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One of the most significant findings of traffic measurement
studies over the last decade has been the observed self-similarity
in packet network traffic. Subsequent research has focused on the
origins of this self-similarity, and the network engineering signif-
icance of this phenomenon. This paper reviews what is currently
known about network traffic self-similarity and its significance. We
then consider a matter of current research, namely, the manner in
which network dynamics (specifically, the dynamics of transmission
control protocol (TCP), the predominant transport protocol used in
today’s Internet) can affect the observed self-similarity. To this end,
we first discuss some of the pitfalls associated with applying tra-
ditional performance evaluation techniques to highly-interacting,
large-scale networks such as the Internet. We then present one
promising approach based on chaotic maps to capture and model
the dynamics of TCP-type feedback control in such networks. Not
only can appropriately chosen chaotic map models capture a range
of realistic source characteristics, but by coupling these to network
state equations, one can study the effects of network dynamics on
the observed scaling behavior. We consider several aspects of TCP
feedback, and illustrate by examples that while TCP-type feedback
can modify the self-similar scaling behavior of network traffic, it
neither generates it nor eliminates it.

Keywords—Chaotic maps, congestion control, dynamical
systems, feedback, long-range dependence, scaling, self-similarity,
wavelets.

I. INTRODUCTION

Traffic characterization and modeling are generally
viewed as important first steps toward the analysis and
control of network performance. At the same time, there
is little disagreement that the resulting understanding of
and solutions to network performance-related problems are
only as good and complete as the underlying assumptions
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on the traffic flows in the network, and the manner in
which they interact with network elements. However, traffic
measurement studies over the past 10 or so years have con-
tinued to demonstrate our limited understanding of actual
network traffic by revealing “emergent” phenomena—mea-
surement-driven discoveries about the dynamic nature of
actual network traffic that come as a complete surprise, defy
conventional wisdom, and cannot be explained nor predicted
within the framework of the traditionally considered traffic
models. An example of such an emergent phenomenon was
the discovery of the self-similar or fractal nature of network
traffic [18], [42], [54].

The focus of this paper is the observed scaling behavior of
network traffic, and the use of dynamical systems models to
understand how feedback mechanisms affect it. In particular,
we survey here the development of self-similar traffic and
performance modeling over the past 10 years, paying spe-
cial attention to the radical changes that have resulted from
a gradual improvement of our understanding of the causes
and origins underlying the self-similarity phenomenon [32],
[53], [57], [72]–[74], [77]. This work motivates the develop-
ment of innovative new approaches for modeling and eval-
uating the performance of large-scale complex communica-
tion networks such as today’s Internet. As an illustration, we
outline a dynamical systems modeling approach that shows
some promise in tackling future traffic performance mod-
eling problems, where feedback and the large-scale nature
of networks must be addressed for accurate analysis and con-
trol.

A. Self-Similarity: Dealing With the Phenomenon

In the case of data networks, high time-resolution packet-
level traffic measurements are generally recorded from the
physical link over which the data is sent, by copying either
an initial part of each packet (i.e., the packet header) or every
single bit of each packet (i.e., header plus payload) over to a
high-performance storage device. Along with every packet
that is stored, additional information is usually saved, no-
tably an accurate time stamp (packet arrival time), packet
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size, and other status information. The last decade has seen
an enormous increase in empirical studies of high-quality and
high-volume data sets of traffic measurements from a variety
of different data networks, but especially from different links
within the global Internet. These studies typically describe
pertinent statistical characteristics of the temporal dynamics
of the “packet” or bit rate processes (i.e., the time series rep-
resenting the number of packets or bits per time unit, over a
certain time interval) as seen on a link within the network.
They provide ample evidence that measured packet traffic
exhibits extended temporal correlations [i.e.,long-range de-
pendence (LRD)], and hence when viewed within some range
of (sufficiently large) time scales, the traffic appears to be
fractal-likeor self-similar, in the sense that a segment of the
traffic measured at some time scale looks or behaves just like
an appropriately scaled version of the traffic measured over
a different time scale. In effect, this empirically-based ef-
fort toward describing actual data network traffic has demon-
strated that self-similarity provides an elegant and compact
mathematical framework (see Section II-A) for capturing the
essence behind the wide range of observed “burstiness” or
scale-invariance in measured traffic traces (see [77] for fur-
ther references).

The observed self-similar behavior of measured traffic was
in sharp contrast to what the conventional models for data
traffic predicted, models that in general lacked validation
against measured traffic traces. A hallmark of these tradi-
tional voice-based data traffic models is a correlation func-
tion which decays exponentially fast [i.e.,short-range de-
pendence (SRD)], implying that time-aggregation quickly re-
sults in white noise traffic characterized by the absence of
any significant temporal correlations, and capable only of re-
producing the observed bursty behavior of measured traffic
over a narrow range of time scales. In fact, during the first
few years following the discovery of self-similarity, much
of the existing research effort focused on purely descriptive
models and followed the line of traditional time series anal-
ysis, where the context in which the data are measured and
collected is often of little or no significance. As surveyed in
Section II-B, the main emphasis was on statistical inference,
parameter estimation, and model fitting. In this sense, almost
the only impact that the self-similarity finding had in the
short term was to add self-similar models to an already long
list of existing “open loop” data traffic models. Here “open
loop” refers to the fact that while the traffic characteristics
impact queueing behavior, the impact of queueing perfor-
mance in shaping the incident traffic is not modeled. More-
over, while tractability was the primary motivation for many
of the traditional models, the new self-similar modeling al-
ternatives were the result of a measurement-driven research
effort; they also revealed very clearly the restrictive condi-
tions under which traditional data traffic modeling operated
when trying to cope with the generally accepted “bursty” na-
ture of data traffic.

As far as the engineering significance of self-similarity
is concerned, the standard question that was asked imme-
diately after its discovery was “what are the implications
of self-similarity on queueing performance and network

engineering?” Put differently, without fully understanding
the causes and origins of the phenomenon at hand, these re-
searchers needed to know the impact that self-similar traffic
would have on the analysis and engineering of high-speed
networks already under development and deployment,
such as frame relay, ATM and Internet access/backbone
networks [53]. To answer this FAQ, a good starting point in
understanding the impact of self-similarity was provided by
Norros [50], who developed a formula that can be used to
estimate buffer overflow probabilities at network switches
and routers. The Norros results showed that the queueing
backlogs were in general worse with self-similar traffic,
in the sense that the buffer sizes to achieve a certain loss
objective could be significantly greater. This agrees with
the common intuition that the presence of positive corre-
lations in the incident traffic can only aggravate queueing
delays. The long-range correlations manifest themselves
in extended periods of time over which the incident traffic
exceeds link capacity, leading to heavy queueing backlogs.
In contrast, a small amount of buffering is sufficient to
smooth out the peaks and valleys in SRD traffic. In another
engineering sense, the presence of self-similarity could have
been termed “good news.” The large deviations principles
that underpins the Norros’ formula, and its refinements [22],
[47], [49], directly relate the traffic characteristics (e.g.,
distribution of arrival counts) to performance measures (e.g.,
queue length distributions, loss rates). They indicate that to
obtain the performance estimates necessary to accomplish
even basic network engineering tasks, one must in principle
characterize an infinite family of distributions of the arrival
counts. This is clearly impossible to do in practice. However,
this is precisely where the observation of self-similarity in
network traffic is of practical relevance—it buys parsimony;
the ability to specify the relevant statistical details of arrival
counts with as few parameters as possible. In theory (i.e.,
assuming an idealized Gaussian setting), it enables the
representation of the infinite family of distributions by three
parameters over the entire scaling region—an enormous
reduction in the description complexity. These three param-
eters are the mean and the variability of the traffic process,
and the self-similarity or Hurst parameter (see Section II-C
for details).

Self-similar traffic descriptions that capture traffic fluctu-
ations over many time scales of interest are also attractive in
view of the large deviations notion of a “critical time scale,”
which dominates queueing behavior. If one knewa priori
what the critical time scale was, there would be no need to
model the traffic on other time scales. This has lead some to
argue that because queueing phenomena are dominated by
essentially a single time scale, self-similarity is irrelevant
since it is used to describe traffic over a wide range of
time scales. In practice, traffic fluctuations over a wide
range of time scales are important in engineering—ranging
from milliseconds, through seconds, minutes, and beyond.
Even in determining queueing performance, buffer sizes in
modern packet networks correspond to several round-trip
times, or several hundred milliseconds or more. Secondly,
the buffer levels and capacity of the link can vary widely
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in an end-to-end flow (say, from modem speeds of 9.6
kb/s in wireless access through OC-48 or 2.5 Gb/s in the
Internet backbone). Third, the critical time scale varies
with link utilization. Thus, basing a traffic description on
an a priori expectation of critical time scales limits the
model’s utility, requiring a specialized set of models for
each potential combination of queueing parameters. In such
cases, a self-similar traffic description is clearly a more
parsimonious and also more viable alternative.

The above discussion does not imply that self-similar
models are always appropriate. As described in [25], there
are three fundamental conditions that must be satisfied for
a Gaussian self-similar traffic description, corresponding
to the observation of long-range dependence in traffic, to
apply:

1) the network traffic should be sufficiently aggregated
so that the marginal distributions of counts are at least
approximately Gaussian;

2) the long-range dependent scaling region should span
the engineering time scales of interest;

3) the impact of network controls on the traffic flows
must not be significant over the engineering time
scales of interest.

These three conditions together suggest a feasibility regime
for the standard self-similar traffic model discussed in Sec-
tion II-A, based onfractional Brownian motion (fBm). It is
delineated by: moderate to heavy traffic (so that the aggre-
gation levels are sufficient for a second-order description to
be valid), aggregation from a large number of low-activity
sources (so that no one source is dominant), and moderate to
large buffer sizes (so that the scaling region covers the time
scales of interest). While this may seem like a restrictive set
of conditions, it nevertheless holds for a range of practical
network engineering problems.

B. Self-Similarity: Understanding the Phenomenon

In parts of the Internet research community, the self-sim-
ilarity discovery was met from the very beginning with a
degree of curiosity that went beyond the obvious question
of how to model a traffic trace found to be consistent with
LRD. In short, these researchers wanted to know if there ex-
ists a physical explanation for the observed self-similar na-
ture of data traffic—an explanation that makes sense in the
networking context and which can be phrased and, more im-
portantly, validated in terms of more fundamental traffic-re-
lated entities. To move beyond the conventional time series
analysis perspective and to succeed in explaining the physics
behind self-similar traffic, it is essential to exploit more pur-
posefully the high semantic context contained in the mea-
sured data, thereby explicitly accounting for certain aspects
behind the design and architectural principles of today’s data
networks [16]. In fact, realizing that it is difficult to think
of any other area in the sciences where the available data
provides such detailed information about so many different
facets of the phenomenon under study suggests that there
exists great potential for discovering intuitively appealing,
conceptually simple and mathematically rigorous statements

as to the causes and origins of all sorts of “emergent” phe-
nomena in data networking, including self-similarity.

Over the last few years, the challenge to develop net-
working-related explanations for self-similarity has resulted
in a number of studies that convincingly demonstrate that the
empirically observed scaling behavior of measured network
traffic over large time scales is caused by the high-variability
of the individual sessions (or transmission control protocol
(TCP) connections—see Section II-E—or IP flows) that
make up the aggregate traffic. More precisely, these studies
show that aggregate packet-level network traffic exhibits
self-similar scaling behavior over sufficiently large time
scales if the durations (in time) or sizes (in bytes) of the
individual sessions, or TCP connections, or IP flows that
generate the aggregate traffic have aheavy-tailed distribu-
tion with infinite variance(that is, range from extremely
short/small to extremely long/large with nonnegligible prob-
ability). The resultingstructural modeling approaches are
discussed in Section II-D and provide a physically-based,
networking-related understanding of the observed self-simi-
larity phenomenon in terms of more fundamental properties
of the traffic patterns generated by the individual users
and/or applications. They have impacted our understanding
of actual network traffic to the point where we can explain
why it exhibits self-similar scaling properties over large
enough time scales. The technical arguments are in full
agreement with the networking researchers’ intuition, can
be explained readily to nonnetworking experts and/or
nonmathematicians, and can be validated against measure-
ments at the different layers in the networking hierarchy
where the more fundamental quantities can be inferred or
observed. These developments have helped immensely in
demystifying self-similar traffic modeling and have given
rise to new insights and physical understanding of the effects
of LRD on the design, management and performance of
modern data networks [18], [29], [73], [76], [83].

On the one hand, the fact that we can explain self-sim-
ilar scaling in terms of the statistical properties of the in-
dividual sessions or connections that make up the aggre-
gate link traffic suggests that the LRD nature of network
traffic is mainly caused by user/application characteristics
such as Poisson arrivals of sessions and heavy-tailed dis-
tributions for the session durations/sizes, and has little to
do with the network, i.e., with the protocol-specific mech-
anisms that determine the actual flow of packets as they tra-
verse the Internet (as long as the available bandwidth is re-
quired to be shared in a fair manner among the competing
connections). Assuming that the nature of the information
to be transported by networks does not itself change drasti-
cally, self-similar scaling at large scales is, therefore, likely
to remain with us. On the other hand, realizing that LRD
leaves the small-time scale behavior (or, equivalently, the
small-lag correlation structure) essentially unspecified, has
recently motivated researchers to renew their investigations
into the small time scale structure of network traffic, in an
attempt to relate the observed complex and highly time-lo-
calized traffic patterns to the most important features of the
most commonly encountered protocols, and to understand
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their mutual interactions in the large-scale Internet. Thus,
while for the purpose of explaining the physical causes be-
hind the observed LRD behavior over large time scales it was
necessary to have only a rough understanding of the protocol
architecture of today’s data networks, relevant studies of the
fine-time scale structure require a more detailed knowledge
of the dominant protocols and/or their most pronounced fea-
tures and rules. To this end, we focus in Section II-E on
the most commonly used transport layer protocol, TCP, and
some of its critical functionalities.

With the desire for a more complete description of
measured network traffic that is also capable of accounting
for the possibility of interesting phenomena associated
with small time scales comes the need for a mathematical
framework that extends beyond fractional Gaussian noise
and is especially geared toward a flexible and effective
handling of highly irregular (or regular) behavior that
may be well-localized in time. This leads us to the study
of differentiability, fractality and regularity of stochastic
processes; that is, properties that are inherently related to the
high-frequency behavior or small-lag correlations. These
have little to do a priori with low-frequency components
and/or high-lag correlations, except that the latter dominate
as soon as smoothing or aggregating in time has wiped out
any interesting small-time peculiarities, leaving us with
LRD or its close relative, asymptotic self-similarity, as pre-
dominant and universal characteristics. However, this desire
for more complete traffic models is in serious conflict with
the realization that because of itsfeedbackor “closed-loop”
nature, TCP (or any other form of end-to-end congestion
control mechanism) constantly shapes (with some delay) the
packet flow emitted from the different sources, which in turn
alters the rate process that arrives at the queue or IP router
for buffering, which in turn impacts the level of congestion,
and so on [39]. The key point is that TCP traffic isshaped
by current networking conditions, resulting in TCP traffic in
turn dynamically adaptingto changing network conditions
[29], [83].

The above observation, and the fact that many of the mea-
sured traffic traces which show strong scaling behavior are
derived from networks in which TCP is dominant, has led
researchers to a conflicting set of conclusions. On the one
hand there are statements to the effect that the impact of net-
work feedback is to eliminate self-similarity, at least to the
extent that some of the dire predictions of the Norros model
are not observed in detailed simulations of TCP behavior
[7]. Note however that the conclusions made in [7] apply
more generally to all open loop models, self-similar or not.
On the other hand, there are other studies which claim that
TCP mechanisms can create and propagate the self-similarity
in network traffic [69], [70] (for an earlier discussion con-
cerning protocol mechanisms and self-similarity, see [55]).
We discuss the existing confusion over this issue and the re-
sulting dilemma in more detail in Section II-F. Clearly, the
diversity of opinions on the impacts of network dynamics
on scaling behavior in traffic motivates an in-depth investi-
gation of closed-loop models, including our approach (see
Sections III and IV) based on dynamical systems.

C. Self-Similarity: A Dynamical Systems Approach

The structural modeling approach discussed thus far re-
lates source behavior at the application level to observed
traffic characteristics at the network layer. In order to ex-
tend this approach to scenarios in which network feedback
significantly shapes source behavior, we need a more ver-
satile approach to source modeling. The work of [23], [24],
[56] demonstrated one way in which models based on chaotic
maps can be used to model traffic sources. The basic concept
is to associate the state of a chaotic map to traffic source ac-
tivity. By carefully choosing the underlying maps, this work
established that it is possible to model a full range of “open
loop” data traffic source behavior.

Beyond mimicking conventional open loop sources, we
show in this paper that the chaotic map approach can be
extended to explicitly incorporate network feedback in its
evolution, thereby capturing source behavior shaped by such
feedback. The dynamical systems approach readily lends it-
self to such interactions, achieved through coupling the equa-
tions which describe source and network evolution. We can
then relate specific aspects of TCP behavior to changes in
observed traffic characteristics. This approach is detailed in
Sections III and IV. We currently simulate the resulting sets
of equations to evaluate the impacts of network feedback on
the observed scaling behavior, though there is considerable
scope for deriving analytical results that can yield additional
insights.

II. SELF-SIMILAR SCALING AND NETWORK TRAFFIC

A. The Mathematics of Large-Time Scaling

To describe the character of the observed scaling proper-
ties of traffic data more precisely, we introduce a second-
order stationary time series . We can think of the se-
ries as the number of bytes arriving in time interval

, where a typical time interval could be 1 ms.
Let the mean, variance and covariance function of this

series be denoted by , , and
, respectively. The

question of the nature of fractal traffic is also that of the true
nature ofburstiness, of variability, which at a fundamental
level could be due to variations in value, that is in , or
to dependence of values over time (or to both). Here we con-
sider that the former does not play the central role, indeed
for simplicity we will allow to be a Gaussian process. The
onus is, therefore, on to explain the scale invariance
of data via temporal correlations.

A simple example of a time series with a characteristic
time-scale, which dominates its statistical behavior, is that of
an autoregressive process of order one, where ,

. The memory of this process decays exponen-
tially fast. In contrast, aLong-Range Dependent(LRD) series
can be defined via a slow, power-law decay of :

(1)

where is a finite positive constant, and the symbol
means “behaves asymptotically as,” or more precisely, that
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the ratio of the two sides tends to one in the limit of large
. Once in the asymptotic regime, the reigning power-law

precludes the existence of any characteristic “time constant.”
To see this more clearly, consider the variance of the sample
mean estimator based on values of

(2)

from which two facts emerge. First, the decay in variance is
radically slower than the scaling one would expect from
familiar Short-Range Dependent(SRD) processes which
are characterized by covariances that decay exponentially
fast. We moreover observe that the prefactorplays the
important role of thesizeof the LRD effect, whereas the
characterof the LRD effect is set by thescaling exponent

. Indeed, confidence intervals on mean estimates will
be roughly proportional to . Second, for large the
property holds: only the ratio of the
scales and matters, the decay is controlled byand
does not depend on any particular scale! Finally, the variance

has another life, as the variance of the integrated form
of : . This process has stationary
increments, and its property , if it
held exactly, would be exactly that of aself-similar process
in the strict sense[46], [61]. Such processes have the
greatest possible degree of statistical self-similarity, making
them ideal as canonical models. They are defined by the
requirement that any random vector of s at different
times has a joint distribution which is identical to that of a
rescaled and normalized version of the random vector. For
the one-dimensional distributions, this is simply

(3)

which—assuming zero mean—immediately implies that
, where denotes theself-similarity

parameteror the Hurst parameter. This reveals that the
LRD parameter and the Hurst parameter of a self-sim-
ilar process are related as . The unique
continuous Gaussian process with this property and with
stationary increments is the well-knownfractional Brownian
motion(fBm) [44]. The (standard) fBm family of processes,

, is indexed by a single parameter which
controls all of its properties. Larger values ofcorrespond
to stronger large scale correlations, which make the sample
paths appear more and more smooth.1 In contrast,
is the memoryless Brownian Motion, which in discrete
time is just a random walk. The increments of fBm with

define the well knownfractional Gaussian Noise
(fGn) family of stationary processes [44]. For Brownian
Motion these increments are i.i.d., which is clearly SRD.
FGn processes with are also SRD, though
qualitatively different to white noise, whereas fGn processes
with are LRD.

1Of course, this appearance can be modified by allowing for two addi-
tional parameters, namely mean and variance, and allows capturing a wide
range of “smoothness” scenarios, from “highly bursty” to “very smooth.”

For analytical studies, the canonical process for modeling
LRD traffic rate processes is fGn with (fGn
with has not as yet played a major role in
traffic modeling). When describing the observed self-similar
behavior of measured traffic rate we can be more flexible.
The standard model is aself-similar process in the asymptotic
senseor, equivalently, an LRD process.2

B. Detection and Measurement of Large-Time Scaling

We have just seen that the statistics ofare nonstandard
in the presence of LRD, and this is true very generally. A
different but related issue, which is key to the rigorous detec-
tion and measurement of scaling phenomena, applies to the
estimation of the scaling exponent itself. Almost any statistic
from an LRD process will involve the exponent, and could,
therefore, be used as the basis of an estimation method. For
example from equation (2) one could attempt to extract
by measuring the slope of against . This “vari-
ance-time plot” method is in fact well known, however, such
a simple time domain estimator has, in general, poor proper-
ties, precisely because of the high correlations between sam-
ples. Notably, it is biased and has poor robustness with re-
spect to nonstationarities. This latter point is very important.
For some time after the discovery of scaling in traffic, it was
debated as to whether the data was indeed consistent with
self-similar scaling, or that the finding was merely an arti-
fact of poor estimators in the face of data polluted with non-
stationarities. The introduction of wavelet based estimation
techniques to traffic in [1] helped greatly to resolve this ques-
tion, as they convert temporal LRD to SRD in the domain
of the wavelet coefficients, and simultaneously eliminate or
reduce certain kinds of nonstationarities. It is now widely
accepted that scaling in traffic is real, and wavelet methods
have become the method of choice for detailed traffic anal-
ysis (see e.g., [28], [29], [68], [83]). A survey of estimation
methods for the scaling exponent can be found in [65], [84],
and comparisons of the wavelet estimator against others is
given in [67] (see also [3]), where a joint wavelet estimator
is given for with excellent statistical properties. An-
other key advantage of the wavelet approach is its com-
putational complexity (memory complexity is also
in an on-line implementation [59]), which is invaluable for
analyzing the enormous data sets of network-related mea-
surements.3 However, even wavelet methods have their prob-
lems when applied to certain real-life or simulated traffic
traces. An important rule-of-thumb continues to be to use as
many different methods as possible for checking and vali-
dating whether or not the data at hand is consistent with any
sort of hypothesized scaling behavior, including self-simi-
larity.

As we use the wavelet approach extensively in our ana-
lyzes below, we provide a brief practical introduction to the
method. Wavelet analysis is a jointtime-scaleanalysis. It re-
places by a set of coefficients, thedetails , ,

2In this paper—unless stated otherwise—the term “self-similar” always
refers to “self-similar in the asymptotic sense.”

3Corresponding Matlab code is publicly available from http://www.em-
ulab.ee.mu.oz.au/~darryl.
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, where denotes the scale, and the instant, about
which the analysis is performed. In the wavelet domain,
equation (2) is replaced by ,
where the role of is played byscale, of which is the
logarithm, where is the frequency domain analog of,
and is independent of. The analog of the variance-time
diagram, that is the estimates of against
, we call theLogscale Diagram. It constitutes an estimate

of the spectrum of the process in log–log coordinates, where
the low frequencies correspond to large scales, appearing
in the right in the figures below. The global behavior of
data as a function of scale can be efficiently examined in
the Logscale Diagram, and the exponent estimated by a
weighted linear regression over the scales where the graph
follows a straight line. What constitutes a straight line can
be judged using the confidence intervals at each scale which
can be calculated or estimated. The important fact is that the
estimation is heavily weighted toward the smaller scales,
where there is much more data. For further details on the
method, its use and robustness properties, we refer the
reader to [67], [2].

C. Impact of Large-Time Scaling on Performance

Performance studies of networks, whether they be ana-
lytic or simulation based, as well as the interpretation of
traffic measurements themselves, require traffic models.
Looking back over the history of such models, two main
drivers stand out: mathematical tractability, and intuition
based on telephony network roots. Traffic processes were
typically chosen to be Markov processes, sometimes of
high complexity, capable of incorporating a hierarchy of
network protocol and traffic source effects, but ultimately
impacting a finite (usually small) number of time scales.
Examples include the Poisson process, renewal processes
(with finite variance inter-arrival times), Markov chains
modulating the state transitions of alternating renewal
processes, autoregressive processes of order, etc. The
realization that over large scales packet traffic was scaling
lay each of these drivers to rest for many performance
problems. It was necessary to select new models which
incorporated fractal properties, reflecting other essential
properties of real data, while retaining parsimony. This was
and remains a challenge, because the need for tractability
is still very much alive. Presenting a black box statistical
model for data is one thing, however resolving a useful
performance question using it is quite another! We briefly
describe here the main model which satisfies the above
criteria and has proven useful in the quest to understand
some of the fundamental implications of fractal traffic. We
describe its main performance implications when used as an
input model for simple queueing systems.

The model was originally introduced by Norros [50] and
is based on the fBm process. Begin with the stationary traffic
rate process , then sum it to form the (nonstationary)
process measuring the total number of
bytes arriving in the interval . This can be decomposed
according to the average rate, a factor controlling the

size of fluctuations, and a process describing their
“shape,” as

(4)

where has zero mean. If is LRD, and forgiving
a switch to continuous time, a natural candidate to model

is the fBm defined above, which possesses perfect
scaling at all scales but in particular has increments with LRD.
Physically, such a model makes sense if conditions (1)–(3) in
Section I-A are satisfied. Following Norros, the “fractional
Brownian storage” consists of an infinite reservoir, with a
constant maximum output rate, fed by above, seen
as a highly irregular “fluid” input. The quantity of interest is
the marginal distribution of the (stationary) queueing
process, and the principal result is that it is asymptotically
of Weibull type, that is

(5)

where is a slowly varying prefactor [49]. The slow
“stretched exponential” decrease withimplies a far higher
loss probability than is the case in the traditional Markovian
modeling context where exponentially fast decaying tails
are the norm.

In practice we have to deal with queues of finite length,
which clearly leads, via loss, to bounded queueing distribu-
tions whose moments not only exist, but are bounded. How-
ever, the effects of LRD are not so easily avoided. In order to
improve loss rates, say by a given ratio, buffer sizes must be
increased significantly. This is in contrast to the simple Mar-
kovian case where—once buffers are larger than a size corre-
sponding to the characteristic scale of the input—losses drop
off exponentially. This “buffer insensitivity” effect is present
even in the relatively mild LRD queueing of equation (5). Far
heavier tails in the queueing distribution are possible, as we
explore further in Section II-D. In short, the effect of LRD
on performance can be summarized as being mildly nega-
tive [33], [53] through to very severe, depending on the cir-
cumstances. Often little can be done about the impacts, as
they are intrinsic to the sources themselves. The network can
try to control traffic flow and smooth it out, but this in turn
introduces, in general, other performance penalties. A key
lesson learned is that multiplexing of traffic is highly desir-
able, since the variance reducing effects of addingindepen-
dentflows will reduce the prefactor , in turn reducing the
impact of the temporal burstiness. Another lesson is thata
power-law [in this case, it concerns the shape of the covari-
ance function in (1)] is highly contagious and hard to erad-
icate, which suggests that learning to live with and manage
scaling effects is a skill network engineers need to acquire.

D. Causes and Origins of Large-Time Scaling

The models described above (including fGn or other
self-similar processes) are “black boxes” in the sense that
they ignore nearly all of the gathered traffic information
(contained in the header of each recorded IP packet) and,
therefore, can offer only a limited contribution to an improved
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understanding of data networks and data network traffic.
They allow us to talk and think in concrete terms about what
some of the measured phenomena are “like,” to formulate
reliable measurement methodologies, and to investigate their
a priori impacts and implications on network performance.
However, black box models remain unsatisfying, especially
in the networking context, where the highly engineered
aspects of the underlying system should be reflected in a
proposed model of traffic to provide direct insight into the
causes and origins of the emergent phenomena of interest,
and their implications for traffic engineering and network
management.

To illustrate, consider the following mathematical con-
struction that can be seen at once to reflect the layering
architecture of the Internet. At the application layer,sessions
(i.e., FTP, HTTP, TELNET) arrive at random (i.e., according to
some stochastic process) on the link and have a “lifetime”
or session length during which they exchange information.
This information exchange manifests itself for example at
the IP layer, where from the start until the end of a session,
IP packets are transmitted in some bursty fashion. Thus, at
the IP layer, the aggregate link traffic measured over some
time period (e.g., 1 h) is made up of the contributions of all
the sessions that—during the period of interest—actively
transmitted packets. Mathematically, this construction, also
known asimmigration death processor queueing
modeland originally due to Cox [17], gives rise to LRD
or, equivalently, asymptotic second-order self-similarity,
provided the session arrivals follow a Poisson process and,
more importantly, the distribution of the their sizes (or
lifetimes) are heavy-tailed with infinite variance. Here,
we call a distribution (or the underlying random variable

) heavy-tailedwith index if, as ,

Note that for , has a finite mean but exhibits
infinite varianceor “high variability.” For , does
not even have a finite mean. Thus, the main ingredient of
Cox’s construction is that the session sizes (or durations) are
heavy-tailed with . Intuitively, this property im-
plies that there is no “typical” session size but instead, the
session sizes are highly variable (i.e., exhibit infinite vari-
ance) and fluctuate over a wide range of scales, from Kilo-
bytes to Megabytes and Gigabytes and beyond. It is this basic
characteristic at the application layer that causes the aggre-
gate traffic at the IP layer to exhibit self-similar scaling. A
closely related earlier construction, originally due to Mandel-
brot [45] (see also [43], [76]), relies on the notion of anon–off
process(or, more generally, arenewal-reward process), but
uses the same basic ingredient of heavy-tailedness to explain
the self-similarity property of the aggregate link traffic. An
on–off sourcetypically refers to the mutually independent,
alternating on-periods (during which packets are emitted at
a constant rate), and off-periods (during which no packets
are sent). The on-times are samples from a random variable

with , and the off-times are distributed as
with , resulting in an average rate for the

on–off source of . Similar to the Cox con-
struction, LRD can be induced in the rate process of
such an on–off process in a very simple, direct, and computa-
tionally effective manner by simply requiring the on- and/or
off-periods to be heavy-tailed with infinite variance. Hence,
aggregating many such on–off sources results in aggregate
link traffic that exhibits self-similar scaling behavior and can
be shown to converge to fGn. For details about Mandelbrot’s
construction, its relationship with Cox’s construction, and
proofs and generalizations of the basic results we refer to
[74].

The beauty of structural models such as Cox’s or Mandel-
brot’s construction is that in stark contrast to the conventional
black box models mentioned earlier, they not only explain
the self-similarity phenomenon in simple terms (i.e., heavy-
tailed connections), but they also clearly identify the data sets
that need to be extracted from the available IP packet-header
traces to validate the proposed explanation; that is, to “close
the loop” between the discovery of the self-similar scaling
behavior of aggregate link traffic on the one hand, and its
explanation in terms of infinite variance phenomena at the
application or connection level on the other. For example,
because of the way many applications are structured, deter-
mining session-related entities such as arrival times and sizes
or durations from packet-level measurements is straightfor-
ward. ForFTP andTELNET, these entities have been shown
to be consistent with Cox’s construction; see [54]. ForHTTP

(i.e., Web sessions), obtaining session information is gener-
ally more involved, but the empirical evidence for the heavy-
tailed characteristic of Web-related entities (e.g.,HTTP re-
quest sizes and durations) has been well-established to date;
see for example [18], [27], [75]. Typically, these empirical
studies rely on more or less sophisticated methods for infer-
ring heavy-tailed behavior, including simple – plots of

versus (the so-calledcomplementary cumulative
distribution functionor CCDF plots,4 where the objective
is to identify a linear region in the tail and use its slope as
an estimate of the heavy-tail index), or Hill plots [57]. It
is worthwhile noting that as far as the self-similarity phe-
nomenon is concerned, the explanation in terms of high vari-
ability remains to date the only approach that has been able
to “close the loop.” In particular, as demonstrated in [71] and
[30], alternative explanations that rely either on phase tran-
sition arguments from statistical mechanics [64], or on net-
work protocols such as TCP [70], fall well short of satisfying
this crucial “closing the loop” requirement.

The ability to explain the observed self-similarity phe-
nomenon of aggregate traffic in terms of the high variability
characteristics of the individual components that make it up
has far-reaching and at times unexpected implications. For
one, it suggests that the self-similarity is mainly caused by
user/application characteristics (i.e., Poisson arrivals of ses-
sions, highly variable session sizes or durations) and is hence
likely to remain a feature of network traffic for some time

4When estimating the heavy tail index�, we do not recommend relying on
the commonly-usedlog–log plots of the probability density functionf(x)
versusx, as they can be easily misinterpreted and often result in highly un-
reliable estimates.
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to come—assuming the way humans tend to organize infor-
mation will not change drastically in the future [81]. This
observation has resulted in a substantial body of literature on
performance modeling with heavy-tailed input models, the
main driver being the unexpected finding that on–off-type
sources with heavy-tailed on-periods ( ) can lead
to an infinite average queue content even though the average
input rate is less than the capacity of the queue [15].
Essentially, the infinite variance of the on-times allows very
long periods where the input rate exceeds, leading to
correspondingly large buffer levels with appreciable prob-
ability. Many variants of these on–off models and related
fluid inputs (e.g., superpositions of many on–off sources,
mixtures of infinite and finite variance on-times) have been
studied, with similar results [14], [53]. Processor sharing
scheduling disciplines can mitigate somewhat the service
degradations seen from the individual users’ point of view,
as it means that if they encounter a very large queue they
nonetheless begin to receive service immediately [11]–[13],
[82]. However, from a system or network operator’s point of
view, simply changing scheduling disciplines cannot make
congestion disappear, and we are again reminded of the
lesson learned earlier that “a power-law is highly contagious
and hard to eradicate” and that learning to live with and
manage scaling effects is a skill network engineers need
to acquire. Examples that illustrate how the ubiquity of
traffic-related high-variability phenomena can be exploited
and has led to the design, analysis, and implementation of
new algorithms for practical engineering problems include
1) CPU load balancing in networks of workstations [35]; 2)
connection scheduling in Web servers [20]; 3) load-sensitive
routing in IP networks [63]; and 4) detecting certain kinds
of network attacks [79], [80].

Realizing that self-similarity concerns large time scales
and leaves the small scale behavior essentially unspecified
has recently motivated researchers to renew their investiga-
tions into the small time scale structure of network traffic.
This current effort and the paradigm shift that it implies
for future traffic and performance modeling will be the
focus of the rest of this section. In addition, the modeling
approaches we have described so far are of the “open loop”
variety, where a source’s characteristics are specified, and
the performance of the network is calculated. What is
missing from this, very traditional approach, is that in the
actual network, there exist protocols which allow the source
and the network to interact, and indeed this is very common.
In “closed loop” approaches, the source is not viewed as
an independent agent but reacts to network conditions,
and of course the opposite direction is true. However, such
interactions operate on time scales of limited range. One,
therefore, expects, and this is borne out below in Section IV,
that beyond these interaction or feedback time scales, the
LRD exponents will continue to make themselves felt. The
same argument does not hold true at small scales, as we
explore after first providing some background on the leading
candidate of network feedback (or, equivalently, of creating
interesting small-time scale behavior), the TCP protocol.

E. A TCP Primer

The Transmission Control Protocol (TCP) has for some
time carried the bulk of data in the Internet; for example,
currently all Web, FTP (file transfer), and NNTP (network
news) services, or some 70%–90% of all traffic, use TCP. For
this reason, it is a natural choice of protocol on which to focus
attention. There are a number of versions of TCP (Tahoe,
Reno, Vegas, New Reno) but the predominant one by far is
TCP Reno, which we focus on here; for more TCP-specific
details, see, e.g., [5], [36]–[38], [78].

TCP aims to provide a reliable delivery service. To en-
sure this, each packet has a sequence number, and its suc-
cessful receipt must be signaled by a returningacknowledg-
ment(ACK) packet. The second aim of TCP is to provide
efficient delivery. An adaptive window flow control is em-
ployed where only a singlewindowof data is allowed to be
transmitted at any one time.5 Once one window’s worth of
data has been sent, the sender must wait until at least part of
it has been acknowledged before sending more. This method
is powerful as it is controlled by the sender, requiring no ad-
ditional information from either the receiver or the network.
TCP has two control windows, the sender basedcwnd, and
the (advertised) receiver windowrwnd. Sources use the min-
imum of the two. Here we assume thatrwnd is constant,
playing the role of the maximum value ofcwnd, the dynam-
ical variable of interest. We assume that all packets are of
Maximum Segment Size(MSS).

The data send rate of a source with window size, and
packet acknowledgment Round-Trip Time of RTT, is

send rate (6)

The interesting design issue in the flow control lies in how
to choosecwnd. Ideally, the window is exactly tuned to the
available bandwidth in the network. If it is too small, then the
network is used inefficiently, while if too large, congestion
may result. However, in the Internet bandwidths can vary
from kb/s to Gb/s, while RTTs can range from less than 1
millisecond to 1 second, allowing a variation in send rate of
10 orders of magnitude [32]. The TCP flow control attempts
to adaptively choose the window size using four algorithms,
Slow start, Congestion avoidance, Fast Recovery, and Fast
Retransmission. To illustrate TCP’s potential for generating
interesting packet arrival patterns over small time scales, we
briefly discuss these four algorithms, concentrating on the
evolution of the window during the slow start phase which
plays a key role in Section IV.

Slow Start and Congestion Avoidance:Slow start begins
by settingcwndto an initial value. We use the common value
of 1 packet.6 It then sends the first window of data, and in-
creasescwndby 1 MSS for each ACK received. As illustrated
in Fig. 1, this results in a doubling ofcwndevery RTT—ef-
fectively an exponential increase, despite the name “slow
start.” The increase is fast to allow TCP to quickly adapt

5TCP data flow is defined in bytes, however some implementations, and
many models, use packets. We use both, depending on context.

6Requests For Comment RFC2581 [5], thedefactostandard, sets a limit
of 2� MSS bytes.
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Fig. 1. Conceptual diagrams of slow start behavior. Left: initial
packet transfers, Right: geometric increase in window size before
ssthreshis reached (simulation with RTT� 0:25s).

to the available network bandwidth, which isa priori un-
known. Slow start finishes whencwndexceeds the slow start
thresholdssthresh. Thecongestion avoidancephase is then
entered, where window growth slows to linear, via

. The initial value ofssthreshis not pre-
scribed by the standards and varies between different imple-
mentations from 1 (i.e., no slow start), to. An important
fact is that for small transfers slow start is the dominant part
of this protocol. In the current Internet, short TCP connec-
tions are very common, for instance, the median WWW file
transfer is around 3–4 kB, which means that at least half of
web transfers take less than 5 packets. This means that the
download bandwidth is strongly constrained by the RTT, and
has very little to do with the transmission speed of the link
for most sources. This is particularly true for wireless links
where RTTs are larger.

Loss Indications, Retransmissions, and Recovery:Slow
start and congestion avoidance describe how the window
size is increased when packets are acknowledged, assuming
no loss. If a packet is lost however, TCP assumes this is due
to congestion and reacts by decreasing the window size, as
well as retransmitting the lost packets. There are two types
of packet loss indications:retransmission timeout(RTO)
which is reliable but slow, andduplicate acknowledgments,
which is much quicker but less reliable. With RTO’s, the
sender simply assumes that if a packet has not been ac-
knowledged within some timeout then it has been lost. The
methods of choosing the RTO value are described in [78].
The second method is based on the fact that if packets arrive
out-of-sequence the receiver can only acknowledge the
contiguouspart of received data, but is also required to send
a duplicate acknowledgment for this part of the data to indi-
cate the out-of-sequence packet. Thus, detection of multiple
duplicate acknowledgments suggests packets arriving after a
loss. Reaction to loss indications consists of retransmission
of packets, and resetting ofcwndandssthresh. In either case
ssthreshis reset to FlightSize , where
Flightsizeis the amount of sent data as yet unacknowledged.
Timeouts tend to occur when congestion is severe, and
duplicate ACK’s when congestion is light. The two events
are, therefore, treated differently. When a timeout occurs
the sender returnscwndto the initial value and begins again
with slow start. With duplicate acknowledgment the sender
need not be so drastic.Fast Recovery/Fast Retransmission

are two intimately related algorithms for effectuating a quick
recovery from isolated losses. For details of their operation
we refer the reader to [5].

F. There Must be More to Network Traffic Than LRD

The very definition of LRD given above is asymptotic,
and, therefore, makes no statement on the nature of corre-
lations over small time scales, nor what constitutes “small”
or “large” scales. There is no question that short-range cor-
relations in traffic can be very strong; for example it is well
known that this is true of variable bit-rate video data, and
very significant for networking performance problems. It is,
therefore, important to examine the causes and origins of the
small time scale correlations in traffic and understand how
they impact (and are impacted by) various aspects of network
performance. In doing so, one can hardly avoid being critical
toward traditional “open loop” traffic modeling and instead
emphasizing the need to deal with closed-loop network sce-
narios and models, as network feedback has the potential to
impact or entirely remodel the “short” to “medium” term de-
pendencies.

The first step must again be to turn to data to see what ac-
tually occurs over scales below the asymptotic LRD regime.
Several studies of TCP traffic over wide-area networks
(WANs) have shown an extraordinary degree of variability
on small time scales, from milliseconds or below up to the
scales where LRD dominates, say, 1 second and above,
depending on the networking setting where the traces were
collected. For some traditional open loop queueing models,
the effects of such variability have been shown to be strongly
negative [26]. In each of [4], [28], [66], [68], unconventional
but nevertheless open-loop scaling models were investigated
to describe the observed type of variability, which can be
thought of as local irregularity. Indeed, when looking at
Logscale Diagrams over small scales, apparent straight lines
are observed, the signatures of scaling, with slopes that are
quite different to those found at large scales. Furthermore,
with remarkable regularity, a sharp change point is seen
at scales that roughly correspond to the round-trip times
experienced by the packets. Unlike the case for large scales
however where the scale invariance is described through a
single parameter, the scaling seen over small scales seems
to be more consistent with richer scaling models, such as
Multifractals, where an entire spectrum of exponents are
required; in [4], [68] an even richer class,Infinitely Divisible
Cascades, was proposed.

The case for richer scaling models is a topic of current
research. It remains inconclusive, partly because the statis-
tical evidence is unclear as to whether the spectrum of expo-
nents is really a superior description, but particularly because
a network-derived explanation for such behavior has proven
elusive. In addition, as mentioned above, at such scales the
closed-loop feedback components of traffic, notably that of
TCP, can be expected to have a significant effect on the de-
pendence structure. We, therefore, focus on the opposite di-
rection, beginning with dynamic network effects due to TCP
which, in turn, appear capable of modifying to a certain de-
gree the small scale variability. There is a small but growing
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literature on the nature and effects of TCP dynamics, by
which we mean deterministic effects, although we allow hy-
brid deterministic/stochastic approaches. We now provide a
short, and necessarily incomplete, survey of this work.

There are a number of publications [41], [48], [51], [52]
which have demonstrated that under suitable assumptions the
average window size of a source goes as the inverse square
root of the loss probability: . Although the as-
sumptions in any one case are somewhat restrictive (random
independent losses, persistent sources, low loss rates) the re-
sult holds for a range of different conditions (independent
losses to periodic losses, TCP-Tahoe, Reno, Delayed Ac-
knowledgments) and nonnegligible loss rates, and seems to
apply to persistent traffic on real networks, with . Note
that bypersistentor greedysources we mean those which
are always trying to transmit at the maximum rate the pro-
tocol will allow. There are also more complex formula that
apply over a wider range of values of[52], or for more
complex loss patterns [6]. This body of work however, is
largely restricted to coarse measures of traffic such as long
term throughput rates and avoids dealing with the large-scale
aspect of real networks.

A much finer analysis is possible using the ma-
chinery [8], [9], which is in principle capable of providing
rigorous results over quite a wide range of scenarios, in-
cluding tandem networks. Thus far, only throughput-type
measures have been derived using it. It remains to be seen
if this framework allows the derivation of a full time-scale
analysis in the context of a large-scale network. In a recent
paper [10], the same authors also show that the competi-
tion between TCP sources under a uniformly shared loss
assumption can generate a radical dispersion between the
individual instantaneous rates, whose sum is bounded by
the link bandwidth. It will be interesting to see if this
dispersion persists under more realistic loss and networking
assumptions, and if it can provide a convincing mechanism
for temporal scaling.

A dynamical systems approach, in the sense of chaos
theory, has also been attempted. In [70], it is shown (using
simulation) that TCP dynamics, at least in the case of a
simple network with small numbers of greedy sources
and small buffers, is capable of generating very complex
chaos-like behavior, as well as (for some parameter values)
apparent scaling over a range of scales (for an earlier
references, see [55]). It seems unlikely however this is the
cause of the observed scaling in large-scale networks, where
the highly heterogeneous mix of traffic sources, with their
random arrivals and typically small data volumes, add a
great deal of random noise to the system, which would tend
to erase whatever dynamics is behind the chaos. Furthermore
in real networks large buffers are the norm.

Note that the dynamical systems approach we employ in
the next two sections is totally different, in a way opposite,
to that of [70]. Wedefinea traffic source to have chaotic fea-
tures, and use it to show how it canimpact—using the termi-
nology introduced in Section II-A—the “size” of LRD be-
havior, and its onset scale, but not its “character.” The chaos
we consider is of a very extrememixing type, and, there-

fore, models a complex system whose dynamics is stable to
perturbations, and even has stochastic features. In this sense,
our approach is related to the work by Kelly and co-workers
[40], [34], who describe dynamical systems that represent
TCP-type rate control algorithms and establish stability and
fairness properties by showing that, with an appropriate for-
mulation of a network-wide optimization problem, the net-
work’s implicit objective function provides a Lyapunov func-
tion for the dynamical systems defined by the rate control al-
gorithms. It would be interesting to establish a possible con-
nection between Kelly’s approach and that outlined below.

As we have seen, there are a variety of avenues currently
being explored in the quest to understand and quantify the
structure of TCP-rich network traffic data on small time
scales. We briefly outline here some of the challenges,
before moving to add our own contribution in the remaining
two chapters.

Measurement, Inference and Estimation:The richness of
traffic is such that one is always in need of more powerful
data gathering and processing infrastructures on the one
hand, and statistical analysis methods on the other. For
existing estimation techniques, the most urgent requirement
is increasing their robustness to nonstationarities of various
types, which will always be present, despite the luxury of
huge data sets which allow apparently stationary subsets to
be selected. Closely related to this is the need for formal
hypothesis tests to more rigorously select between com-
peting conclusions, and closely related in turn is the need for
reliable confidence intervals to be computable, computed,
and used intelligently. The statistical questions themselves
include investigating the degree of validity of scaling models
at small scales, and understanding the relations between
the small scale behavior one finds indifferent time series
extracted from the same raw traffic data. A key question is,
which effects can be seen to “control” which others? If an
answer to this can be found at a statistical level, it would
suggests corresponding connections at a network causal
level.

The Mathematics of Modeling:Many of the approaches
discussed so far: multifractals, infinitely divisible cascades,
Max algebra, dynamical systems, involve significant math-
ematical challenges at several levels. These include problems
of description and understanding of the traffic source models
themselves, properties of estimators for their parameters, and
difficulties in extending results to cover the range of effects
important in the network. These also include taking into ac-
count the heterogeneity of sources, details of router sched-
uling disciplines, the finer points of the TCP protocol, fea-
tures of traffic at the application or even user levels, and as-
pects that are crucial for capturing the essence of the interac-
tions present in large-scale TCP-type closed loop systems.

Finding the Grail: The final category of challenges is
to integrate the different elements which impact (and are
impacted by) traffic, to synthesize a viewpoint which is as
parsimonious and robust as it is accurate and useful. Current
models seem unlikely to provide the “final” answer, and
they lack the correct intuitive vision which allows us to see
when they are predominant, and how they combine with
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other mechanisms. A central component of any such answer
must be: can it tell us if the nature of traffic as it stands
today is based on robust mechanisms, which will cause it to
propagate into the future despite the furious evolution of the
phenomenon, or is it a confused mix of effects which will
evolve beyond recognition in a few years, and if so, to what?

III. CHAOTIC MAP MODELS OFPACKET TRAFFIC

A. Definitions

A chaotic map can be defined by the following
three criteria [21]:

1) showssensitive dependence on initial conditions
(SIC) which is to say that typical trajectories starting
from arbitrarily close initial values nevertheless
diverge at an exponential rate. SIC is the basis of
the “deterministic, yet unpredictable” property of
chaotic systems, because errors in the estimates of
initial states become amplified and prevent accurate
prediction of the trajectory’s evolution.

2) is topologically transitiveor strongly mixing, which
implies that is irreducible, that it can not be decom-
posed into subsets that remain disjoint under repeated
action of the map.

3) periodic points are dense in.
From a modeling perspective, even low order chaotic

maps can capture complex dynamic behavior. It is possible
to model traffic sources that generate fluctuations over a
wide range of time scales using chaotic maps that require a
small number of parameters.

The application of chaotic maps to model packet traffic
was developed in [23], [24], [56]. We outline the basic ap-
proach proposed in these papers, which is to associate packet
source activity with the evolution of a chaotic map. Consider
the one dimensional map in Fig. 2 in which the state vari-
able evolves according to in the interval and
according to in .

One can model an on–off traffic source by stipulating that
the source is active and generates one or more packets when-
ever is in the interval , and is idle otherwise. By care-
fully selecting the functions and one can gen-
erate a range of on–off source behavior.

The traffic generated in this manner can be related to fun-
damental properties of the map. As the map evolves over
time, the probability that is in a given neighborhood is
given by itsinvariant density which is the solution of
the Frobenius–Perron equation [62]:

(7)

If the source is assumed to generate a single packet with every
iteration in the on-state ( ), the average traffic rate
is simply given by:

(8)

Fig. 2. The chaotic map withd = 0:3 andm = m = 1:7.

Another key source characteristic is the “sojourn” or run
times spent in the on- and off-states. Given the deterministic
nature of the mapping, the sojourn time in any given state
is solely determined by the reinjection or initial point at
which the map reenters that state. For example, let the map
reenter the on-state at . The sojourn time there is then
the number of iterations it takes the map to leave the in-
terval :

(9)

One can then derive the distributions of the on- and
off-periods from the reinjection density [where the
probability that the map reenters a state in the neighborhood

is given by ] and (9). The reinjection
density can be derived from the invariant density:

(10)

One can use these relations to demonstrate the following.

1) The sojourn times in the two states are geometrically
distributed if and are linear:

(11)

This follows from the fact that the invariant density
in this case is uniform, and substituting for the linear
mappings in (9).

2) In order to match the heavy-tailed sojourn time distri-
bution behavior observed in measurement studies one
can choose such that as

(12)

where . Note that this function evolves
very slowly in the neighborhood of 0 (a fixed point).
This results in sojourn times in the off-state that are
characterized by distributions with infinite variance.
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One can similarly generate extended on-times by
choosing so that it behaves as (12) in the neigh-
borhood of 1 (another fixed point). In this way one
can match the heavy-tailed sojourn time distribution
observed in measurement studies.

For our purposes, it is convenient to use the following map,
referred to as theFixed Point Double Intermittency(FPDI)
map in [56]:

if

if
(13)

where

(14)

(15)

See Fig. 2 for an example. Note that is a reflected and
shifted version of .

There are several reasons for choosing this particular map:

1) One can model a wide range of on–off behavior by
suitably choosing and . For example, setting

and evaluating the limits using L’Ho-
pital’s rule, the FPDI map reduces to the Bernoulli
Shift (11), characterized by geometrically distributed
sojourn times.

2) In the neighborhood of the fixed points 0 and 1,
possess the intermittency behavior of (12), so that for

and/or in the range the map generates
sojourn times that have heavy tailed distributions.

3) The “fixed point” in its name refers to a unique prop-
erty of and , in that their functional form
is invariant under composition, whereas typically even
simple nonlinear functions quickly escalate in com-
plexity. For the FPDI map, applying to re-
peatedly times yields precisely the same form: if

(16)

This is a special property that we exploit extensively
in modeling TCP windowing behavior, as well as vari-
able RTTs.

One useful result that follows immediately from this in-
variance property is an expression for the remaining sojourn
time of a source in an on- or off-state, given the current
value of

(17)

otherwise if

(18)

where denotes the smallest integer larger than.
The FPDI on–off source model defined in Fig. 2 can be

aggregated to model network traffic flows derived from a
number of independent on–off sources. In particular, aggre-
gating a large number of on–off sources based on nonlinear
segments satisfying (12) generates an approximation of fBm
[56]. The Hurst parameter of the resultant traffic is

(19)

where .

IV. CHAOTIC MAP MODELS OFTCP FEEDBACK

A. Motivation

The on–off source models described in Section III are
“open loop” and evolve independently of the network con-
ditions created by the offered traffic. In particular, they do
not account for the variety of TCP flow control mechanisms
which regulate source behavior in networks—such as the
exponential window increase, the response to losses, and the
impacts of round-trip times.

Of particular interest to us is the impact of such TCP dy-
namics on the scaling behavior of network traffic. As we
indicated earlier, the current views on this subject run the
gamut of possibilities—from some studies that claim that
TCP feedback eliminates self-similarity to the extent that
fBm queueing predictions do not hold (e.g., [7]; but see also
[39]); to other studies that claim that self-similarity can in
fact be generated by such feedback [55], [70].

Note that any network scenario in which flow controls sub-
stantially alter source behavior violates condition (3) for the
validity of the fBm model (which is consistent with the obser-
vations of [7]). Note also that most traffic traces used in mea-
surement studies that establish the existence of self-similarity
are predominantly TCP. These two apparently conflicting ob-
servations can be reconciled on the basis of several insights.

1) Self-similarity has been observed in a wide range
of networking scenarios, including ones in which
TCP is not used, for e.g., in aggregates of ISDN
traces [77], which suggests that at least one of the
sources of self-similarity is fundamental to the nature
of data communications—specifically, heavy-tailed
distributions of the files transferred over the Internet;
or heavy-tailed “think” times in interactive com-
puting. While we do not rule out other causes (such
as protocol interactions), we believe that this is the
most robust mechanism of the many that have been
proposed to explain self-similarity.

2) TCP flow controls cannot eliminate the heavy-tailed
on–off sojourn time distributions, but they can modu-
late the on-times. In particular, the effect of TCP dy-
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namics can be expected to be most significant on finer
time scales (of the order of a round-trip time or lower).
One can, therefore, characterize the impact of TCP as
changing the parameters of self-similar scaling—the
fBm parameters, together with the lower cutoff time
scale that marks the beginning of the scaling region.

3) Because TCP feedback modifies the self-similarity in
the offered traffic, “open loop” modeling approaches,
in which traffic is described in isolation from the
performance analysis, will not accurately predict
TCP performance. This is not a limitation of the
fBm queueing model alone; all open loop modeling
approaches will fail when network feedback is a
significant consideration.

What is required, therefore, is an integrated description and
analysis approach that on the one hand captures the impact of
the traffic on the network (such as queueing) and on the other
captures the impact of network state on source behavior.

Up to this point, analytical models of TCP analysis have
been largely based on persistent sources that in effect offer
infinite file sizes (see for instance [34], [58]). As can be
expected, traffic aggregated from such sources shows no
scaling behavior. Chaotic maps allow the modeling of
complex source behavior (e.g., heavy-tailed file size distri-
butions) and the ability to couple these with other dynamical
equations describing the evolution of network state.

We first show how window evolution can be incorporated
into the basic source model. In particular, we focus on slow
start (as opposed to congestion avoidance) because:

1) it affects all connections;
2) it is the dominant effect for the majority of connec-

tions;
3) it has a more dramatic effect on the dynamics than

congestion avoidance.

B. Zero Loss Dynamics

In order to isolate the impacts of the various mechanisms
in TCP, we start by considering the case of zero loss. In ef-
fect we assume buffers to be so large in relation to the cumu-
lative window size across all connections as to render loss
very rare. Second, as a starting point, we assume that the
RTTs are constant, and do not change across sources and
from packet to packet. This is representative of the case in
which RTTs are dominated by fixed propagation delays, the
effect of queueing delays is negligible, and there is a single
dominant route. The only aspect of TCP feedback modeled
then here is the increase of window size, either up to its max-
imum value, or up to a point when the “file transfer” is com-
pleted.

We base our source model on the following correspon-
dence between the networking scenario and the chaotic map
model.

1) There are identical, independent sources, each with
its own “dummy” state variable , which governs
its traffic generation behavior [e.g., a source is “on”
when ].

2) Every iteration of the map corresponds to one RTT,
which is, therefore, the smallest time scale modeled;
in particularly we do not attempt to generate or ana-
lyze phenomena that may be observed on time scales
smaller than one RTT (e.g., multifractality).

3) One sojourn in the on-state corresponds to one
TCP session (this is the simplest abstraction of web
browsing behavior).

4) The starting point in the on-state determines the length
of the “file” in packets to be downloaded. Hence, the
file sizes are random variables determined by the map.

5) If source is in the on-state, and its window size is
, the source will send up to this many packets

during a single iteration of the system. It actually
transmits , which is the lesser of and the
residual file size, , so that if source is in the
on-state

(20)

6) The source does not generate packets in the off-state,
during which it evolves one iteration at a time. The off-
states, which correspond to the “think times” between
download requests, are assumed to be independent of
the TCP and network states.

With these correspondences in mind, we can write a cou-
pled set of dynamical equations describing the evolution of
TCP windows and the source states. If for source,
, then , and

if
otherwise

(21)

(22)

otherwise if , then , and

(23)

(24)

where is the window size at time, is the max-
imum window size, determined in most cases by the adver-
tised receive window, and is the number of packets sent
for source in RTT (20). State is used to represent the
state of the system after the iteration, denotes iterating
the map times, is the FPDI map above, and theare
the calculated sojourn times from (17) and (18). As before,
we initialize the by a uniform random variable on the in-
terval . Note also that we are iterating the chaotic map
a number of times at each step, which can be readily evalu-
ated using (16).

The window size determines the number of packets gen-
erated by a single source in a round-trip time. The function

has to be, therefore, iterated this many times in a single
time step to produce the residual “file size.” The total traffic
on the link (given sources) is then:

(25)
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Fig. 3. The distribution of the number of on-sources. Vertical bars
are from the simulation. The line shows a Gaussian fit.

1) Results: The above set of equations has been imple-
mented in a C program, and results generated for a variety of
cases.7 In this section, we present results for two simulations,
each over 100 000 iterations long, to illustrate the behavior of
the above system. The two cases considered are

a) geometric on–off times: ;
b) heavy-tailed on–off times: ,

with , , and for both.8

We first examine in Fig. 3 the distribution of the number
of on-sources, which has a limiting Gaussian form, as in
the simple on–off models. However, when we examine the
marginal distribution of the traffic rate over one RTT (in
Fig. 4), it remains Gaussian only for case a), while in case
b) we see what appears to be multiple superposed Gaussian
distributions with some skewness in the means. This can
be explained by noting that the peaks of the superposed
distributions are 64 packets apart, which is the maximum
window size. To further clarify, consider Fig. 5, which
shows a log–log plot of the window size distribution. Case
a) corresponds to geometrically distributed file sizes, where
there is a negligible probability that a source will be on for
long enough to reach the maximum window size, but in case
b) there is a significant probability of this happening, and in
fact, there will be cases where a single source is “on” for a
long time (see following figures). Effectively, for a period
of time there is a net increase in the traffic rate equal to

. This causes the secondary peak in the traffic
rate, with subsequent peaks corresponding to two or more
persistent sources.

As link capacities and traffic volumes increase, and the
maximum window size becomes relatively small, the skew-
ness becomes less noticeable, and the aggregate more closely
resembles a Gaussian. This is an illustration of Condition (1)
in Section I-A.

Another effect of the window increase is the “compres-
sion” of the on-times. Fig. 6 shows log–log plots of the dis-
tribution of the off-times, and as expected, we see in case a)
a geometric decrease, and in case b) a power-law decay. As
should be expected from the symmetry of our chosen param-

7Initial values ofx are chosen from a uniform distribution on[0; 1]. The
first 1000 iterations have been discarded to eliminate transients.

8We have in fact simulated many other cases, including some withm 6=
m , but it is convenient here to consider the symmetric case to contrast the
behavior of the on- and off-times.

Fig. 4. The distribution of the marginal traffic rate (over one RTT).

Fig. 5. Log–log plots of the window size distributions.

Fig. 6. Log–log plots of the off-time distribution (in RTTs).

eters the distributions of file sizes also reflect these charac-
teristics. However when one examines the distribution of the
on-times (shown in Fig. 7) in case b) we see a noticeable de-
viation from a strict power-law. This is explained by the rate
doubling slow start algorithm which acts like a logarithmic
compression of the number of RTTs needed to transmit the
desired number of packets. The numberof RTTs required
to transmit a file of packets is given by

if

if
(26)

The circles in Fig. 7(b) shows the distribution that would
result from (26) based on the actual file size distribution. We
can see that the curve matches the on-time distribution almost
exactly. The lower part of the on-time distribution remains
power-law because in these cases the maximum window size
( ) is reached.
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Fig. 7. Log–log plots of the on-time distribution (in RTTs). The
circles in plot (b) show the predicted on-time distribution derived
from the file size distribution via (26).

One can extrapolate from this thatif there were no
maximum window size and no network bottlenecks, the
power-law decay in the file size distribution would be
compressed to a geometrically distributed on-time, and in
principle, the LRD in the resulting traffic would be elimi-
nated. This does not necessarily bode well from a network
queueing viewpoint, because in effect, the long-range cor-
relations are compressed into heavy-tailed marginals, and
there would be very large batch arrivals into network queues.
However, in practice, there are limits on the window size
and link capacities, and the net effect is to move the onset of
the power-law decay in the on-time distributions further out.

The compression of the on-times is also reflected in traffic
aggregated from a number of such sources. We apply the
wavelet based estimation method to traffic aggregates, and
one can see from the Logscale Diagrams plotted in Fig. 8 that
in the geometric case there is no evidence of LRD ( ),
while in the heavy-tailed case the evidence is clearly visible
( ). The estimated value of is also close to that pre-
dicted in (19). Further, it is of interest to see that the small
scale behavior (from scales 1–4) does not follow the strict
linear asymptote corresponding to LRD. This is the type of
midscale effect characteristic discussed in [60], and we at-
tribute this at least in part to the on-time compression caused
by the exponential window increase of TCP slow start. It is
a topic for further research to determine the relation between
lower cutoffs in the scaling behavior of the aggregated traffic,
and the on-periods.

We have also looked at asymmetric maps ( ).
This is analogous to the situation in which the on- and off-so-
journ times have different distributions. We have also exam-
ined scenarios in which these values vary by source. Indi-
vidually, and in aggregate, the asymptotic scaling behavior is
dominated by the higher value (corresponding to the distribu-
tion with the slowest decay). On intermediate time scales, the
aggregate traffic may show scaling as well, with the slope de-
termined by a weighted average of the individual scaling pa-
rameters. The overall conclusions of this section remain how-
ever unchanged by allowing for this type of heterogeneities.

C. Finite Buffer

The next aspect of TCP behavior we model is the response
to packet losses. When the buffer is finite, there can be packet
losses due to buffer overflows. For simplicity, we model this

Fig. 8. Log-scale diagrams of the traffic.

here as though packet loss is always detected by a timeout;
we are ignoring the “duplicate ack” mechanism outlined in
Section II-E. After a time-out, the window size is reduced
to 1, and the TCP session reenters slow start. We must also
model the buffering of packets which modifies the equations
above to include:

(27)

(28)

where is the total number of lost packets during RTT,
is the buffer content at the end of RTT, is the bottle-

neck link capacity in packets per second,is the buffer size
in packets, and takes the positive part of the argument.

If is positive, then we choose which packets
are lost randomly, thus distributing the lost packets to each
source in proportion to the number of packets it sent. Any
source which loses packets reduces its window size to 1 in
the following RTT.

We do not model retransmission of lost packets in this
paper, nor the RTO behavior. It appears that these mecha-
nisms can introduce correlations of their own over some time
scales [30], and we do not wish this to obscure the impacts
of the window evolution.

1) Results: Once again, we simulate the equations above
in a C program. The major difference between these results
and those with zero loss is that the window sizes are now
adjusted to reduce the rate when it gets too large. The re-
sult is that fewer sources hit the maximum window size, and
the peaks in the traffic rate marginals are less pronounced
(though there is still considerable skewness). However, the
majority of observations in the zero loss case carry over,
at least qualitatively. We can examine a number of features
of the aggregated traffic to gain additional insights on how
TCP affects scaling behavior, and we illustrate this through
a couple of examples.

Relationship Between and : The first question of in-
terest is whether the relationship in (19) still holds. Fig. 8 in-
dicates that the relationship is at least approximately correct.
Here we simulate over a range of values of , and
measure the value of using the wavelet estimator. Fig. 9
shows the results (using 10 independent simulations to ob-
tain the 95% confidence intervals shown as vertical bars in
the graph). The solid line shows (19), and we see that there
is some deviation from it, in particular around . This
can be explained on the basis of earlier observations [56] that
convergence to the theoretical value of 0.5 is very slow for
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Fig. 9. The relationship between inputm and the estimated Hurst
parameter for the traffic. The solid line shows (19), while the circles
show the mean estimatedH% for 10 simulations, and the bars give
95% Gaussian confidence intervals.

; this is the borderline case between short range and
long range dependence. Orders of magnitude longer simula-
tions are needed to see the asymptotic properties correctly.
For the most part, the predicted value lies within the 95%
confidence intervals for the estimated Hurst parameters.

Varying : Fig. 7 shows the effect of TCP slow start’s
exponential window increase. We can gain further under-
standing of this effect by varying , which we do in
Fig. 10(a) where we examine the on-time distributions. As
can be expected, there is no modification of the on-time dis-
tribution for , because this is equivalent to the
open loop case. As increases we see increasing devia-
tion from a straight line, toward a geometric distribution with
a power-law tail. This once again supports the hypothesis
that the geometric part of the on-time distribution is due to
the logarithmic compression of the on-times because of slow
start, and the maximum window size determines the cutoff
for this effect.

Fig. 10(b) shows the variation in the Logscale Diagrams as
increases. When is small we see close to straight

lines (except at the smallest scales), as we would expect.9 As
increases we can see that the curves are translated up-

ward, which is natural as the variation in the traffic increases
(increasing the variance of a process by a factor raises the
corresponding Logscale Diagram by twice the log of that
factor), but more importantly the curve changes shape at fine
scales (up to scale 4), which corresponds to changes in the
dynamics of TCP at scales up to times the RTT.
Overall, one can conclude that the impact of TCP response
to packet losses does not change the conclusions from the
zero loss case.

D. Variable RTTs

Forcing the iteration time step of the map to correspond
to one RTT is restrictive because it forces all sources to have
the same, unvarying RTT. In fact, sources can and do have

9Remember that variation of the order of the confidence intervals plotted
as vertical bars is to be expected.

Fig. 10. The effect of varyingw , the maximum window size:
The on-time distribution for a variety of values ofw (top), the
Logscale diagrams for a variety of values ofw (bottom).

different RTTs, and this can have a strong impact on their
relative performance [31]. Moreover, the RTT can vary dy-
namically within a TCP session. For instance, as the load in-
creases, the queue lengths increase, and, therefore, the RTT
increases. This can have as dramatic an impact on the gener-
ated traffic as packet losses.

In order to model the impacts of variable RTTs, we need
to decouple the time index of the map evolution from a
round-trip time. We can still study the map evolution in
discrete time, with the time quantum equal to a convenient
value, such as the average RTT. Note that as the actual RTT
fluctuates over , it can be lesser or greater than the time
step. If a map iterates steps in an actual , this is
equivalent to iterating in a time step. Note that
in general will not be an integer. However, the
special structure of the FPDI map allows the computation of
fractional iterations of the map. We can, therefore, explicitly
include the effect of RTT using (6) and scale the rate at
which sources evolve correspondingly, by replacingin
(16) with . The number of packets sent in a fixed
interval of time is then:

if state

if state
(29)
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There are two complications.

1) When fractional packet loss occurs, there is no obvious
way to distribute the losses between sources or identify
what the loss means and, hence, we will examine the
zero loss case here.

2) The reinjection probabilities tend to be skewed by the
partial iterations past the threshold, and so an alter-
native reinjection method must be used (we have used
uniformly distributed reinjection here).

The new system is defined by using the modified equation for
transmitted packets, (20), in (21)–(24), in conjunction with
the following set of relations:

(30)

(31)

(32)

if
if

(33)

where is the propagation based delay for source, and
is the number of packets in the buffer. In the high bandwidth,
small buffer case with normalized to 1, this reduces to the
first case discussed with fixed, equal RTTs.

To gain insights into the effects of dynamically varying
RTTs, we examine in detail what happens to a single
source under these equations. When multiple sources are
multiplexed, an individual source’s contribution to the
overall growth in the buffer length is small. Therefore,
many sources acting independently will not be dramatically
affected by allowing RTT to vary dynamically with buffer
length. Hence, a single source shows better the effect of
buffer dynamics on the TCP window flow control algorithm.

Fig. 11 shows the sample path of a single case. The num-
bers of packets sent per fixed time interval (iteration of the
map), the queue length, and the window size are each plotted
on two time scales (the right-hand plots show a longer time
scale).

The window size plots show a short initial nonlinear
growth in the window (up to iteration ), followed by
an almost linear growth up to the maximum window size
(reached at iteration ). Note that the window increase
is substantially slower than in slow start with fixed RTTs
[see the circles in Fig. 11(a)]. During the short-period of
nonlinear growth there is no buffering required, and so the
RTTs are simply the propagation delay, and the rate at which
packets are sent increases dramatically. However, when the
queue begins to fill (at ), the RTTs increase, which
decreases the rate of window growth, resulting in only linear
growth of the window. With approximately linear growth of
the window and queue length, with a corresponding linear
increase in RTTs, the resulting packet rate (6), levels off,
and appears to approach a limit. However, when the window
size reaches its maximum and stops growing, the queue and
the RTT continue to grow, and so the packet rate decreases.

Fig. 11. An example iteration of the variable RTT model (C = 2,
P = 5,w = 128). The left-hand plots (a)–(c) show a finer
time scale plot of the initial part of plots (d)–(f). The three plots
are, (a) and (d): the window size, (b) and (e): the length of the
queue, and (c) and (f): the number of packets sent per fixed time
interval. Circles in (a) show the projected window size for slow start
with fixed RTTs. The horizontal dotted line shows the maximum
window size, and the vertical dashed lines show two epochs of
interest (t = 36 andt = 69).

The decreasing packet rate, leads to sub-linear growth in the
queue, and once again, for the packet send rate
appears to be approaching a limit which corresponds to the
link capacity packets per interval. Finally at
the file transfer terminates, and the packet rate drops to zero,
while the queue empties over the next 50–60 time intervals.

Such complex transient behavior is clearly quite different
from the fixed RTT case. The plateau effect in the queue
length, and the limiting rate for packets appear as natural
rate limits. However, note that the queue length at the
(second) limit is near the maximum window size which, by
the window flow control, would be the maximum number of
packets that could be in the network at any one time. Hence,
this dynamic limit is approximately what the window flow
control would actually achieve, making this simulation
much more realistic than those with fixed RTTs. Qualita-
tively, one can observe that increasing RTT in response to
increasing window size has the effect of limiting the offered
traffic rate; this stretches out the duration of theON period
while lowering the transmission rate in the on-period. The
resulting aggregate can, therefore, be expected to have lower
variability with more extended correlations. Quantifying
the impacts of varying RTTs on the scaling behavior of the
traffic is left for further study.
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V. CONCLUSION

It is now widely accepted that packet network traffic ex-
hibits self-similarity over a range of time scales. Secondly,
research over the last decade has provided strong evidence
that the self-similarity arises from the heavy-tailed distribu-
tions that characterize data traffic source activity, though this
does not rule out the potential for other sources of self-simi-
larity. A subject of current research is the impact of network
feedback (through for example, the TCP-type mechanisms)
on network traffic characteristics. After surveying what is
currently known on network traffic self-similarity and its ori-
gins, we examined the impacts of network feedback using
dynamical systems models. We indicated how the joint evo-
lution of a traffic source and the network state can be modeled
by a coupled set of equations that are based on chaotic maps.
We identified the impacts of distinct aspects of the TCP flow
control mechanisms on the traffic. For example, the impact of
the slow start window mechanism is to logarithmically com-
press theON states, which has the effect of moving out the
scaling region in both the aggregated traffic and the tail dis-
tribution of theON state. The aggregated traffic is neverthe-
less self-similar over a range of time scales. The presence of
losses does not substantially change these conclusions. The
impact of variable RTTs can significantly alter the dynamics
of the source, the network queues, and some aspects of the
scaling behavior. In conclusion, TCP-type feedback appears
to have the effect of modifying the self-similarity behavior of
network traffic, but it neither generates it nor eliminates it.

There is considerable scope for further work, in particular
relating parameters that describe scaling behavior in network
traffic to source characteristics and the network state. There
is considerable scope as well to investigate and extend the use
of chaotic map models as closed loop traffic sources—for ex-
ample, alternate source interpretations of the maps; alternate
maps, in particular those which automatically achieve uni-
form reinjection probabilities in the two states, without the
need for external randomization.
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