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Abstract: A common goal in network-management is security. Reliable security requires confidence in the level of pro-
tection provided. But, many obstacles hinder reliable security management; most prominent is the lack of
built-in verifiability in existing management paradigms. This shortfall makes it difficult to provide assurance
that the expected security outcome is consistent pre- and post-deployment.
Our research tackles the problem from first principles: we identify the verifiability requirements of robust
security management, evaluate the limitations of existing paradigms and propose a new paradigm with verifi-
ability built in: Formally-Verifiable Policy-Defined Networking (FV-PDN). In particular, we pay attention to
firewalls which protect network data and resources from unauthorised access. We show how FV-PDN can be
used to configure firewalls reliably in mission critical networks to protect them from cyber attacks.

1 INTRODUCTION

“He is making a list, and checking it twice;”
(Coots and Gillespie, 1934)

It is common knowledge that St. Nicholas maintains
a ‘naughty and nice’ list of everyone on the planet.
Santa even checks this list twice to ensure it’s com-
prehensive and accurate. The question is: “Why don’t
administrators check security policies even once?”
We know they don’t check, because every existing
firewall-study has found serious errors in the majority
of the cases (Wool, 2004; Ranathunga et al., 2015b).

Deploying un-verified security policies often
leaves networks vulnerable to cyber attack, but, ad-
ministrators have little choice in the case of firewalls
because they frequently have to configure complex
policies on many heterogeneous devices manually,
box-by-box. This approach to network management
is tedious, error-prone and expensive.

The concept of programmable networking aims to
overcome these challenges in network management
by allowing creation, deployment and management of
novel services rapidly in a network. The evolution
of programmable networks has been slow (Feamster

et al., 2013) and dependent on timely technological
advances. But, these networks continue to lower the
barrier to deploying new services.

Examples of network-management paradigms in-
clude Bhattacharjee et al., 1997; Magedanz and
Popescu-Zeletin, 1996; Feamster et al., 2013; Verma,
2002. These have focused on innovations in both the
networking hardware and software. One paradigm
that is the outcome of network-software innovation
is Policy-Defined Networking (PDN), also known as
Policy-Based Network Management (Verma, 2002).
In PDN, administrators specify high-level declarative
policies that are refined to device-level configurations
automatically by the underlying framework.

Network-programming paradigms commonly aim
to facilitate security. But, reliable security-
management has challenges
• a security policy must be formally verified as

error-free prior to deployment, for instance, we
need to compare policies to best-practice stan-
dards, e.g., ANSI/ISA-62443-1-1;
• a policy must be consistent with the underlying

network and technology; and
• security administrators need assurance that
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the expected security outcome pre- and post-
deployment are consistent.

In this paper, we propose Formally-Verifiable
Policy-Defined Networking (FV-PDN) to overcome
these challenges. In doing so, we compare existing
network- and security-management paradigms to bet-
ter understand their limitations for security. Our con-
tributions in summary are

• clear expression of need for verification.
• framework describing types of verification.
• explanation of how they can be achieved.
• discussion of challenges faced.

In particular, we pay attention to firewalls which
are a standard mechanism for enforcing network se-
curity. Firewalls may only protect systems behind it
from external threats, but they are a necessary evil in
protecting data and resources in a network from unau-
thorised access (Rubin and Geer, 1998).

For instance, firewalls protect the distributed as-
sets of industrial control systems in Supervisory Con-
trol and Data Acquisition (SCADA) networks from
cyber attacks (Byres et al., 2005). They help prevent
network-security breaches and their resulting physical
and environmental damage, financial-loss or worse,
the loss of human lives! Much of our work is moti-
vated by such mission critical security applications.

2 LOWERING THE BARRIER TO
NETWORK INNOVATION - A
BRIEF HISTORY

Deploying ideas for better network management his-
torically required following a path to production
through approvals from industry standardising bodies
such as the ITU, followed by uptake by vendors.

This uptake of research by industry was slow in
the 1970s and 1980s, with ideas pushed to implemen-
tation typically after ten years or more. The lag was
primarily due to vendors initially finding the majority
of the proposed innovations too hard to implement,
given the high cost of computing (Feamster et al.,
2013). Technological advances eventually reduced
computing cost, but, vendors continued to overlook
these innovations driven by their need to keep net-
works closed and proprietary (Feamster et al., 2013).

As a result, frustrated researchers and organisa-
tions looked to open up network control: an idea that
stemmed from the ability to reprogram a stand-alone
PC (Wetherall, 1999). This initiative brought about
new network programming models that focused on in-
novations in both the network hardware and software,

to facilitate better network management and enable
improved network services.

For instance, Intelligent Networks (late 1980s
to mid 1990s) were introduced to flexibly add
new, sophisticated services to existing fixed-line
and mobile telecommunication networks (Magedanz
and Popescu-Zeletin, 1996). The need for service
providers to incorporate these value-added services
without requesting feature changes from switch ven-
dors demanded innovations in the network software.
These innovations enabled simple security features
to be incorporated into the newly deployed services
(e.g., PIN-based protection in account card calling).
Intelligent Networks reduced the typical innovation
time scale for simple services to about three years.

In the mid 1990s, Active Networks allowed cus-
tom functionality to selected traffic packets travers-
ing a device-node (Bhattacharjee et al., 1997; Ten-
nenhouse et al., 1997; Wetherall, 1999). This cus-
tomisation was performed using special code that ex-
ecuted at the nodes. The approach demanded more
processing in the network, code-execution safety and
code cross-platform portability. Several technological
advances helped meet these demands, particularly, re-
ductions in costs of computing and enhancements in
programming languages. The granular control pro-
vided by Active Networks helped enable flow-level
security in enterprise networks (Casado et al., 2006).

With the rapid growth of the Internet in the early
2000s, ISPs faced significant challenges, particu-
larly in Traffic Engineering (TE) (Lakshman et al.,
2004). Operators needed to control the paths of heavy
network-traffic more reliably and predictably. Con-
ventional distributed routing protocols were replaced
with centralised route-control (Caesar et al., 2005;
Lakshman et al., 2004; Verkaik et al., 2007).

Centralising control required a network’s control
plane to be decoupled from the data plane (Caesar
et al., 2005; Feamster et al., 2004). This decoupling
was characterised as Software Defined Networking
(SDN) (Feamster et al., 2013).

The control-plane and data-plane were decoupled
in SDN via an open API between the planes (McKe-
own et al., 2008). This API could be extended to suit
applications beyond route control: e.g., to manage the
security and QoS aspects of network traffic at large
scale data centres (Soulé et al., 2014).

OpenFlow is an example instantiation of this API
(McKeown et al., 2008; Peterson et al., 2006). Open-
Flow’s flow-level control allows network applications
to deploy granular (i.e., per-host or per-user) access
control policies. Real-world deployment of Open-
Flow is also seamless because its flow-level control
is readily supported by existing network hardware.
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Having centralised control of the network is par-
ticularly useful for security applications as it allows,
for instance, policy changes to be rapidly deployed
to the network in response to cyber attacks. Having
network-wide visibility allows accurate predictions of
network behaviour under failure conditions (Vahdat
et al., 2015); a useful feature to ensure the security of
systems during a planned maintenance.

SDN has revolutionised network-management
and offered network operators a real choice in deploy-
ing required features in a timely manner. Software
programmers can now write control software to meet
end goals without using closed, proprietary network
hardware. SDN has proved very cost effective (Vah-
dat et al., 2015; Feamster et al., 2013) and has enabled
ideas to be pushed to implementation within weeks.

Policy languages have also helped improve net-
work and security management (Han, 2012). Busi-
ness and security goals are commonly described us-
ing natural language by non-technical corporate man-
agers and alike. These goals are often ambiguous (Liu
and Gouda, 2008) and require human-translation to a
machine interpretable technical specification.

Thus, policy languages were required for var-
ious disciplines; some to suit specific domains
like network- or security-management and others
for general purpose: e.g., Ponder (Twidle et al.,
2009). Network-management languages (e.g., Mer-
lin, NetKAT) help allocate resources such as band-
width (Anderson et al., 2014; Soulé et al., 2014).
Security-management languages (e.g., XACML, Fir-
mato) assist with access-control and help protect a
user’s privacy (OASIS, 2016; Bartal et al., 2004).

Many SDN languages also exist (e.g., attire,
flowlog, FML, Frenetic, HFT, Maple, Merlin, Net-
core, NetKAT, Pyretic etc.), offering competing
trends. For instance, NetKAT is a functional lan-
guage that supports algebraic models (Anderson et al.,
2014), Pyretic is a procedural language (Reich et al.,
) and Merlin is logic based (Soulé et al., 2014).

Policy languages can also be device-specific, i.e.,
low-level (Han, 2012). These languages are not user
friendly: administrator’s cannot specify high-level
goals using them. High-level policy languages try to
overcome the shortfall (Prakash et al., 2015; Bartal
et al., 2004), by capturing policy intent, so, abstract
goals can be specified. Typical goals include security
objectives (e.g., no single point of failure).

Intent-based network modelling is also supported
by some SDN programming languages (Cohen et al.,
2013; Wijnen, 2015). Intent-based policies are above
network level and are automatically refined to device-
level by the underlying framework.

Policy-language advancements have seen another

network-management paradigm develop: Policy-
Defined Networking (PDN, also known as Policy
Based Network Management) (Verma, 2002). PDN
was developed independently and before the advent
of SDN. In PDN, users specify business-level goals
via high-level policies (Verma, 2002). These policies
are declarative and technology independent. So, users
unfamiliar with the technology details required to de-
ploy a policy, can still manage the network.

PDN has many commercial uses: e.g., QoS man-
agement (Cisco Systems Inc., 1998), Internet services
access-control (Tao, 2005), Web-user privacy man-
agement (Cranor et al., 2002) and so on. Recent work
(Cleder Machado et al., 2015), has shown how PDN
can be adapted for more flexible SDN management.

As PDN and SDN converge to provide an end-to-
end solution for network security management, new
challenges arise. Most notable is that despite the goals
of transparency and predictability adopted in both
communities, the addition of multiple layers makes
policy verification more challenging; but also more
vital. We discuss this below.

3 SECURITY-MANAGEMENT
REQUIREMENTS

Security-management has stricter requirements than
general network-management. We investigate these
requirements in detail next.

3.1 Transparency

Network-programming models often include multi-
ple layers of processing (e.g., language compilation,
policy refinement, etc.). These layers decrease trans-
parency. They blur the ability to view the relationship
between a change made and its result.

This black-box like behaviour is analogous to that
of a modern Operating System (OS). For instance,
Microsoft Windows OS depicts storage of files in a
hierarchical directory structure (Hall, 2003) for easy
understanding. But the layers underneath this repre-
sentation are non-transparent; you need special skills
to learn how files are stored physically on disk.

Lack of transparency in security-management hin-
ders locating and rectifying an incorrect decision. In
mission critical SCADA networks, this inability can
lead to security malfunction or failure resulting in
catastrophic outcomes. Transparency can be provided
through layer-wise verification of the processing. The
more transparent, the more confidence security ad-
ministrators will have of deploying and maintaining
correct security policies in their networks.
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3.2 Human-Comprehensible Policy

The ability to author a security policy correctly,
largely depends on (i) how easy it is to express the
intentions of the authors in a policy language; and re-
ciprocally (ii) the ability to clearly understand what
exactly a specified policy aims to achieve. A security-
policy language therefore, should be easily human
readable and writable to say the least.

But surprisingly, even this fundamental require-
ment is lacking in some popular security-policy lan-
guages. For instance, XACML is an XML based
security-policy language that is accepted as a de
facto standard for access-control management in dis-
tributed systems (OASIS, 2016). The attribute-based
language model offers flexibility, but, the syntax and
semantics of its underlying XML structure makes it
intrinsically difficult for humans to interpret (McK-
endrick, 2006). Thus, a XACML policy author can-
not precisely know, for instance, if a security policy
blocks potentially-unsafe HTTP traffic from entering
a protected SCADA Zone or not. HTTP is known to
carry attacks and worms and could render fatal out-
comes in SCADA networks (Byres et al., 2005).

Even simple XACML access-control policies can
span hundreds of lines of code or more (Han, 2012).
Keeping track of the myriad interactions within a pol-
icy manually is nearly impossible. A useful policy
language should therefore, allow concise description
of policies, in addition to being user friendly.

3.3 Specialisation within Networking

Reliable security management also demands special-
isation in networking. Division of labour is one of
the fundamental hacks of modern culture. Speciali-
sation allows people to work more efficiently, and ef-
fectively. For example, in building construction, ar-
chitects do not learn how to lay bricks. They might
learn some structural engineering, but it isn’t neces-
sary. Other specialists can perform that task.

Why then is network engineering still a mono-
lithic area of expertise? We have network archi-
tects and/or IT specialists, but in reality, they are just
better paid network engineers. For instance, con-
sider how network infrastructure manufacturers (e.g.,
Cisco) structure their certification programs. It is as-
sumed, that a network architect will know as much,
or more about devices than the person programming
the devices. Decoupling policy from implementation
also creates opportunities for specialisation.

Network-specialisation also allows to verify work
more easily. For one, network architects could easily
check that their designed security policies meet high-

level goals, in the absence of implementation-centric
details. For another, network-engineers only need to
verify that their policy implementations match the ar-
chitects’ designs and not high-level business goals.

3.4 Verifiability

The above requirements indicate how verifiability is
an important property in security-management. We
cannot assume any software component functions
correctly, from the network-devices up to and includ-
ing the security-management platform. We need to
provably check that the policies are specified and im-
plemented correctly at every level possible. We dis-
cuss these dimensions of verifiability in detail next.

4 WHAT SHOULD WE VERIFY?

Policies play a key role in security management and
it would be sensible therefore, to begin to understand
what aspects of a policy needs to be verified for reli-
able security-management.

4.1 Verify Policy is Correct

Inconsistencies such as conflicts and redundancies
can often occur in a policy (Prakash et al., 2015; Soulé
et al., 2014). Conflicts indicate an ill-defined pol-
icy and redundancies imply an inefficient one. These
inconsistencies can stem from ambiguities in the
high-level policy goals and their error-prone (manual)
translation to technical specification. For instance, it’s
easy for a policy author to accidentally leave in two
conflicting access-control rules inside a complex se-
curity policy containing thousands of rules.

The problem is exacerbated by the need for policy
administration by users from multiple sub-domains
(e.g., SCADA engineers, Corporate admins), partic-
ularly in large distributed environments. Commer-
cial network-management tools often cannot com-
pose distributed policies automatically (Prakash et al.,
2015). So, users must manually check with policy
sub-domains for conflicts to maintain consistency.

Inconsistencies introduced by policy composition
can also produce unintended consequences (Wool,
2004). So, correct policy deployment demands the
ability to check for policy inconsistencies accurately.

Policy-consistency checking partly verifies syn-
tactic correctness. A syntactically correct policy
must also be semantically correct for it to be well
designed. For instance, it may be necessary to
check a security policy’s semantics against industry-
recommended practices: e.g., ANSI/ISA- 62443-1-1,
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for compliance. Doing so, is critical in SCADA net-
works where more restrictive practices are required to
prevent serious injury of people, or even death!

Best-practice compliance checks are also only
meaningful if we compare policy intent not imple-
mentation. How can one compare a SCADA security
policy with a generic ISA-recommended policy if ei-
ther is inter-twined with implementation details?

But, not all policies capture intent. Such policies
need to be checked against organisational intent, sup-
plementary to standards. Deriving organisational in-
tent is a non-trivial manual task that requires a risk
assessment to identify the threats, vulnerabilities, im-
pacts (Stoneburner et al., 2002) and appropriate risk
mitigation strategies. Once the intended policy is de-
rived, a deployed policy can be validated against it.

Existing security-management tools can compre-
hensively check policy syntactic correctness, but not
semantic correctness. And there have been major
incidents: e.g., the hacking of a German steel mill
(BBC, 2014), as a result.

Policy languages that do not capture high-level in-
tent (e.g., Cisco CLI) are often tightly coupled with
the underlying network (Cisco Systems Inc., 2010).
Using these low-level languages is similar to pro-
gramming with Assembler in the 1970s, where users
need to specify, for instance, hardware addresses in
order to communicate with devices. Naturally, errors
are common in Assembler programs (Endres, 1975).

High-level policy languages attempt to overcome
these shortfalls and are analogous to present-day pro-
gramming languages used by software developers.
These programming languages support features such
as modularisation and other constructs that automate
common tasks. They also hand off many subtasks
to the operating system or their interpreter (for in-
stance memory management) and avoid wasted pro-
gramming time in repetitive and error-prone tasks.

To allow cross-policy comparisons, security pol-
icy languages should allow policies to be specified
abstractly, flexibly enough and in detail. In every
sense of the word these policies must be high-level:
i.e., they must be decoupled from the network and its
implementation, separating the what from the how.

4.2 Verify Policy is Compatible with
Network and Technology

A policy may not always be compatible with the target
deployment network. For instance, the target topol-
ogy may be different from that perceived by the pol-
icy creator, a common occurrence when high-level
policies are built on abstract views of the underly-
ing network. A security-policy creator for instance,

may use the Zone-Conduit abstraction (ANSI/ISA-
62443-1-1, 2007) and consider two zones to be dis-
tinct in the policy specification, but in the absence of
one or more firewalls enforcing a real separation be-
tween the zones, only a single zone may actually ex-
ist. Another example is when network operators cre-
ate out-of-policy connects, e.g., to support wireless,
but again, effectively fuses two zones.

A policy may also not be supported by the under-
lying network’s technology. For instance, a security
policy may intend to filter application-layer traffic.
But, if Deep Packet Inspection (DPI) capable firewalls
are unavailable in the target network, the policy can-
not be correctly implemented (Byres et al., 2005).

Thus, a policy must be checkable against both the
underlying network and its technology for compati-
bility, prior to deployment. A user could then swiftly
rectify an incompatible policy or update the target net-
work or technology, in preparation for deployment.

4.3 Verify Expected Security Outcome
Pre-deployment

Policy-creator oversights can also cause a policy to be
flawed (Wool, 2004). Flawed policies can result in se-
curity holes or non-functional networks. A common
instance is failure to enable required routing proto-
cols. Debugging such problems can be confusing and
slow and we would prefer to avoid network disrup-
tions in the interim. Checking a policy for oversights
prior to deployment also needs to be made compul-
sory and automated.

4.4 Verify Expected Security Outcome
Post-deployment

Pre-deployment verification doesn’t necessarily guar-
antee expected policy outcome in the real network.
For instance, unintended security policy behaviour
can still occur due to firewall software bugs (Stouffer
et al., 2008). So, in security management it is equally
necessary to be able to verify that the real network
operates as intended, post-deployment.

A policy may also function correctly in the real
network at first, but produce unexpected behaviour
later. For instance, following the upgrade and/or
patching of network firewalls (Stouffer et al., 2008).
Thus, pragmatic security-management also demands
on the ability to continuously monitor the security
mechanisms of a network post-deployment.

We have described so far, verifiability require-
ments of security management. Next, we show how
these requirements can be implemented concretely in
our proposed network-programming paradigm.
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5 FORMALLY-VERIFIABLE PDN

Both SDN and PDN support high-level policies de-
coupled from network implementation. Both build on
centralised network control: a feature that helps de-
liver new functionality more rapidly and drive opera-
tional expenditure savings (Feamster et al., 2013). A
key difference is that SDN requires the use of a stan-
dard network API (e.g., OpenFlow) to manage het-
erogenous network devices, while PDN does not.

This requirement in SDN can be too restrictive for
traditional networks: e.g., deploying OpenFlow ca-
pable devices is a distant reality in mission critical
SCADA networks where TCP is a recent innovation!
High availability requirements in these control net-
works (Byres et al., 2005) mean the legacy network
equipment employed within them is unlikely to be
upgraded except during a major overhaul of a plant,
which might happen once in a decade (if that often).

PDN doesn’t require an open network API (e.g.,
OpenFlow), thus, heterogeneous devices in traditional
networks can be managed through support for pro-
prietary configuration languages (e.g., by use of tem-
plates) (Verma, 2002). Administrators don’t require
learning these arcane languages; the PDN engine au-
tomatically invokes them when refining policies.

With this added flexibility, PDN can deliver the
benefits of SDN, while overcoming SDN shortfalls
(e.g., lack of scalability). But, like SDN, traditional
PDN lacks built-in verifiability capabilities in §4.

Precisely checking a policy is correct is a non-
trivial task. But, progress can be made towards the
goal using formal policy language semantics. SDN
programming languages: e.g., NetKAT, Pyretic (An-
derson et al., 2014; Reich et al., ) and PDN pol-
icy languages: e.g., Rei, ASL (Kagal, 2002; Jajo-
dia and Samarati, 1997), often include semantics to
facilitate this checking. Additionally in FV-PDN,
formalisms would be included to allow automated-
reasoning about policies: e.g., to precisely compare a
security policy with a best-practice policy for compli-
ance. Such a reasoning framework would involve de-
riving canonical representations of the security poli-
cies (Ranathunga et al., 2016) and developing alge-
bras for accurate policy comparisons.

A correct high-level policy should in theory re-
fine down to correct network- and device-level pol-
icy. But, we simply cannot ‘trust’ FV-PDN to always
correctly refine high-level policy. So, we must addi-
tionally validate that the refined policies are likewise
correct. Alloy (Jackson, 2011) is an example formal
verification tool that can be employed to perform this
validation. But as a pre-requisite, the refined policies
need to be converted to an Alloy compatible format.

A high-level policy can be checked against the un-
derlying network for compatibility by validating the
abstract network model perceived by the policy cre-
ator with that of the physical network. For instance,
with Zone-Conduit policies, FV-PDN could derive
and compare the Zone-Conduit model of the actual
network against that the policy is built on, for a match.

It is also possible to check that a policy can be sup-
ported by a network’s technology capabilities, dur-
ing policy refinement (Verma, 2002). So, FV-PDN
could for instance, validate an application-layer filter-
ing policy against the DPI firewalls available in the
network, when refining the policy to network-level. If
the available DPI firewalls cannot implement the pol-
icy correctly, an error is raised.

FV-PDN would also have pre-deployment verifi-
cation built-in. A simple, cost effective way to do
this is by using an emulated network together with
automated pathological traffic tests. Emulation tools
have been used in SDN to test prototype applications
(Gupta et al., 2013) and in PDN to test policies (Va-
cante and Houck, 2003). But, these tools are stan-
dalone, so, prototypes and policies need to be hand
deployed and tested using pathological-traffic. The
manual tedium leads users to bypass this step.

In FV-PDN, we would make this step compulsory
and automated. For instance, FV-PDN could use the
Netkit open source software package (Knight et al.,
2013) that provides an emulation platform for tradi-
tional networks with virtual devices and interconnec-
tions via User Mode Linux. Pathological traffic tests
can be automatically conducted, for instance, using
test scripts generated in Expect– a UNIX scripting
and testing utility (Libes, 1995). These automated
tests can check for firewall-policy oversights and ver-
ify that a policy only allows the expected traffic ser-
vices through a firewall (i.e., positive vetting) and
blocks all other services (i.e., negative vetting).

A simple way to automate post-deployment veri-
fication is by extending the test scripts from the em-
ulated network to the real network. Post-deployment
network behaviour can also be monitored using the
various network-device reports available (i.e., logs,
alerts, traps etc.) (Ranathunga et al., 2015a). For in-
stance, a network’s security mechanisms can be mon-
itored using the diverse firewall reports generated. A
firewall-reporting framework proposed (Ranathunga
et al., 2015a) shows that reporting policy must be cou-
pled with security policy, to be useful. Otherwise, one
could deploy policies that are not verified. FV-PDN
would enforce this coupling automatically.

Next, we consider the challenges that need to be
overcome to achieve the verifiability requirements in
§4.
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6 FV-PDN CHALLENGES

Achieving verifiability in FV-PDN has challenges
What policies do we need to specify, at what level
of detail? We need to understand the types of se-
curity policies that must be supported and the level
of policy-detail needed, to develop methods to check
policy correctness. A comprehensive study of the var-
ious security use cases (e.g., traffic filtering, access-
control etc.) would help identify the different pol-
icy types. Analysis of policy granularity with re-
spect to dimensions such as network, service, time
etc. (Ranathunga et al., 2015a), can help understand
the level of policy specification detail required.
What policy abstractions should we choose to as-
sist verifiability? The choice of security abstraction
can also assist or hinder verifiability. For example,
firewall policies can be described using the Zone-
Conduit abstraction (ANSI/ISA-62443-1-1, 2007) or
the Role Based Access Control abstraction (Bartal
et al., 2004). The first helps to check these policies are
best-practice compliant (Ranathunga et al., 2015b),
whereas the latter can make the task difficult.
How should we manage conflicts? Verifying a policy
is correct also depends on managing conflicts reliably
and efficiently. The type of policy conflicts that arise
are context dependent. For instance, a policy built on
an Attribute Based Access-Control abstraction, will
produce two primary conflicts: (1) conflict between
permission and prohibition; and (2) conflict between
obligation and dispensation (OASIS, 2016).

The nature of the conflicts determine the man-
agement scheme(s) required (Di Vimercati et al.,
2007b; Di Vimercati et al., 2007a; Strassner and
Schleimer, 1998). For instance, the above conflicts
can be managed by assigning explicit priorities to
policies or by overriding positive policies with neg-
ative ones. But, assigning priorities is infeasible for
large distributed environments where distinct policy-
domain users could specify policies. Thus, conflict-
management is a balancing act: abstractions must be
chosen to reduce the possible conflict types to a man-
ageable few; and conflict-management schemes must
be developed being mindful of their limitations.

7 CONCLUSIONS

The inability to verify security policies comprehen-
sively makes it difficult to provide assurance that the
expected security outcome is consistent pre- and post-
deployment. We propose Formally-Verifiable Policy-
Defined Networking (FV-PDN) as a new management
paradigm to allow users to comprehensively check

a policy is correct, consistent and compatible with
the underlying network and its technology. We illus-
trate FV-PDNs use in reliable security management
by considering the administration of firewall policies
in mission critical SCADA networks.
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