
978-1-4799-1270-4/13/$31.00 c©2013 IEEE

STRIP: Privacy-Preserving Vector-Based Routing
Wilko Henecka

School of Mathematical Sciences
University of Adelaide, Australia

Email: wilko.henecka@adelaide.edu.au

Matthew Roughan
School of Mathematical Sciences
University of Adelaide, Australia

Email: matthew.roughan@adelaide.edu.au

Abstract—Security of routing protocols is a critical issue, as
shown by the increasing number of attacks on the Internet’s
routing infrastructure. One often overlooked aspect of security
is privacy. In the context of a routing protocol we mean the ability
of a router to keep information such as its routing policies private.
BGP does this to some extent through design. An Autonomous
System’s policies are not explicitly revealed to other participants
in the routing protocol. Nevertheless, BGP still reveals a great
deal of information about the Internet and its participants. We
propose a privacy-preserving routing protocol called STRIP that
reveals very little information to participants in the protocol.
For instance, participants can find shortest-paths to destinations
in the network without ever learning the path lengths. Such
privacy could be useful for a range of reasons: preserving
the proprietary information captured in a routing policy, or
preventing an attacker from gaining valuable information about
the network. We show the feasibility, performance, and costs of
STRIP with simulations and implementations of the protocol.

I. INTRODUCTION

There are a long list of desirable features for a routing proto-
col. For instance, it should be robust, distributed, scalable, and
easy to configure. There are now many protocols with different
sets of these properties, but more recently security of routing
protocols has become a major issue. The reason for this lies
in the spread of routing protocols between untrusted parties.
The canonical example is inter-domain routing. The defacto
standard inter-domain routing protocol is the Border Gateway
Protocol (BGP). The rapid expansion of the Internet has
lead to proliferation of BGP speaking Autonomous Systems
(ASes), more than 40,000 as we speak. In the Internet of
yesteryear the BGP speaking networks were almost like a
club. Membership assured an element of civility. However
in recent years this trust has led to problems. There have
been many documented problems with BGP: spammers have
exploited security vulnerabilities of BGP to send unwanted,
or illegal emails [1], accidental and/or deliberate hijacking of
address space has caused large scale disruptions (for just a few
examples see [2]–[4]). Most of the resulting work on adding
security to BGP has focussed on authentication.

One aspect of securing routing protocols that has not
received wide-spread study is privacy. Of course, one could
encrypt the individual transactions of a routing protocol to
prevent eavesdropping by external assailants. However, privacy
with respect to the other participants in a routing protocol
is a much more interesting problem. Routing protocols are
generally designed to spread information. This is seen as a
necessary step as distributed control is one of the philosophical

grounding points for Internet design, but there are good
reasons to wish to preserve privacy of routing information.
The routing information of each party can contain proprietary
information that could be commercially, or politically sensi-
tive, or could contain information that would make an attack
against that party easier.

BGP implicitly acknowledges the dichotomy of information
hiding/spreading. The protocol allows for each AS to have
flexible, heterogeneous and dynamic policies, and BGP at-
tempts to jointly determine a solution to these routing policies.
However, BGP hides internal policies by performing a “best
route” computation locally and passing on the result. It doesn’t
pass on the policies used to make the decision. BGP’s route
computation passes only simple data such as AS-paths and
locally defined attributes such as MEDs and communities. This
has resulted in a protocol that is not transparent. Its behaviour
is unpredictable, and exhibits slow convergence [5], persistent
oscillation [6], [7], and other negative features [8], [9], but
ISPs have clearly been willing to trade off negatives against
the desire to preserve their privacy (BGPv4 has been a defacto
standard for nearly two decades [10]).

But does BGP hide enough? BGP routing data has been
used to build AS-level topologies of the Internet, and to infer
relationships between ASes [11]–[14]. The same ideas can
and have been used for tasks such as inferring customers of
an ISP. This type of business intelligence can provide one
competitor with an unfair advantage. An even more sinister use
for such intelligence arises when one considers an antagonist
planning an attack. The more information about a network
they can gather, the more likely it will be successful. It is
precisely this sort of information that would be needed to
mount a malicious hijack of address space [15]–[17].

Despite its many security issues, the Internet (or at least the
component in which BGP operates) is a relatively benign. The
majority of participants in BGP are well intentioned, and more
problems (in the routing infrastructure) appear to have been
caused by mistakes than deliberate malfeasance. There are
other networks where security is the paramount concern, rather
than something added on after the fact. There are network
operators who may wish to co-operate from time to time (i.e.,
by sharing traffic), but who are very concerned that private
details do not leak from one network into another. A simple
example occurs in the military setting where national armed
forces often co-operate in joint missions where lives depend on
being able to share accurate, up to date information. However,



today’s allies may be tomorrows combatants, and so they may
also wish to maintain secrecy regarding their networks design
and capabilities. Furthermore, in the operations of their own
networks, they may wish to limit the damage that can be done
if a router (or group of routers) is compromised. It is therefore
interesting to explore the limits to which a routing protocol
can preserve the privacy of its participants.

We will present here a routing protocol aimed at preserving
exactly that. We show that a great deal of information can be
hidden. In particular, we show that a common routing algo-
rithm — the distributed Bellman-Ford shortest-paths algorithm
— can be performed without participants learning distances!

We call our new protocol STRIP (Secure-Transitive RIP),
after the iconic distance-vector protocol RIP (the Routing
Information Protocol). STRIP conceals nearly every aspect of
the network from its participants. Participants in the protocol
learn their neighbours, and the next-hop router on the route
to a destination, but they learn very little else. In particular,
participants do not learn any routes or distances (other than to
their immediate neighbours).

The algorithm has other desirable properties. It uses a strong
method to authenticate potential paths, step by step, much as
stronger versions of BGP security improvements aim to do.
Thus we get authentication almost for free.

It is also easy to see how the algorithm can be extended.
BGP uses a path-vector algorithm that resembles a distance-
vector protocol in some respects, and this paper also presents
a number of ways in which our distance-vector protocol can
start to be adapted to the path-vector setting.

As always there are costs to security. We have implemented
the proposed protocol in both simulation software, and as a
real distributed routing protocol, and analysed the performance
overhead, and it is not trivial. We do not suggest that the costs
are warranted for the Internet in general, but we believe that
a thorough understanding of what is possible should inform
future routing protocol designers, and we leave it to them to
choose the tradeoff between privacy and overhead.

Privacy-preserving ideas have been applied to interdomain
routing before. Zhao et al. [18] showed a verification mecha-
nism for routing decisions, and Gupta et al. [19] use a secure
outsourcing approach to move the routing decision process
from the routers to a centralised computation cluster. Our
work, which is motivated by an earlier presentation [20],
maintains the distributed nature of a routing protocol, and we
do not rely on any additional players except a key distribution
mechanism (PKI). Another difference is the type of informa-
tion that is kept private. Gupta et al. do not consider network
information private whereas our solution not only protects
policy but also a great deal of the network information.

II. SECURE MULTIPARTY COMPUTATION

Secure multiparty computation protocols are a set of tech-
niques, often cryptographic in nature, which enable parties
to carry out distributed computation tasks without having to
reveal their private data.

Perhaps the most famous problem in the area is called the
Millionaire’s Problem, where two millionaires meet on the
street, and wish to determine who is wealthier, but without
revealing their own weath. It was shown early on [21] that
any polynomial time function could be computed in a secure
distributed manner, and this provided a simple solution to the
Millionaire’s Problem.

Yao’s approach [21] is not always practical, but there is now
a substantial literature on secure multiparty computation and
the closely related area of privacy-preserving data mining, and
many available techniques. In our protocol we use homomor-
phic encryption to securely compute a distributed sum, and
we briefly describe this approach below.

A. Homomorphic Encryption
A homomorphic encryption scheme is a public-key encryp-

tion scheme with a special homomorphic property.
In a public-key encryption scheme each party gets a pair of

keys, one called the public key and the other called the private
key. The public key is published and used for encrypting,
while the private key is kept private and used for decrypting.
This approach eliminates the need for the parties to establish
a shared secret before exchanging encrypted messages.

An encryption scheme is called homomorphic if there exists
an operation on two ciphertexts that is equivalent to another
operation on the corresponding plaintexts: i.e.,

Enc(x)� Enc(y) = Enc(x⊕ y),

for some operations � and ⊕. In our protocol we use an
additive homomorphic encryption scheme, where the operation
⊕ corresponds to standard arithmetic addition.

The elegant feature of this approach is that we can create a
sum of a series of values held by different parties, but which
is encrypted. Only the holder of the private key can decrypt it
and determine the sum.

In detail, the secure distributed sum is computed as follows.
1) Assume we have n parties P1, P2, . . . , Pn with corre-

sponding inputs x1, x2, . . . , xn, and we wish (at com-
pletion) for party Pn to know the sum

X =

n∑
i=1

xi.

2) Each party encrypts their data with the public key of Pn

to obtain yi = Enc(xi;Pn).
3) WLOG we assume that they transmit cumulative sums

to the next party in sequence, i.e., party Pi sends the
following to Pi+1,

y1 � y2 � · · · � yi.

4) Finally, Pn receives y1 � y2 � · · · � yn−1, and decrypts
it with his private key and adds his own value xn.

Note that for more than two parties Pn learns nothing about
x1, . . . , xn−1 apart from the sum

∑n−1
i=1 xi.

There are a number of possible homomorphic encryption
schemes. Here we use Paillier encryption [22], which is
homomorphic with respect to summation (as required), and
comparatively simple to implement.



B. Key distribution problem

The one critical requirement for the public-key encryption
system is a Public-Key Infrastructure (PKI). For a router to
determine a route to a destination it has to know its public
key. That is, it has to know the key before it has a valid route
to the destination. So it can not ask the destination for the key
beforehand, and even if this was possible, how can the router
know that this public key belongs indeed to the destination and
not to some attacker pretending to be the destination router.

This problem is not limited to our scenario, indeed it is
well know in public-key cryptography applications. The most
prominent solution to this problem is the introduction of a
trusted third party who provides the PKI. They act as a public-
key broker: verifying and linking identities to public keys, and
distributing those keys in a secure manner.

In general, creation of PKIs is non-trivial. However the
pressing need for improved BGP security means the problem
has been tackled for Internet routing. A PKI system specially
designed for routing infrastructure called RPKI (Resource
PKI) [23] has already undergone some testing [24].

III. STRIP

We call our protocol STRIP (Secure-Transitive Routing
Information Protocol). Its aim is to find shortest paths through
a network, while revealing minimal information about that
network.

The purpose of a routing protocol is to provide an automated
and distributed means to create routing tables at each router.
These are essentially tables of destinations accompanied by
next hops (the first step from the current router along the path
to the destination), along with some information about the
paths (such as distances).

The “destinations” in our protocol might be the routers
themselves, but could equally be some aggregate such as the
Autonomous Systems of BGP, or some set of subnets attached
to routers. However, for the sake of simplicity, we shall equate
destinations and routers here.

There are several approaches for calculating shortest-paths.
Path-Vector Protocols (PVP) use an interesting approach that
combines the information passing and decision processes, and
it is this approach that we shall generalise in STRIP.

PVPs are sometimes called “routing by rumour”. In a PVP
each router shares its routing table entries by announcing
them to its immediate neighbours. Thus the neighbours learn
of potential destinations, and potential paths towards these
destinations. The advertised information in the table includes
the path (and in the case of BGP it contains other metrics), and
these can be used to discriminate between potential choices
when a router learns of more than one path.

In BGP, the best-path decision is made based on multiple
metrics, but here we will concentrate on shortest-paths, thereby
avoiding some of the intractable problems of BGP conver-
gence [6], [7]. However, it should be clear that the approach
we propose generalises to allow for multiple metrics composed
as lexicographic products [25].

In our protocols we allow each link in the network to be
assigned a weight and the weight of a path is the sum of its
edges. The selection criteria then is to select the path with the
lowest weight (the shortest path).

The announcements of a typical PVP contain the destina-
tion, the weight of the announced path to the destination, and
a list of routers contained in the path. Thus selecting a path
is just a matter of comparing the new path weight with the
existing one, and loops can be detected (and eliminated) if the
receiving router is already present in the list of routers.

Clearly such announcements leak information about the
configuration of the network. As many of these are sent, and
received, they can be used to create a combined picture of the
network and its policies [14]. In contrast, the proposed STRIP
protocol keeps this information secret.

However, there is still a minimal amount of information that
must be public. We assume that routers know their neighbours
(this is reasonable as establishing a link requires co-operation).
We also assume that a router knows (or determines) the link
weight of the directed edges from it, to its neighbours (the
weights don’t need to be symmetric, and the routers don’t
need to know the distances of the links towards them).

A. Route propagation

We make two major modifications to a typical PVP. The
first is that we alter the information routers transmit from
their routing tables. They still transmit potential destinations,
but these announcements are now simply a list of destinations
without any information about the path. A router will then
learn of alternative next-hop routers towards a destination.

The second major difference between STRIP and PVPs is
that the router does not itself decide between these alternatives.
In order to decide between them, it starts a shortest path
computation, in which the destination router is asked to make
the decision (described in more detail in Section III-B).

Although we modified the PVP significantly, we want to
stress that we did not change the underlying mechanism
for route propagation: all known routes to a destination are
assessed, and the shortest is selected and announced to the
neighbours. Hence, its convergence properties are almost iden-
tical to those of conventional PVPs.

A schematic overview of the operation of STRIP is given
in Figure 1. It shows the process: router C receives announce-
ments of the destination D from A and B; C sends a shortest-
path computation request to D via the two alternative paths;
D makes the computation, and responds to C with the best
path; and then (as in all PVPs) C would announce its new
destination to its neighbours, who might then commence their
own computation.

It may seem, on the face of it that D needs to know about
C before it can return the message, but we will explain in
Section III-B how to avoid this problem. So, although the
process involves more message passing, it is logically identical
to the standard PVPs, which are known to converge correctly
for shortest paths (given non-negative weights).



(a) Each node that knows of a route to a
destination advertises it to its neighbours.
In this example A and B announce the
existence of a path to D to router C

(b) C starts a shortest-path computation by
sending requests to the announcing routers
A and B, who forward the request on
their known routes to the destination D.
Along the path each involved router adds
the distance to the next hop to the path’s
distance stored in the request.

(c) After receiving all requests for this
SPC, D determines the shortest path, and
then sends replies to C along the reverse
paths. C then updates its forwarding table
and send an announcement of the newly
learned route (in green) to D to its neigh-
bours.

Fig. 1: Operation of STRIP. The dark lines show the pre-existing paths (though note that each router only knows its next hop).

B. Shortest Path Computation (SPC):

The main change to the PVP is the way shortest paths
are selected. In STRIP a router starts a SPC: a distributed
computation involving the routers on the known paths to the
destination. The idea is that the originating router send a
“probe” message to the destination along all paths known to
him. The intermediate routers add the path weight for the
respective links to the messages and the destination router,
after receiving all probes, decides on the shortest path and
sends a reply back to the originating router.

We could easily do this with all messages in the clear,
resulting in a modified PVP. This would have advantages in
itself. For instance, the response proves that the path is valid:
this is not at all guaranteed by the current version of BGP
(hence the need for BGPsec).

However, we make the additional change that the weight-
sum is computed using homomorphic encryption, as described
in Section II-A, and we anonymise so that D learns little from
its role in the computation.

In detail: the originator of the SPC sends an SPC-request
to all neighbouring routers that have announced a route to the
destination. An SPC-request contains:

• The address of the destination.
• A random computation ID, unique to each SPC.
• A random path ID, unique to each path in the computa-

tion.
• A distance field, holding the encrypted sum of the weights

of the links of the path.
• A random “originator” encryption key for a symmetric

encryption scheme, encrypted with the destination routers
public key.

• A timestamp, holding the creation time of the request.
• The distance of the current shortest path to the destination

known to the originator, encrypted with the destination
routers public key.

Note that only the destination router can decrypt the mes-
sage details. No one else can learn anything about the distance,
and although D learns a set of distances, it does not know the
origin, since the random path and computation IDs and the
random key are anonymised.

If an intermediate router receives a SPC request, it looks
up the next hop to the destination in his routing table (it must
have one for this to be a valid path), and adds the distance for
that link to the encrypted distance field. It then stores the last
hop, path id and computation id in a temporary routing table,
and sends the request to the next hop. The temporary routing
tables serves the purpose of enabling the network to route the
responses back on the same path as the corresponding request
without revealing the identity of the originator.

If the destination router receives a SPC request it waits a
certain period of time (the waitForRequests time) for
other requests of the same computation to arrive. Any requests
with the same computation ID after the timeout are ignored.
It then decrypts all distances, chooses the smallest one and
prepares the response messages. A response is generated for
every request it has received. The response contains the path
ID, computation ID, and the ID of the path with the shortest
weight encrypted with the random key sent by the originator.

C. Avoiding redundant announcements

The above protocol would work, but for the protocol to
converge to the optimal solution, a router has to announce



every route change. Every announcement triggers a potentially
expensive computation, so we want to omit unnecessary an-
nouncements. In particular, we want to avoid re-announcing a
route if it hasn’t really changed.

How does a router know if a route it is using has really
changed? Presuming the router has received new announce-
ments itself, and undertaken a new SPC, it could make one of
two decisions:

1) change the next hop – in which case it is perfectly
obvious that a route change has occurred and that it
should re-advertise; or

2) keep the next hop the same.
In the latter case, we must remember that the router has only
local information, so it is not clear whether:

1) the new route is the same; or
2) the next hop is the same, but the route is different at

some downstream point.
In the second case, we must re-advertise, because distances
may have changed, and this may affect the decisions of other
routers (even if the local next hop is the same). In the first
case, we can omit re-announcing, and thus avoid overhead.

To enable a router to detect a route change in the second
case we have to extend the protocol: the destination router
not only returns the shortest path ID but also the encrypted
distance of this path. Now if the originator starts a new SPC
for that destination, he adds the old distance to the request.
The destination router can then compare the new distance to
the old distance and adds the result of the comparison to the
response. The full response contains:

• The computation ID.
• The path ID.
• The path ID of the shortest path, encrypted with the

encryption key sent by the originator.
• The distance of the shortest path, encrypted with the

public key of the destination router.
• The “same distance” flag: a Boolean flag showing if

the distance of the old and the new shortest route are
identical, encrypted with the encryption key sent by the
originator.

If the originator of the SPC receives a reply to his compu-
tation request it decrypts the shortest path ID and the same
distance flag. He will only update his routing table if he
received a reply for this computation through the path of
the new shortest path and then announce the update to his
neighbours if either the new next hop is different to the old
one or if they are the same but the flag is not set.

Note that, we only need to pass a same distance flag. We
don’t need a “same path” flag because the change is only
important if it affects downstream decisions, and this will only
be the case if the distance changed.

D. Timeouts
For every SPC there has to be temporary routing information

stored at routers. In order to reduce memory overhead, we
need a mechanism to decide when it is safe to delete this
information.

Also, since announcements for the same destination often
come in close succession, we introduced a waiting period
for the originator to start the SPC after receiving an an-
nouncement. This reduces the number of SPCs (at the cost
of potentially delaying convergence).

In addition there is the time the destination waits for queries
before computing shortest paths. In all there are three timers
required:

1) waitForAnnouncementsTime: the time a router
delays between receiving an announcement for a des-
tination, and commencing the SPC.

2) waitForRequestsTime: the time that a destination
waits from receiving a SPC request, before beginning a
SPC response.

3) waitForRepliesTime: the time that information
is kept in temporary storage for reverse-path lookups,
in particular, the time the originating router waits for
replies after creating an SPC request.

Figure 2 shows the timeline of these different timeouts. We
will discuss the choice of these parameters in Section IV.

waitForAnnouncements! waitForRequests!

announcement !
received!

generate!
requests!

generate!
replies!

waitForReplies!
time!

Fig. 2: timeline of waitTime timers.

Without timeouts STRIP behaves essentially like a dis-
tributed asynchronous Bellman-Ford algorithm, so the same
argument for convergence applies (see [26, Chapter 5.2.4]).
With the introduction of timeouts convergence behaviour is
not that clear. For instance, if waitForRequestsTime
or waitForRepliesTime are chosen too low, then no
path with minimum transmission delay greater than those
timeouts will ever be discovered. Transmission times for
messages depends on processing, queuing and transmission
delays at and in-between routers which are all variable in
nature, and we might envisage situations where this leads to
long-term oscillation. However, most realised protocols have
such timers, and standard practices such as including jitter in
timers have generally been accepted as approaches to mitigate
such problems, and we use these here. In our experiments
(detailed later) we saw no problems with long term oscillation,
and we examine the correct choice of timers to avoid incorrect
convergence problems.

E. Implicit Loop Detection
Since a SPC request only leads to a new routing table entry

if the request traveled to the destination and back along the
new shortest route, this entry must be loop free.

F. Privacy
The protocol has privacy-preserving properties in the

honest-but-curious security model, i.e., if the parties correctly
follow the protocol, there is no efficient, single adversary



that can extract more information from the transcript of the
protocol execution than is revealed by that party’s private input
and the results.

a) Topology information: From any shortest path com-
putation an originating router will only learn the next hop to
the destination. But that is information it already knows, i.e.,
its neighbouring routers.

The destination router involved in the shortest path com-
putation can also not learn any new information about the
topology of the network, since the path information (the path,
and the computation ID) is distributively stored in the memory
of the routers of the path. Without collusion this information
is not obtainable.

b) Distance information: No intermediate router in a
shortest path computation can gain distance information since
this information is encrypted with the destination routers pub-
lic key. Only the destination router is able to decrypt. There-
fore the security is based on the security of the homomorphic
encryption system. And although the destination router learns
the distances of all paths it can not link this information to
any router in the paths since the only information about the
paths it learns is just the last hop. Note that all information
about the originator of the request is anonymised.

G. Authentication
Our protocol provides destination authentication, i.e., the

originator of a request can be assured that the response was
created by the destination router and no one else.

For every shortest path computation the originator creates a
random symmetric key Ks. It then encrypts Ks with the public
key pkD of the destination D and adds it to the request. Only
D, the holder of the private key corresponding to pkD, can
learn Ks. But since Ks is necessary to create a valid reply
it could have only be the destination creating the reply. And
the originator can be assured that the reply is fresh and not a
replay, because every SPC has a new key Ks.

H. Possible attacks outside the security model
The privacy properties of STRIP only hold in the non-

collusion honest-but-curious security model. It assumes that
participants follow the protocol, though they may seek to learn
additional information.

This is a reasonable assumption for a routing protocol
— routing requires protocols to be followed correctly at
some level, or it can’t reasonably be expected to work at
all. However, we do not want to conceal weaknesses of the
protocol against more powerful attackers.

If we allow parties to deviate from the protocol or to collude
with other parties they might mount the following attacks.

Sabotage: Routers can sabotage the protocol in a number
of ways. They can drop random packets (either control packets
to sabotage computations, or data packets after the fact).
They can use invalid input weights to manipulate the results.
They can also perform a Denial of Service (DoS) attack.
Since every announcement triggers a rather expensive shortest
path computation flooding the network with announcements
potentially leads to overload.

The emphasis in our protocol is privacy, not protection from
such attacks, which are in any case possible at present with
most current protocols.

Attacks to gain information: There are several ways in
which a participant in the protocol might actively attempt
elicit additional information. Firstly, an originating router O
can request multiple route computations with different subsets
of its peers. The result is the next hop for each subset of
peers, and from this O can deduce the order of the routes. A
partial version of this may happen during route convergence,
and so partial orderings are one form of leakage in this
protocol, when performed multiple times. A more serious form
of this attack involves O performing many such calculations
and deliberately corrupting its component of the calculation by
adding values to partial metrics it learns. This could potentially
allow O to learn the actual distance metrics if performed
enough times. However, for a metric with a reasonable range
this attack requires many computations and is unlikely to be
accomplished unnoticed.

Secondly, multiple routers could collude to obtain more
information. For instance, the destination router and some
other routers along a path sharing a common neighbour can
compute its distance value by decrypting the partial sum of
the distances and taking the difference.

Finally, once routes are established, traffic will follow. An
observer of traffic may be able to learn a great deal about
the routes in a network (e.g., see [27], [28]). Furthermore,
by changing its own weights, and observing traffic flows, a
node may be able to learn a substantial amount. These type
of attacks are unavoidable as long as the traffic paths are
not hidden from the nodes, but there do exist anonymous
forwarding schemes (e.g. [29]) that allow one to disguise
sources/destinations and routes through a network. If such a
scheme were designed for use on top of privacy-preserving
routing, then we may be able to avoid this last type of
information gathering attack, though typically at the expense
of some loss of efficiency.

IV. EVALUATION

Cryptographic protocols usually create overheads, and in the
case of STRIP there are messages passed above and beyond
those of a typical PVP. Our first goal, therefore, is to determine
the overheads of STRIP.

We can see two types of overhead: the additional messages
passed (and the additional length of these messages in com-
parison to those of a PVP protocol), and the cost in terms of
extra time to converge. There is an additional computational
cost to the protocol, but we will subsume that through the
calculation of additional delays.

We assessed the protocol through two means: simulation
and implementation. The simulation is necessary because we
don’t have the resources to assess the performance of the real
implementation in distributed hardware, so the simulation is
used to show scaling of the protocol, and used for setting
features such as timers that required many experiments. The
final proof of the pudding lies in the implementation.



We will first discuss the simulation results. We wrote a
discrete-event simulation of STRIP focusing on the processing
capabilities of the routers in the network. We implemented
the simulation using Python and in particular the SimPy
[30] package, a framework for implementing a process-based
discrete-event simulation.

The routers are modelled to have a processing queue where
the SPC-packets are processed sequentially, in order of their
arrival. Each router can have one or several of these processing
queues.

The STRIP protocol routers were configured with the fol-
lowing parameters:

• requestTime: the time a router needs to process a SPC
request. This is dominated by the encryption. We set this
value on all simulations to 4ms, the time for our Paillier
encryption on a fairly standard CPU.

• replyTime: the time a router needs to process a SPC
reply. That’s just a lookup in the temporary routing table.
We set replyTime to 0.1 ms.

We implemented the waitForAnnouncementsTime
(wfat) as a random variable X with a uniform distribution
and 1/2 wfat ≤ X ≤ 3/2 wfat. If the waiting time is fixed
it can lead to bursts of almost simultaneous shortest path
computations which create load bursts on the routers. With
the randomisation we achieve a more equal load on the
routers, and avoid potential synchronisation affects.

We also implemented a simulation of the path vector
protocol described in III. For a fair comparison the pro-
tocol includes an announcementDelay parameter simi-
lar the waitForAnnouncementsTime in STRIP (rout-
ing protocols often have such a parameter, for instance the
minRouteAdvertTimer in BGP). When a router learn
a new route it waits for announcementDelay before
announcing the changes to its neighbours. The purpose is to
prevent load spurts and it is randomised the same way as the
equivalent parameter of the STRIP protocol.

We test the protocols on several different networks whose
topologies are described below. Every link between routers
has a transmission delay of 5 + x ms, with x being sampled
from an exponential distribution with mean 1. In each case, the
routers are started at the same time, and start by announcing
their immediate neighbours. This is the most stressful test of
the performance of the algorithm.

For every configuration we ran the simulation 50 times with
different seeds for the random number generator – the reported
figures are the averages over these simulations.

A. Comparison

The added privacy measures of STRIP introduce overhead
compared to the PVP. Figure 3 shows the convergence time of
STRIP vs. the path vector protocol in an Erdös-Rényi graph
with p = 10% and respective number of nodes and a Barabási-
Albert graph with 2 new edges for each node.

We observe that the convergence times increase due to the
additional message passing delays, but that the increase is

perhaps 20% on average over all the cases. If the computa-
tional times of the encryptions were reduced, then even these
overheads could be substantially reduced.

We don’t suggest either of types of network are realistic, but
they test opposite extremes. The former is a relatively regular
network, while the latter has power-law degree, and this creates
a small number of high-degree hub nodes. We can see that in
the results where both protocols converge more quickly on
the Barabási-Albert graphs, due to the smaller search space
(routes concentrate on the few hub nodes).

5 10 15 20 25 30 35 40 45 50
number of nodes

20

40

60

80

100

120

140

co
n

ve
rg

e
n

ce
 t

im
e
 (

s)

STRIP Erdos
PVP Erdos
STRIP Barabasi
PVP Barabasi

Fig. 3: comparison of the convergence time between STRIP
and PVP for Erdös-Rényi and Barabási-Albert graphs.

There is a more significant difference in the communication
costs of the two protocols. Figure 4 shows the number of mes-
sages sent until convergence for the same graphs as in Figure
3. The number of announcements made by both protocols are
similar, but the SPC in STRIP introduces additional messages.
The sizes of these messages are dominated by the cypher-texts,
a request contains two, and a reply contains one cypher-text.
With Paillier’s encryption scheme with a key size of 1024
bits, the cypher-text are 2048 bits long. Thus requests are
around 512 bytes and replies are around 256 bytes. The extra,
larger messages introduce a communications overhead, but it
is still manageable simply because todays networks have an
exponentially larger available bandwidth than those for which
a typical PVP was designed (20 years or more ago).

However, the number of requests and replies grow signif-
icantly faster than the number of announcements for bigger
graphs, since there are more paths to be evaluated and the
average path length grows.

B. Parameter Choice

STRIP has three parameters that need to be configured:
waitForAnnouncementsTime, waitForRequests-
Time and waitForRepliesTime. Their chronological se-
quence is shown in Figure 2.

The value for waitForRequestsTime depends on how
long a request travels from the originator to the destination
through the network. Too small, and requests are dropped;



5 10 15 20 25 30 35 40 45 50
number of nodes

0K

10K

20K

30K

40K

50K

60K

70K

80K

90K
n

u
m

b
e
r 

o
f 

m
e
ss

a
g

e
s

announcements (STRIP)
announcements (PVP)
requests
replies

Fig. 4: number of messages sent until convergence in the
graphs from Figure 3.

but large values slow down convergence. Figure 5 shows
convergence time and deviation from the optimal routing
solution for different values for waitForRequestsTime
in an Erdös-Rényi graph with 30 nodes and p = 15%.

Figure 5 shows that the convergence times (left
axis) generally increase with an increase in the
waitForRequestsTime parameter. This effect can
be dampened by an implementation trick we call shortcut.
The originator knows how many requests it has created and
therefore, after receiving a reply for every request it sent, it
does not have to wait any longer because there cannot be any
more replies. Sending the number of requests in each request
to the destination router means it can stop waiting after it
receives all the requests. Figure 5 shows convergence times
with and without shortcut.

Figure 5 also shows the “deviation” (right axis) from the
correct routing solution, which can be non-zero if too many
routing messages are dropped. The figure shows that there
is a minimum value for this parameter, above which the
routes converge correctly. In all our simulations we found that
choosing waitForRequestsTime to be n(c + td), where
n is the number of nodes in the graph, c the time it takes to
compute an encryption and td the average transmission delay
on a link, results in an optimal solution being found. This was a
reasonable compromise between additional convergence time,
and finding the optimal solution.

The value for waitForRepliesTime depends on a
composition of the value for waitForRequestsTime and
the times it takes for the replies to travel back to the orig-
inator. We chose waitForRepliesTime to be twice the
waitForRequestsTime.

The waitForAnnouncementsTime parameter also has
a dramatic influence on the convergence time. Choosing this to
be too small leads to STRIP not finding the optimal solution. If
it is too small, the routers receive too many requests to process,
so queues build up and at some point the number of requests
may exceed the processing capabilities of the router leading to

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

d
e
vi

a
ti

o
n

 (
%

)

50 100 150 200 250 300 350 400 450 500
waitForRequestsTime (ms)

30

35

40

45

50

co
n

ve
rg

e
n

ce
 t

im
e
 (

s)

with shortcut
without shortcut
deviation

Fig. 5: convergence time and deviation from optimal routing
solution for different values for waitForRequestsTime.

0.0

0.5

1.0

1.5

2.0

d
e
vi

a
ti

o
n

 (
%

)

1000 1500 2000 2500 3000 3500 4000
waitForAnnouncementsTime (ms)

10

15

20

25

30

35

co
n

ve
rg

e
n

ce
 t

im
e
 (

s)

conv. time, 1 PU
conv. time, x PU
deviation, 1 PU
deviation, x PU

Fig. 6: comparing convergence time and deviation from opti-
mal routing solution for different values for waitForAnnounce-
mentsTime for single and multi processing unit (PU) routers.

dropped requests, but larger values slow convergence. Figure 6
shows the convergence time of STRIP in an Erdös-Rényi graph
with 30 nodes and p = 15%. The effect of the deviation from
the optimal solution can be dampened by allowing routers to
process requests in parallel (in this measurement series we
assigned a router one processing unit for every 4 ports). The
resulting convergence times are almost linear in the delay time.

C. Performance

The performance of the protocol with regards to the smallest
time to converge to the optimal routing solution depends on
the number of messages, because processing the cryptography
in the messages is the bottleneck. If the processing queue of a
router fills faster than it can process the messages it increases
the overall round-trip time for a shortest path computation, or
in extreme cases messages may be dropped.

Obviously, the more routers in the network, the more
messages have to be processed, but the number of links in



2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
average node degree

0K

50K

100K

150K

200K
n

u
m

b
e
r 

o
f 

m
e
ss

a
g

e
s

announcements
requests
replies

Fig. 7: number of messages for graphs with n = 30 but
different average node degree.

1000 1500 2000 2500 3000 3500 4000 4500 5000
waitForAnnouncementsTime (ms)

0

1

2

3

4

5

6

7

8

d
e
vi

a
ti

o
n

 (
%

) 

max node degree = 6
max node degree = 8
max node degree = 10
max node degree = 12

Fig. 8: deviation from optimal routing solution for graphs with
n = 30 and same average node degree but different maximum
node degree.

a network also has an influence on the number of messages
sent. Figure 7 shows the number of messages in an Erdös-
Rényi graph with 30 nodes with varying average node degree.
The increase of edges in the graph leads to more possible paths
between nodes, which consequently requires that more paths
has to be explored in each computation.

The overall amount of load for the routers is not the
only determining factor for the protocol performance. It also
depends on how this load is distributed over all routers. Figure
8 show the deviation from the optimal routing solution for
an Erdös-Rényi graph with 30 nodes with an average node
degree of 3 but different maximal node degrees. It shows,
that the nodes with high node degree are the bottle neck
for the performance in the protocol, because a higher node
degree means being part of more paths and therefore having
to participate in more shortest-path computations.

V. IMPLEMENTATION

We implemented the protocol using the Python program-
ming language. We chose Python because of its suitability
for rapid prototyping and its vast collection of libraries. The
core of STRIP is twisted [31], an event-driven networking
engine. It abstracts the underlying complexity of networking
by providing a suitable set of primitives. It enabled us to
implement STRIP in just 680 lines of code.

For example, setting up a TCP server listening for connec-
tions from other routers is achieved using just one line of
code:

stripservice = internet.TCPServer(
config.getint(’server’,’port’),
STRIPServerFactory(router))

The STRIPServerFactory thus created in turn creates a
STRIPServer object for each connection. Processing messages
simply requires overwriting of the stringReceived method.

class STRIPServer(NetstringReceiver):
def stringReceived(self, data):

...

For the homomorphic encryption we chose Paillier’s encryp-
tion scheme [22]. We based our implementation on the work of
[32], but we used a wrapper module to be able to use the very
efficient GNU multiple precision arithmetic library to speed up
computations dramatically. We also improved the performance
of decryption by applying the Chinese Remainder Theorem
(CRT). The computationally expensive part of the decryption
is a modular exponentiation with a large exponent. The CRT
enables us to divide the exponentiation into two exponentia-
tions with much smaller exponents. The new exponents have
just half the bit size of the original one. This trick leads to an
improvement of approximately a factor of 4.

The source code is available for download at
https://github.com/wilko77/STRIP.

A. Emulation

We emulated routers using AutoNetkit [33], which creates
a netkit [34] lab. Netkit is an environment for performing
network experiments with several virtual network devices that
can be interconnected to form a network on a single PC.
Given the network topology description in graphML format,
it automatically generates the netkit configuration files to
set up the virtual routers and the connections. We modified
AutoNetkit to also generate the STRIP configuration files.

It is important to realise, though, that this is a real protocol
stack, running on real router software (on virtualised router
hardware). So our emulation experiments can demonstrate
success of the protocol, and overhead in terms of messages,
but convergence times for such a network are not accurate,
hence the need for the earlier simulations.

We used the following networks for the emulation runs. All
networks consist of 11 nodes.

• Random tree. It has the smallest possible amount of edges
for a connected graph.

• Clique. Fully connected, thus maximum amount of edges
for a graph. Random weights on the edges.



• The Abilene network. Weights on the edges are the
distance of the edge in km.

Netkit starts the virtual routers in a sequential order, only
after the first one is fully running it starts the next one. We
run an emulation until the routing converges and then tested
the result for correctness. Table I shows the number of sent
messages for the different networks.

TABLE I: Comparison of the costs

network #encryptions #announcements #other msgs
tree 512 91 584

fully connected 14 477 2 069 26 570
Abilene 1 286 192 1 954

As seen with the simulations the density of a network is
a determining factor for the communication and computation
costs. The difference between the best case (tree) and worst
case (clique) for the same size network is significant. However,
real world networks are rather sparse as every link introduces
more costs and does not necessarily result in better perfor-
mance.

VI. CONCLUSION

This paper presented STRIP, a shortest-path routing proto-
col, which doesn’t reveal the length of paths to its participants.
It opens up a set of operations that could enhance privacy (and
hence security) in future protocols.

The protocol has limitations: it introduces overheads, and
doesn’t implement all of the features that one might like
to see in a modern, BGP-like protocol. However, the basic
components of the protocol are easily extensible: the homo-
morphic encryption can implement other types of path metrics,
or combinations of them. And we aim to work on improving
its efficiency to reduce the overheads of the protocol.

ACKNOWLEDGEMENT

We would like to acknowledge contributions to the ideas in
this paper from Yin Zhang, who was involved in an earlier
proposal [20]. We would also like to acknowledge the support
of an Adelaide Scholarship International, a supplementary
Scholarship of the Defence Systems Innovation Centre, and
Australian Research Council grant DP0985063.

REFERENCES

[1] A. Ramachandran and N. Feamster, “Understanding the network-level
behavior of spammers,” in ACM SIGCOMM, 2006, pp. 291–302.

[2] R. Hiran, N. Carlsson, and P. Gill, “Characterizing large-scale routing
anomalies: A case study of the china telecom incident,” in Passive and
Active Measurement Conference, 2013.

[3] R. McMillan, “Youtube outage underscores big Internet
problem,” Infoworld, 2008, http://www.infoworld.com/t/applications/
youtube-outage-underscores-big-internet-problem-702.

[4] J. Cowie, “China’s 18-minute mystery,” Renesys blog, November 2010,
http://www.renesys.com/blog/2010/11/chinas-18-minute-mystery.shtml.

[5] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed internet
routing convergence,” in ACM SIGCOMM, 2000, pp. 175–187.

[6] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations
in inter-domain routing,” Computer networks, vol. 32, pp. 1–16, 2000.

[7] T. Griffin and G. Wilfong, “Analysis of the MED oscillation problem in
BGP,” in ICNP, 2002, pp. 90–99.

[8] R. Bush, O. Maennel, M. Roughan, and S. Uhlig, “Internet optometry:
assessing the broken glasses in Internet reachability,” in ACM SIG-
COMM, 2009, pp. 242–253.

[9] T. Griffin and G. Huston, “BGP wedgies,” RFC 4264, 2005.
[10] Y. Rekhter and T. Li, “A Border Gateway Protocol 4 (BGP-4),” RFC

1654, March 1994.
[11] L. Subramanian, S. Agarwal, J. Rexford, and R. Katz, “Characterizing

the internet hierarchy from multiple vantage points,” in INFOCOM,
2002, pp. 618–627.

[12] F. Wang and L. Gao, “On inferring and characterizing internet routing
policies,” in ACM SIGCOMM, 2003, pp. 15–26.

[13] J. Xia and L. Gao, “On the evaluation of AS relationship inferences,”
in IEEE GLOBECOM, 2004, pp. 1373–1377.

[14] W. Mühlbauer, A. Feldmann, O. Maennel, M. Roughan, and S. Uhlig,
“Building an AS-topology model that captures route diversity,” in ACM
SIGCOMM, 2006, pp. 195–206.

[15] P. Boothe, J. Hiebert, and R. Bush, “How Prevalent is Prefix Hijacking
on the Internet?” NANOG 36, February 2006.

[16] A. Pilosov and T. Kapela, “Stealing the Internet,” in Def-
con 16, 2008, www.defcon.org/images/defcon-16/dc16-presentations/
defcon-16-pilosov-kapela.pdf.

[17] A. Barbir, S. Murphy, and Y. Yang, “Generic threats to routing proto-
cols,” RFC 4593, 2006.

[18] M. Zhao, W. Zhou, A. J. Gurney, A. Haeberlen, M. Sherr, and B. T.
Loo, “Private and verifiable interdomain routing decisions,” in ACM
SIGCOMM, 2012, pp. 383–394.

[19] D. Gupta, A. Segal, A. Panda, G. Segev, M. Schapira, J. Feigenbaum,
J. Rexford, and S. Shenker, “A new approach to interdomain routing
based on secure multi-party computation,” in ACM Workshop on Hot
Topics in Networks, ser. HotNets-XI, 2012, pp. 37–42.

[20] M. Roughan and Y. Zhang, “Privacy-preserving routing,” September
2006, Clean Slate Networks Workshop, Cambridge UK.

[21] A. Yao, “Protocols for secure computations,” in IEEE Symposium on
Foundations of Computer Science (FOCS), 1982, pp. 160–164.

[22] P. Paillier, “Public-Key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, 1999, pp. 223–238.

[23] M. Lepinski and S. Kent, “An Infrastructure to Support Secure Internet
Routing,” RFC 6480, IETF, Feb. 2012.

[24] I. Phillips, O. Maennel, D. Perouli, R. Austein, C. Pelsser, K. Shima, and
R. Bush, “RPKI propagation emulation measurement: an early report,”
IETF Talk, July 2012.

[25] E. Parsonage, H. X. Nguyen, and M. Roughan, “Absorbing lexicographic
products in metarouting,” in The 1st International Workshop on Rigorous
Protocol Engineering (WRiPE), 2011.

[26] D. Bertsekas and R. Gallager, Data networks. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1987.

[27] S. Ratnasamy and S. McCanne, “Inference of multicast routing trees
and bottleneck bandwidths using end-to-end measurements,” in IEEE
INFOCOM, vol. 1, 1999, pp. 353–360.

[28] M. Coates, M. Rabbat, and R. Nowak, “Merging logical topologies using
end-to-end measurements,” in ACM Internet Measurement Converence,
2003.

[29] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in USENIX Security Symposium, 2004, pp.
21–21.

[30] “Simpy simulation package.” [Online]. Available: http://simpy.
sourceforge.net/

[31] “Twisted networking library.” [Online]. Available: http://twistedmatrix.
com/trac/

[32] D. Evans, Y. Huang, J. Katz, and L. Malka, “Efficient privacy-preserving
biometric identification,” in Proc. of Network and Distributed System
Security Symposium, NDSS, 2011.

[33] S. Knight, A. Jaboldinov, O. Maennel, I. Phillips, and M. Roughan, “Au-
tonetkit: simplifying large scale, open-source network experimentation,”
SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 97–98, 2012.

[34] M. Pizzonia and M. Rimondini, “Netkit: easy emulation of complex
networks on inexpensive hardware,” in TridentCom, 2008, pp. 7:1–7:10.


