The Mathematical Foundations for Mapping Policies to Network Devices

Dinesha Ranathunga^{*}, Matthew Roughan^{*}, Phil Kernick^{**}, Nick Falkner^{*}, * University of Adelaide ** CQR Consulting

- Context is Policy Defined Networking (PDN)
- Policy and Implementation should be separate
- Then coupled back together (*i.e.*, policy mapped to devices)
- The coupling must be *formally* checkable

- *(endpoint-group, edge)* : commonly used to decouple policy from the network
 - endpoint: e.g., a subnet, a user-group
 - edge: specifies relationship between endpoint-groups

• e.g., E4: $S1 \rightarrow S4$: ssh allow

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ Q (~ 5 / 15

• e.g., E1: $S1 \rightarrow S2$: ssh allow

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ へ (*) 6 / 15

• e.g., E2: $S2 \rightarrow S3$: ssh allow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ

ANSI/ISA Zone-Conduit model [ANSI/ISA-62443-1-1]:

- Concrete instance of *(endpoint-pair, edge)* abstraction
- Allows to construct network-wide high-level security policy

Mapping security policy to firewalls: a simple example

(a) Network topology

(b) Zone-Conduit model of (a)

- Primary vs Secondary conduits
- How do we find all feasible primary- and secondary-conduits between zones?

Why?

- Precision
- Unambiguity
- Verifiability
- Avoid redundant policy updates

- Semiring algebra, why?
 - semiring properties allow lifting computations to a matrix and it converges

12/15

- idea already used in meta-routing
- Consequences
 - policies need to adhere to semiring axioms
 - how policy should be described in a language

- Computational limitation $O(n^4)$; *n* number of zones
- *n* should be moderate
- We used it to map security control policies to real firewalls

SUC	Fire- walls	Zones	Max. hosts	ACLs	Average rules	Wrong firewall	Wrong interface	Wrong direction
					per ACL			
1	3	7	67580	8	237	15	13	19
2	6	21	2794	12	16	3	2	5
3	4	10	886	8	6	2	1	4
4	3	9	2038	3	80	5	12	13
5	3	12	2664	12	677	15	8	26
6	3	13	3562	8	1034	21	15	19
7	6	15	3810	17	724	9	5	17

- Many obstacles to correct policy deployment in networks
- We address these challenges
 - network and vendor independent high-level policy semantics
 - generic algebraic framework to allocate policy to network devices
 - implementation that maps security policies to real firewalls

Bibliography

- C. J. Anderson et al. "NetKAT: Semantic foundations for networks". In: ACM SIGPLAN Notices 49.1 (2014), pp. 113–126.
- [2] ANSI/ISA-62443-1-1. Security for Industrial Automation and Control Systems Part 1-1: Terminology, Concepts, and Models. 2007.
- [3] Y. Bartal et al. "Firmato: A novel firewall management toolkit". In: ACM TOCS 22.4 (2004), pp. 381–420.
- [4] E. Byres, J. Karsch, and J. Carter. "NISCC good practice guide on firewall deployment for SCADA and process control networks". In: NISCC (2005).
- [5] J. D. Guttman and A. L. Herzog. "Rigorous automated network security management". In: *IJIS* 4.1-2 (2005), pp. 29–48.
- [6] D. Ranathunga et al. "Identifying the Missing Aspects of the ANSI/ISA Best Practices for Security Policy". In: 1st ACM Workshop on Cyber-Physical System Security (CPSS). ACM. 2015, pp. 37–48.
- [7] R. Soulé et al. "Merlin: A Language for Provisioning Network Resources". In: ACM CoNEXT '14. ACM. 2014, pp. 213–226.

(日) (문) (문) (문) (문)