture growing from a single root.

In the MRA implementation this translates in the top ap-

proximation a

J

(k) 
onsisting of just a single point, a single
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Fig. 4. Output of an IID model An approximation of a fGn is

given by using IID Gaussian details at all s
ales, with varian
es

obeying IEd(j; �)

2

� 2

j�

C with � = 0:5. Daube
hies wavelets

with �lters of length 4 were used, and n = 1024 points are plotted

generated with J = 10 re
ursion levels. In the lower plot an

estimation of the varian
es 
on�rms the designed power-law.

random variable a

J

(0). The immediate 
onsequen
e of this

is that the method 
annot be truly on-line, as points 
an

only 
ontinue to 
ow out at level j = 0 if more points 
an

be generated as needed at level J . However, by 
hoosing J

large enough, we 
an ensure that the �nite length n of the

output is as large as desired. For example, with 32 levels,

and an output of one point per millise
ond (assuming the

ma
hine 
an support this), traÆ
 
ould be generated for a

month, with a 
onstant memory requirement of around 32


oating point numbers. Using the framework in this way,

where we eliminate the need for an on-line algorithm for

a

J

(k), we refer to as Almost On Line or `AOL'.

The mapping of the multipli
ative weights of a 
as
ade

model into the MRA stru
ture is a
hieved by de�ning the

detail pro
esses in an unusual way, as randomly res
aled

versions of their approximation 
oeÆ
ient an
estors:

d

j;k

= R

j;k

a

j;k

; (7)

where the R

j;k

are symmetri
 random variables on [�1; 1℄

whose distribution 
an vary with j but whi
h are identi-


ally distributed for j �xed. The symmetry ensures that in

an average sense, `mass' is preserved at ea
h stage of the


onstru
tion. This method of generating the details s
ales

well and has low 
omputational needs. Note that be
ause

of the tree-like stru
ture, the R

j;k

are independent along

lines of des
endants, but 
an be dependent elsewhere, un-

like the 
omplete independen
e of the IID example. It 
an

be shown [10℄ that if the R

j;�


onverge in distribution as

j !1, then the output in the limit is a binomial 
as
ade,

whi
h has known multifra
tal properties.

The varian
e de
ay of the details a
ross s
ales 
an be

freely 
ontrolled as follows. Let �

j

= IE[d

2

j+1;�

℄=IE[d

2

j;�

℄ be

the desired varian
e ratios, 0 � j < J . They 
an be 
al
u-
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Fig. 5. Output of a Binomial 
as
ade model An approximation

J = 12 levels deep of a random 
onservative 
as
ade is given using

beta multipliers with shape fa
tor p = 10 at the 
oarsest, level

(nearly normal with small varian
e: 1=21). The detail varian
es

de
ays with � = 0:5 and a

J

(0) is Gaussian with mean 2 and

unit varian
e. Top: the positive time series, Middle: estimates

of the varian
e with s
ale (log 
oordinates), Bottom: exponent

`spe
trum' plot showing non-trivial multifra
tal behaviour.

lated as

�

j

=

2IE[R

2

j+1;�

℄

IE[a

2

j;�

℄IE[(1 + IE[R

j+1;�

)

2

℄

(8)

and initialized via IE[R

2

J;�

℄ = IE[d

2

J;�

=IE[a

2

J;�

℄. The higher or-

der moments 
an also be 
ontrolled through those of the

multipliers, whilst always remaining multifra
tal by 
on-

stru
tion.

In �gure 5 an example is given of a 
onstru
tion J = 12

levels deep, with � 
ontrolled at � = 0:5 by sele
ting the

ratios as above. At ea
h level the multipliers are 
hosen

to be symmetri
ally beta distributed, �(p(j); p(j)), with

varian
e IE[R

2

j;�

℄ = 1=(2p(j) + 1). The value of p(J) is set

to give the �rst multiplier unit varian
e, and subsequently

p(j) evolves a

ording to the set evolution of the detail

varian
es, rea
hing a steady state in the limit and thus

satisfying the above 
ondition that the multipliers 
onverge

in distribution. Finally the varian
e of a

J

(0) is unitary and

following [10℄ it is 
hosen as Gaussian (although this will


ause some sample paths to be negative, their probability

is low).

In the top plot the time series a

0

(k) is shown, whi
h is

positive and noti
eably non-Gaussian. In the middle plot

the Logs
ale Diagram shows the linear progession of vari-

an
es with an a

urate � estimate displayed in the title.

The multifra
tal nature of the series is revealed in the lower

plot, a Linear Multis
ale Diagram [22℄, where s
aling expo-

nents h

q


orresponding to several di�erent moments q are

plotted. These are analogous to � but have been res
aled

in su
h a way that a horizontal alignment would indi
ate

degenerate multifra
tal s
aling, as would be the 
ase for a



simple fGn pro
ess. The LMD for example of the IID model

is a horizontal line. The distin
t 
urve (note the 
on�den
e

intervals) shows that non-trivial multifra
tal s
aling is in-

deed present as expe
ted. Further details and other models


an be found in [1℄.

III. From Time Series to Cell Stream

The aim of this se
tion is to show how to take values from

a time series and, by interpreting them as byte 
ounts after

an appropriate normalisation, to transmit them in real-

time as a 
on
rete traÆ
 stream whose measured bit rate

mat
hes that of the time series as 
losely as possible.

For pra
ti
al reasons of a

essiblity we 
on
entrate on

ATM over SONET (Syn
hronous Opti
al NETwork), a


ommon networking solution. However, we do not wish

to 
onstrain our methods to one spe
i�
 te
hnology. Hen
e

we layer the approa
h by �rst translating the time series

into a sequen
e of TCP/IP pa
kets for subsequent passing

to the transmission layer. In this way the lower layer 
ould

be 
hanged without a�e
ting mu
h of the system. Given

the looming ubiquity of the TCP/IP suite we expe
t this

to be a useful approa
h, espe
ially as traÆ
 models will

in
reasingly aim to model TCP/IP traÆ
 dire
tly.

A. Ba
kground

We must �rst understand the spe
i�
s of the network we

are using. We 
onsider a TCP/IP over ATM over SONET

network. That is, TCP pa
kets en
apsulated in IP pa
kets

are transmitted over the ATM Adaptation Layer 5 (AAL5)

as ATM 
ells, whi
h are then sent a
ross OC3 SONET

frames at a nominal 155 Mbps. Typi
ally, ea
h TCP/IP

pa
ket is pa
kaged as an AAL5 Proto
ol Data Unit (PDU)

by prepending a short LLC/SNAP header whi
h identi-

�es that TCP/IP is being 
arried, and appending a short

trailer. The PDU is then segmented into 48 byte 
hunks

and a 5 byte header atta
hed to ea
h to form 53 byte ATM


ells, as illustrated in �gure 6. A typi
al TCP/IP pa
ket

has a 40 byte header, and the LLC/SNAP header is 8 bytes,

so all the header information is held in the �rst ATM 
ell,

whilst the trailer information is held in the last 8 bytes of

the �nal 
ell. A bit in the ATM header identi�es it as the

last 
ell of the PDU.

Our desire to build an inexpensive, simple traÆ
 gen-

erator strongly suggested that the monitor be based on

a PC ar
hite
ture, using a 
ommodity ATM Network In-

terfa
e Card (NIC). We used a 330 Mhz ma
hine running

FreeBSD. The FORE Systems PCA-200EPCATM NIC has

been used for network monitoring and traÆ
 generation by

MCI on the vBNS (very high performan
e Ba
kbone Net-

work Servi
e [28℄, [29℄). In fa
t the CORAL group [5℄,

[6℄, [16℄, [18℄, spe
i�
ally the OC3MON proje
t [19℄ have

made the drivers for this NIC freely available, and they

form the basis for our work. Spe
i�
ally, the existing DOS

transmit driver and the FreeBSD re
eive driver (the basis of

our traÆ
 measurement infrastru
ture [30℄) served as tem-

plates for a new FreeBSD transmit driver, a task seriously


ompli
ated by the fa
t that details of the 
ards' workings

and sour
e for its �rmware were unavailable. The resulting

C 
ode was added to the kernal sour
e �le for the existing

SNAP
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H
ig

h
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Fig. 6. Proto
ol En
apsulation. Appli
ation data is �rst pa
ke-

tised into TCP pa
kets transported by IP pa
kets. For transmis-

sion these are assembled into AAL5 data units and �nally split

into ATM 
ells, ready to be physi
ally sent via SONET.

Packets
1 ms

Fig. 7. Translation of time series to pa
ket stream. A single

pa
ket is sent at the beginning of ea
h transmission interval (one

per time series element), whi
h is 348 
ells � 1ms long.

FreeBSD re
eive driver and 
an be used by the FreeBSD

CORAL 
ode. Some bugs were also �xed, and of 
ourse

some details are spe
i�
 to our appli
ation (see [2℄).

The use of su
h hardware allowed us to build a very

powerful traÆ
 generator for around $4000 Australian. In

prin
iple, multiple NICs 
ould be used, allowing multiple

traÆ
 generators (and monitors) to run within the same

PC, further redu
ing 
osts.

B. From time series to pa
ket stream

We have 
hosen a very simple, yet e�e
tive approa
h for

turning our time series into a pa
ket stream. The basi


idea, illustrated in �gure 7, is to transmit single pa
kets

at uniformly separated transmission intervals, ea
h 
orre-

sponding to an element of the time series. The variable

bit/
ell rate is a
hieved by 
hanging the pa
ket sizes. This

has large pro
essing advantages des
ribed in detail below.

The target transmission interval was 
hosen to be 1 ms.

In fa
t 
ells are the natural time unit here as they di
tate

the �nest resolution available for the �nal transmitted data

rate. One transmission interval was therefore set to 348


ells, whi
h is just under 1 ms, and pa
kets were generated

a

ording to this quantisation. There are therefore 349 pos-

sible pa
ket sizes and 
orresponding rate values (in
luding

zero). If the transmission interval were smaller, whi
h is

desirable from the point of view of spe
ifying the traÆ


rate very pre
isely, this quantisation would be
ome noti
e-

able and eventually all details of the time series would be

lost. Furthermore when the sampling interval is smaller the

pro
essing load on the system is in
reased. It was found

that 1ms gave an a

eptable quantisation error, and good

performan
e.

The steps in 
reating su
h a pa
ket stream are:

1. Normalize time series to desired traÆ
 rate. The
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Fig. 8. Stru
ture of the 348 
ell long transmission interval A single time series value is translated to a single TCP pa
ket of the


orresponding size, to be sent in one transmission interval, � 1ms. The pa
ket is 
onverted to a sequen
e of 348 modi�ed ATM 
ells

forming a pseudo AAL5 PDU.

unitless time series may be arbitrarily normalized. Either

by sele
ting the input parameters to the time series gener-

ator, and/or by linearly transforming the output series us-

ing user input parameters su
h as the mean and varian
e,

a normalized pa
ket size sequen
e should be outputted in

units of 
ells per transmission interval.

2. Map the pa
ket rates into the quantisation. The

pa
ket size sequen
e is still real valued and must be mapped

to the dis
rete set f0; 1; � � �348g. Values are �rst rounded

up to the nearest integer, then negative values set to zero

(many traÆ
 models allow unphysi
al negative rates), then

ex
ess `
ells' over 348 are virtually bu�ered, that is, they

are stored until the �rst interval with spare 
apa
ity. In

this way the �nal traÆ
 will re
e
t the real e�e
ts of traÆ


bursts ex
eeding the output bandwidth (see �gure 9).

3. Create TCP/IP pa
ket headers. A template pa
ket

header spe
i�ed at the start of the program, 
ontaining the

IP addresses, TCP ports et
. is 
opied to ea
h TCP/IP

pa
ket header. The pa
ket length is 
al
ulated from the

known total length of the pa
ket in 
ell units and inserted

in the header, and �nally the CRC is 
al
ulated.

4. Assemble the TCP/IP pa
kets. This is not done

in our implementation as we assemble the AAL5 PDU di-

re
tly, as des
ribed below. In any 
ase for our purposes

the pa
kets do not 
arry real data, they will be, in e�e
t,

stu�ed with zeros.

The program whi
h performs these steps 
an be 
alled

from the unix 
ommand line and a
ts as a �lter; that is, it

reads the time series form standard input. It then generates

the pa
ket sizes, and headers whi
h are passed to a lower

level pro
ess to 
reate and send the pa
kets. This approa
h

is very 
exible, it allows time series to be generated by

another program, or read from a �le. Hen
e a parti
ular

time series 
an be used again and again, or a very long time

series 
an be generated on-line 
ontinuously as we require.

C. From pa
ket stream to 
ell stream

The previous pro
ess sent a series of requests to trans-

mit pa
kets, whi
h now need to be sent to the transmission

layer, in this 
ase ATM. However, it would be time 
onsum-

ing and ineÆ
ient to try to transmit ea
h of these pa
kets

individually. It would also be very hard to guarantee that

the pa
kets are transmitted exa
tly 1 transmission interval

apart.
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Fig. 9. E�e
t on rate of quantisation and virtual bu�ering.

A time series de�ning the un-normalised traÆ
 rate (top), is 
on-

verted into a pa
ket stream, one per � 1ms transmission interval

(bottom). After normalisation the zero (resp. maximum) traÆ


rate is set to the 
entral (resp. upper) horizontal line in the top

plot. The resulting quantisation e�e
t (trun
ation below the zero

line) and virtual bu�ering (ex
ess above the upper line being 
ar-

ried over) are visible in the pa
ket stream. Within the two lines

however the 349 rate levels gives good resolution.

The CORAL proje
t provided the basis for a mu
h more

eÆ
ient approa
h. The FORE 
ard integrates the AAL5,

ATM and SONET layers, however rather than passing pa
k-

ets to it we took advantage of the fa
t that CORAL have

rewritten the �rmware to allow the transmission of a pre-


isely de�ned 
ell stream. Sets of pseudo AAL5 PDU's


an be 
onstru
ted externally and pla
ed in a bu�er. The

ATM 
ard is programmed to read from the bu�er using

Dire
t Memory A

ess (DMA) and transmit them 
ontin-

uously, as long as bu�er `blo
ks' are available. The `
ells'

in these pseudo PDU's di�er from normal ATM 
ells. First

the 1 byte HEC 
he
ksum is absent as it is later added by

the 
ard and se
ond, a four byte 
ount �eld is prependend

whi
h tells the 
ard how many times to send that parti
u-

lar 
ell. These 
onstru
ted `
ells' are thus 53� 1 + 4 = 56

bytes long. The 
ount �eld means that the amount of data

whi
h need be written to the bu�er is greatly redu
ed, and

furthermore, that the load on the pa
ket generator pro
ess

above, and the PDU 
reation pro
ess, as well as the read-

ing time per PDU, is essentially independent of traÆ
 rate

but depends only on the 
hosen transmission interval, an



inherent s
aling feature.

Figure 8 illustrates the 
onstru
tion of one pseudo PDU,


orresponding to the transmission of a single TCP/IP pa
ket

5 
ells in length over a transmission interval 348 
ells long.

It 
onsists of a header 
ell 
ontaining the TCP/IP header

des
ribed above together with the LLC/SNAP header, a

trailer 
ell 
ontaining the AAL5 trailer at the end, and 3

empty body 
ells inbetween. Through the 
ount �eld, only

one body 
ell need a
tually be written, with a 
ount value

of 3. Similarly, the spe
ial blank 
ell, whi
h tells the 
ard

to send nothing for a 
ell-period, need only be written on
e,

with a 
ount value of 348� 5 = 343. It is possible to send

no pa
ket in one transmission interval (blank 
ell with a


ount of 348), and a pa
ket just one 
ell long (a spe
ial 
ell


an be written in
luding both the TCP/IP header and the

AAL5 trailer, with a 
ount of 1).

The idea is that 
ontinuous reading of the pseudo PDU's

by the 
ard will result in a totally 
ontrolled output 
ell

stream, with no gaps. Good bu�er management is 
learly

important to ensure this. Be
ause of the use of DMA at

least two bu�er blo
ks are needed to safely separate read-

ing and writing. In fa
t 5 were 
hosen ea
h 9325 
ells long.

These were suÆ
iently large that request interupts, gen-

erated when passing from one blo
k to another, were not

generated too often, and 5 seems suÆ
ient to smooth out

s
heduling e�e
ts of the user pro
esses without taking up

too mu
h memory. The management itself has some sub-

tleties (see [2℄ for details) but essentially a series of pseudo

PDU's are written to an available bu�er blo
k until full. It

is then marked as full and writing immediately moves to

the next free blo
k. When the NIC �nishes reading a bu�er

it interrupts to �nd the address of the next full blo
k and

moves to it. The NIC sends from an already loaded blo
k

as it reads the next, so that no gaps form.

IV. The Working System

A. A Multifra
tal Example

The two independent 
omponents of the system, the on-

line time series generator and the pa
ket-sender and kernal

routines, are linked simply via unix pipes. The output of

the 
ard is sent over an opti
al link to another OC3Mon

based measurement system, with another FORE Systems


ard, as des
ribed in [30℄. This system operates on a `�rst


ell of TCP/IP pa
ket' mode, where only 1 
ell per pa
ket

is measured, and approximate bits rates are obtained with

the help of the Total Length �eld in the header. This does

not result in any loss of a

ura
y here, given the known

stru
ture of the 
ell stream.

An example of the output, using the multifra
tal model

des
ribed in the previous se
tion, is given in �gure 10. In


ontrast to �gure 9, where the normalisation was 
hosen to

result in extreme quantisation and normalisation e�e
ts,

here the normalisation was 
hosen to �t the quantisation

well. The measured traÆ
, at least to the eye, appears

to be an exa
t 
opy in 
ells per millise
ond of the original

target time series generated at the sender. Note that the

verti
al s
ale is in 
ells per transmission interval, and that

high rates were a
hieved, in one 
ase a burst 
omes very


lose to the maximum of 348.
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Fig. 10. Multifra
tal time series and re
eived 
ell rate.

The positive, normalised time series (top) is 
onverted to a 
ell

stream, sent over an opti
 link, measured via �rst 
ell of TCP/IP

pa
ket measurement mode, and plotted at the �nest resolution

possible, one point per transmission interval. We see that the

reprodu
tion is ex
ellent.

Testing has shown that all 
ells sent to the 
ard were

re
eived at the re
eiver. Jitter in the pa
ket arrival times

was measured with a GN Nettest Interwat
h 95000 traÆ


monitor, and was found to be no greater than �5�s.

B. S
alability

As mentioned above, the pa
ket and PDU generation

pro
esses, whi
h are user pro
esses, have workloads whi
h

are independent of traÆ
 rate. Furthermore their work-

loads are small, for example only four pseudo 
ells (and

sometimes only 3, 2 or even 1) need to be written to a bu�er

blo
k per millise
ond. Furthermore it was found that very

heavy workloads were needed before 5 bu�er blo
ks were

insuÆ
ient to smooth out the e�e
ts of other pro
esses on

the 330 Mhz ma
hine used. The workload of the kernal

is negligeable, being restri
ted to the noti�
ation of full

blo
ks, as DMA is used. Problems therefore 
an only arise

if the transmission interval is made too small. De
reas-

ing this interval in
reases the rate at whi
h the 
ard must

read the blo
ks, and therefore the kernal interrupts and the

writing rate of the pseudo PDU's in dire
t proportion. A

transmission interval of 1ms was very easily supported by

our modest PC. Higher rates were not tried as the quanti-

sation would be too 
oarse at OC3 rates. We believe that

the same system 
ould support OC12 rates with a trans-

mission interval of at least as small as 100�s, assuming that

the on-line time series generator 
ould deliver values at this

rate also. This would depend on the speed of the ma
hine,

the number of 
ompeting pro
esses, and the 
omputational

details of the detail pro
ess as des
ribed in the last se
tion.

V. Con
lusion

We have su

essfully 
ombined two independent systems

to send traÆ
 a

ording to a sophisti
ated multi-fra
tal

traÆ
 model a
ross an ATM OC3 link in real time. Rates


lose to link saturation are possible for inde�nite periods, as



the load on the sending pro
esses are independent of rate,

they are fun
tions only of the rate resolution, the `trans-

mission interval'. This resolution 
an be freely 
hosen, and

was set here to 348 
ells, whi
h is just under 1ms, and no

pro
essing diÆ
ulties we en
ountered. This rate is a rea-

sonable 
ompromise between a �ne resolution spe
i�
ation

of traÆ
 rate, and quantisation e�e
ts of the target rate

values from the time series due to the size of ATM 
ells.

The �rst system is an on-line wavelet synthesis frame-

work, implemented in C. Many di�erent traÆ
 models 
an

be in
orporated in it, and it is parti
ularly suited to the

generation of fra
tal models. Examples were given of an

approximate fra
tional Gaussian noise, a long-range depen-

dent pro
ess, and an exa
t implementation of a simple mul-

tifra
tal model proposed in [10℄ (�gure 10). Data 
an be

generated inde�nitely with trivial memory requirements,

and 
ould be used for a variety of purposes, for example to

drive simulations. The only diÆ
ulty, a topi
 for 
ontinued

resear
h, is the spe
i�
ation and on-line generation of the

appropriate detail pro
esses, whi
h depend on the desired

traÆ
 model.

The se
ond system takes an input time series in real time,

normalises it, and 
onverts it to an equivalent TCP/IP

pa
ket stream at a rate of one pa
ket at the beginning

of ea
h transmission interval (this 
ould be easily altered

to spread the traÆ
 out more evenly). It then dire
tly


onstru
ts an AAL5 data unit in memory whi
h 
arries

the pa
ket. The �rmware on the FORE Systems ATM

network interfa
e 
ard used, whi
h the CORAL proje
t has

made freely available, reads these PDU's from a bu�er, and

transmits them. A new FreeBSD driver was written to make

use of this �rmware in transmit mode. Through sensible

bu�ering it was possible to send a 
ontinuous supply of

PDU's to the 
ard, without gaps. Furthermore the entire

system has a workload whi
h is independent of the traÆ


rate, thanks to the ability to give the 
ard an instru
tion to

send the same 
ell multiple times. The system is therefore

inherently s
alable.
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