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Abstract—Spatially Embedded Random Networks such as the Waxman random graph have been used in many settings for
synthesizing networks. Prior to our work, there existed no software for generating these efficiently. Existing techniques are O(n2)

where n is the number of nodes in the network; in this paper we present an O(n+ e) algorithm, where e is the number of edges.

Index Terms—Random graph model, Waxman graph, random plane networks, random geometric graphs, spatial networks,
range-dependent random graphs, random connection models, random distance graphs, partially structured random graphs.
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1 INTRODUCTION

Random graphs are frequently used as the underlying
model in fields such as computer networking, sociology,
biology and physics. Interesting questions arise regard-
ing asymptotic behavior of large graphs, and many new
datasets involve large numbers of elements. However, de-
spite the emphasis on large graphs, there is relatively little
work on their efficient generation.

Spatially Embedded Random Networks (SERN) [1, 2]
(also known as random geometric graphs with general
connection functions, and soft random geometric graphs [3])
are a large class of random graphs. They generalize many
simpler models: e.g., the Gilbert-Erdős-Rényi (GER) random
graph [4, 5], the random plane network [6] and the Waxman
random graph [7]. This paper is concerned with efficient
generation of SERNs.

The GER random graph links every pair of vertices
independently with a fixed probability, whereas a SERN
allows that in real-world networks longer links are often
more costly or difficult to construct, and their existence is
therefore less likely. In a SERN, nodes are embedded in a
metric space, and the probability they are connected is given
by a function of the distance di,j between them.

There are many examples of SERNs, including random
plane networks, (soft) random geometric graphs, spatial net-
works, range-dependent random graphs, random connec-
tion models, random distance graphs, and partially struc-
tured random graphs. However, little effort has gone in their
synthesis.

Generation of synthetic random graphs is one of the ba-
sic requirements for modeling, particularly when the model
overlaying the graph is quite complex, for instance informa-
tion flows in a social network [8], or routing protocols in
computer networking [7]. Thus analysis of the graph may
not provide the insights of simulation. The ability to gener-
ate an ensemble of graphs that match some characteristics
of real-world graphs allows us to test predictions, as well as
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their sensitivity to the underlying assumptions. The facility
to synthesize graphs is also needed in estimation procedures
such as Approximate Bayesian Computation (ABC) [9].

The only existing software available for generating
SERNs uses the approach of generating the node locations,
calculating all distances, and then generating edges using a
series of Bernoulli trials. This naı̈ve algorithm has computa-
tional complexity O(n2) in the number of nodes n.

However, many real-world graphs are very sparse in the
sense that the number of edges e is much smaller than the
number of possible edges [10]. Sparsity is often modeled as
the number of edges growing as O(n). Thus for many real-
world examples an O(n2) generation algorithm is highly
inefficient.

Here we develop a fast, efficient method for creating
large sparse SERNs. Our method takes O(n + e) computa-
tion and memory, which is the best possible for an exact
method. We have used it to generate graphs with more
than four billion nodes in approximately 20 minutes (on a
single core of an Intel i7, 6900K, running at 3.9 GHz). We
demonstrate in detail in the paper the O(n + e) algorithm
for generating Waxman graphs, the best previous algorithm
being O(n2).

We also demonstrate a multi-threaded implementation
that shows that the method parallelizes.

Further details are provided in [11] and the software
described here is publicly available at git@github.com:
lamestllama/conSERN.git.

2 BACKGROUND

A graph (or network) consists of a set of n nodes or vertices
which, without loss of generality, we label V = {1, 2, . . . , n},
and edges or links E ⊂ V × V . We are primarily concerned
here with undirected graphs (though our work is easy to
generalize to directed graphs). We say that two nodes i and
j are adjacent or neighbors if (i, j) ∈ E .

The classic example of a random graph is the GER random
graph [4, 5], Gn,p of n vertices, which is constructed by
assigning each edge (i, j) to be in E independently, with
fixed probability p. A SERN generalizes this by making
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the probability of each edge dependent on the geometric
distance between the two nodes.

SERNs [1–3] constitute a large class of useful random-
graph models including GER random graphs, Gilbert’s ran-
dom plane network [6] (also known by other names such as
the random geometric graph [3, 12]) and the Waxman random
graph [7].

Formally, we create a SERN by placing n nodes ran-
domly within some defined region R of a metric space Ω
with distance metric d(x, y). Each pair of nodes is linked,
i.e., made adjacent in the graph, independently, with link
probability given by a function of distance di,j = d(xi, xj)
between nodes i and j. For instance we could define a space
with one of the standard distance metrics: e.g., the Euclidean
distance metric, or any of the standard `p distances.

There are many such models in the literature, using
different probability functions [3–6, 13–18]. All of the ex-
amples of which we are aware have non-increasing link-
probability functions (beyond some point) so we refer to
these as distance deterrence functions, and exploit this prop-
erty in our algorithm. In our work, we choose to represent
distance functions in general in the form q fθ(s di,j), where
parameters s ∈ [0,∞), and q ∈ (0, 1]. The existing functions
fit this formulation, at least approximately, though their
parameterizations differ. The advantage of this common
formulation is that in this representation the parameters
have a consistent meaning: q is a thinning parameter, s a
scale parameter, and θ represents a possible set of shape
parameters.

For example, the distance deterrence function chosen by
Waxman was the negative exponential

p(di,j) = q e−sdi,j . (1)

The Waxman graph1 has been used in many settings from
computer networks [7] to biological cell networks [21],
typically to synthesize random networks. However, our
algorithms apply to the wider class of SERNs, for instance
covering models such as

• Threshold: pi,j = q H(1 − sdi,j), where H(·) is the
Heavyside step function, motivated by the random
plane network [6];

• Cauchy: pi,j = q (1 + (sdi,j)
2)
−1 [17].

There are many others: e.g., the “Exponential” [18] and
“Power law” [13–16], as well as hybrid functions. The fact
that in many real-world networks longer links have a higher
cost and thus exist with lower probability is the intuition
behind many SERN models. The distance deterrence func-
tions above reflect this by being monotone non-increasing,
and reducing in the limit to 0.

Given the variety of deterrence functions, the types of
metric spaces on which the model can be applied (our code
supports Euclidean, Manhattan, Max, and Discrete distance
metrics), and the arbitrary convex region R on which they
can be applied, there are many possible cases encompassed
by the idea of a SERN.

1. Note that despite the presence of the exponential function, the
Waxman graph is not in the class of Exponential Random Graphs
(ERG) [19, 20], where the exponential applies to the probability of a
particular graph (not a particular link), as a function of the overall
graph properties.

In modern problems, networks of millions of nodes are
common, and billion node networks exist. For instance,
Facebook claims (as of July 2015) over a billion active users,
who form part of a large graph. As network modeling
moves towards encompassing such graphs, the need to
synthesize very large graphs increases.

We are not aware of any general tools to generate wide
classes of SERNs. There are a number that have been
designed for generating Waxman random graphs [18, 22–
25], but none seriously consider how to generate these
graphs quickly. All of the software that generates true
Waxman graphs are O(n2) in computation time [26], and
the vectorized Matlab algorithm is O(n2) in memory as
well. We demonstrate our approach on Waxman graphs for
comparison to the literature, but the reader should keep in
mind that our implementation caters for SERNs in general.

Many of the properties of SERNs are known [1–3], but
results for the Waxman graph are particularly clear, e.g., see
[27], and thus illustrative of the more general case. This
is another motivation for using these graphs as our main
example.

Our work is helped by the fact that many, if not most,
large real-world graphs are sparse, i.e., the number of edges
is O(n). Since the deterrence functions don’t take n as a
parameter it is necessary as we increase n to scale the
parameters of the deterrence function in order to maintain
e = O(n). Examination of the deterrence functions above
shows that the parameter q acts as a filter on the overall
number of edges, but has no effect on the distribution of the
lengths of the edges in a graph. Thus, it is natural to scale
these graphs taking q ∝ 1/n. The result of this scaling is
just a reduction in edge density (per node pair), leaving the
edge-length distribution untouched.

The other parameters do however have an effect on the
distribution of the edge lengths thus we call them scale or
shape parameters. An alternative scaling, for instance taking
s as a function of n, leads to a distortion of the link dis-
tance distribution, dependent on the particular deterrence
function, and so is less appealing. For instance, in many
models this distance distribution arises from a physical
cost. The implication of scaling with s would be that the
costs change non-linearly as a function of node density. We
discuss this possibility further below, but note that because
of its simplicity and transparency, q is the natural choice
for scaling as n increases, keeping the other parameters
constant.

2.1 Fast generation of GER graphs
The common method for generation of the GER random
graphs Gn,p is simply to perform O(n2) Bernoulli trials, one
for each possible edge. Batagelj and Brandes [28] noted that
this algorithm is naı̈ve, and proposed an O(n+e) algorithm.
We use this algorithm as a component of our own, and also
use the underlying idea of their algorithm to develop a new
approach.

The naı̈ve algorithm considers each potential edge in
turn, and flips a biased coin – i.e., generates a Bernoulli trial
– to see if the edge exists. Batagelj and Brandes list all the
potential edges in order, and generate jumps across all of
the “non-edges”. Given a series of Bernoulli trials the jumps
between these will take the geometric distribution.
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Fig. 1. An illustration of Batagelj and Brandes’ algorithm: the edges are
listed in lexicogaphic order, and instead of testing each edge by an
independent Bernoulli trial, we generate a series of geometric jumps,
resulting in this instance, in the selected edges being (i, j), (i, j + 3),
(i + 1, 1) and (i + 1, 5). In practice, we don’t need to actually list the
edges, but only provide a means for indexing into the putative list.

So one can generate the same stochastic process with
these jumps by listing the edges in some order, and then
jumping between edges as shown in Figure 1.

We jump from edge to edge, so we need only generate a
jump for each edge (plus one last jump), i.e., the algorithm
needs O(e) jumps. If the graph is sparse, this is much
faster than the naı̈ve approach. In practice, we don’t need
to actually list the edges, but only provide a means for
indexing into the putative list, and as long at this index step
is O(1), the resulting algorithm is O(n+ e). The O(n) term
comes from the initial construction of the nodes, presuming
fixed sized integers are used to represent the node labels,
and the O(e) from the construction of the edges.

We cannot simply reuse this idea to generate SERNs,
because in a SERN all links do not have equal probabilities.
The appropriate size jumps would not therefore follow a
simple distribution, and if they could be calculated at all, it
would require as much work as a naı̈ve approach.

However, we can use Batagelj and Brandes’ algorithm to
create a set of initial edges. Then, we use our novel filtering
technique to obtain a subset of these edges that then form
the desired graph. We then further improve this using a
divide-and-conquer approach in our second algorithm.

It is worth noting also that Batagelj and Brandes’ al-
gorithm underlies another idea [29] for generation of a
different class of random graphs, highlighting its versatility.

3 FAST WAXMAN GENERATION

3.1 The Waxman SERN
In what follows we shall use a number of results regarding
the Waxman SERN, where the Euclidean distance metric is
used, and the distance deterrence function is (1).

The probability that an arbitrary link exists (prior to
knowing the distances) is

P{(i, j) ∈ E | q, s} = q

∫ ∞
0

exp(−st)g(t) dt = qG̃(s), (2)

for any i 6= j, where G̃(s) is the Laplace transform of
g(t), which is the Probability Density Function (PDF) of
the distance between an arbitrary pair of random points
in the space in question. The calculation of this density is
commonly described as the Line-Picking-Problem (the length
distribution of random lines in a region), and analytic
expressions exist for many cases. Most notably, Waxman

SERNs have been typically generated on the unit square,
for which an analytic expression is known [30]:

g(t) =


2t(t2 − 4t+ π) for 0 ≤ t ≤ 1,

2t
[
4
√
t2 − 1− (t2 + 2− π)− 4 tan−1

(√
t2 − 1

)]
for 1 ≤ t ≤

√
2.

(3)
The solutions to the line-picking problem for other region
shapes and metrics are also known. We consider the com-
mon case here, but other cases are shown in Figure 2 for
comparison, the most salient feature being that symmetric
2D regions (the square and disk for example) have very
similar densities, with some difference in the mode if we
consider 3D regions, and a larger difference in the tail if we
consider a long-thin rectangular region.

The corresponding functions G̃(s) are shown in Figure 3.
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Fig. 2. The probability density function g(t) for the Line-Picking-Problem
on various regions (with area or volume 1), given a Euclidean metric.
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Fig. 3. The Laplace transforms G̃(s) for different regions.

We could equivalently note that G̃(s) is the moment
generating function (w.r.t. to −s) of g(t). We also know that
the Laplace transform at s = 0 of a probability density is the
normalization constraint, so G̃(0) = 1. Hence when s = 0
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Fig. 4. The graph metric Ĝ(s) for three SERNs.

there is no distance dependence and the Waxman graph is
equivalent to the GER random graph Gn,q .

From this probability we can also compute features of
the graph such as the average node degree

k̄ = (n− 1)qG̃(s), (4)

from which we can derive values of q that produce given
average degree for a given network size and s. From the
Handshake Theorem we can derive the average number of
edges to be

ē = n(n− 1)qG̃(s)/2. (5)

From this we can see that if q ∝ 1/n, and s is held constant,
then ē = O(n).

The results above generalize to other SERNs, where in-
stead of the Laplace transform, we calculate the convolution
of g(t) with the distance deterrence function, denoting the
resulting metric Ĝ(s; θ), which we show in Figure 4 for the
cases described earlier. We can see that each has a different
form, but experiences an approximately similar range of
variation.

3.2 Algorithms
All SERN generators must start by generating a set of n
nodes, which takes O(n) operations. We discuss methods
for doing so efficiently in § 5, once we have described the
additional requirements imposed on this process by our
algorithm. Here we concentrate on the main performance
bottleneck: generating the edges. For simplicity, we describe
our edge generation algorithms for the Waxman SERN,
though our code works for a much larger class of SERNs.

Our first algorithm – q-jumping – uses the observation
that distances di,j ≥ 0 and so

p(di,j) = q e−sdi,j ≤ q. (6)

That is, we could imagine generating the graph in two steps.
In the first we generate a GER Gn,q random graph with
probability q for each edge. We can generate the GER graph
quickly using Batagelj and Brandes’ algorithm. In the second
step, we note that the Waxman probabilities for each edge
are smaller than those for the GER graph, and so we can ran-
domly filter the GER graph to obtain a Waxman graph. We

1: Input: n, q, s
2: E ← φ
3: E1 ← Gn,q
4: for (i, j) ∈ E1 do
5: calculate di,j
6: calculate p′i,j ← exp(−sdi,j)
7: generate r ∼ U [0, 1]
8: if r ≤ p′i,j then
9: E ← E ∪ (i, j)

10: end if
11: end for

ALGORITHM 1. The q-jumping algorithm for generating the edges of
an undirected Waxman graph. Note that there is no q in Step 6 because
this factor has already been incorporated in the formation of E1 ← Gn,q .
The algorithm can be generalized to SERNs simply by replacing line 6
with p′i,j ← fθ(sdij), the general distance deterrence function.

do so in two ways: a simple iterative filter (see Algorithm 1),
which we then further improve using a divide-and-conquer
approach in our second algorithm (bucket-jumping).

Theorem 1. Algorithm 1 (q-jumping) generates a Waxman
SERN.

Proof. Step 3, by definition, generates a GER Gn,q , i.e., a
graph where each link is chosen independently with proba-
bility q.

Each link from E1 is added independently to E with
probability exp(−sdi,j), conditional on dij , so the overall
probability of each link is q exp(−sdi,j), and the existence of
each link is independent conditional on the distances. That
is, we have generated a Waxman SERN.

Theorem 2. Algorithm 1 is O(n + e). Moreover, the efficiency
of the algorithm, as measured by the ratio of time to generate the
edges of a GER graph to those of the Waxman graph with the same
average node degree is the Laplace transform G̃(s), of (3).

Proof. The initial generation of the nodes is O(n) (we gener-
ate a list of n node locations).

Step 3 (generation of E1 ← Gn,q) is O(e1) (see [28]),
where e1 is the number of edges generated in E1 (noting
that the edge generation requires 1 jump per generated edge
plus one additional jump at the end).

The second component of the algorithm iterates through
each edge of E1, adding it to E if it passes the random criteria
whose calculation is O(1), hence the overall algorithm is
O(n+ e1), where e1 = |E1|.

The efficiency takes into account that we generate the
GER graph first, and iterate through each edge. Each edge
from E1 is included with probability exp(−sdi,j), i.e., the
edge probability of a Waxman graph with q = 1. Hence
from (2), the expected number of edges in the final graph is
e1G̃(s).

As e is related to e1 by a fixed ratio, the algorithm
is O(n + e), and the overall efficiency is G̃(s), where we
measure this as a ratio of the number of edges in the GER
compared to the number in the final graph. Equivalently, we
can consider this as a ratio of the times to generate GER and
Waxman graphs of equivalent average node degree.

The extensions of the theorems to SERNs in general
should be obvious.
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The theorem above shows that the algorithm’s computa-
tional complexity is O(n + e), but also that the efficiency
depends on G̃(s). A Laplace transform of a PDF obeys
certain properties: G̃(0) = 1, and G̃(s) → 0 for large s,
so the q-jumping algorithm will be quite fast for small s, but
less so as s grows. We can see the size of this effect if we
examine Figure 3.

On the other hand, the main property of SERNs is that
longer links are less likely, and that for larger s this effect
is increased. Thus the very nature of these graphs creates
geometric structure that we can exploit in their generation.

We do so by breaking the region into M2 “buckets” in a
regular, rectangular grid (see Figure 5). Given nodes i and j
in buckets I and J , respectively, we can put a lower bound
DI,J ≤ di,j on the distance between the nodes, and thus an
upper bound on the probability of a link.

M

I

J

i

j

di,j
DI,J

Fig. 5. Region broken into buckets. We refer to these as buckets rather
than the more obvious grid, or other terms, because in general they
might not form a regular grid.

As the GER jumping algorithm does not depend on the
order of the potential edges, or even that we generated
them all at once, we can use this approach to generate the
set of edges between any pair of buckets using the upper
bound given above. The resulting algorithm is shown in
Algorithm 2.

Theorem 3. Algorithm 2 (bucket-jumping) generates a (exact)
Waxman SERN.

Proof. The set of nodes is partitioned into M2 disjoint
buckets that cover all of the nodes exactly once each. The
algorithm considers each pair of the M2 buckets once, and
thus considers each potential edge between every pair of
nodes exactly once.

If I = J , then we are forming a subgraph consisting of
the nodes nI that are in bucket I , and DI,J = 0. This is just
formation of a Waxman graph on a smaller region defined
by the bucket. Hence the resulting subgraph is a Waxman
graph on BI .

For I 6= J , we adapt Batagelj and Brandes’ algorithm
in the following way. Their original algorithm lists the
potential edges in lexicographic order, and takes geometric
jumps with probability distribution

p(jump = k) = q(1− q)k,

where q is the probability of an edge, and k = 0, 1, . . . is the
size of the jump between the edges in the aforementioned
list. The results will be the same as determining the set of

1: Input: n, q, s, M
2: E ← φ
3: for I=1..M2 do
4: for J=I..M2 do
5: NI,J ← number of possible node pairs
6: QI,J ← q exp(−sDI,J)
7: EI,J ← GNI,J ,QI,J

8: for (i, j) ∈ EI,J do
9: calculate di,j

10: calculate p′i,j ← exp
(
− s(di,j −DI,J)

)
11: generate r ∼ U [0, 1]
12: if r ≤ p′i,j then
13: E ← E ∪ (i, j)
14: end if
15: end for
16: end for
17: end for

ALGORITHM 2. The bucket-jumping algorithm for generating the edges
of an undirected Waxman graph. The algorithm can be generalized to
other SERNs by replacing line 6 with QI,J ← qfθ(sDI,J ) and line 10
by p′i,j ← qfθ(sdij)/QI,J .

edges via a sequence of Bernoulli trials with probability q
[31, p.165]. The first edge is generated with a jump from the
beginning of the list, and the last occurs when a jump passes
beyond the length of the list.

The important detail to realize is that there is nothing
special about Batagelj and Brandes’ ordering. The potential
links (in their algorithm) are independent, and hence, we
could have ordered them in any arbitrary fashion.

In our case, we list a set of potential links by taking
one node from bucket I , and one from bucket J , also
in lexicographic order. The jump process will then gen-
erate a set of equi-likely edges forming a bipartite graph
GNI,J ,QI,J

, where each edge has one end in bucket I
the other in bucket J . Each edge has constant probability
QI,J = q exp(−sDI,J).

These form a graph from which we then filter the actual
edges of our Waxman graph with probability exp

(
−s(di,j−

DI,J)
)
. The two steps are independent, and so the overall

probability of selection is

pi,j = q exp(−sDI,J) exp
(
−s(di,j−DI,J)

)
= q exp(−sdi,j).

Thus, the overall selection process is a heterogeneous
Bernoulli process, where the probability of selection of a
given edge is given by the Waxman distance deterrence
function of the distance between the two nodes. That is, we
have generated an exact Waxman SERN.

Theorem 4. Algorithm 2 is O(n+ e).

Proof. The algorithm generates n nodes, and allocates them
to buckets. We discuss this step in depth below, but for in-
stance, with regular buckets the allocation can be performed
with simple arithmetic, so this stage is O(n).

The algorithm considers M2 buckets partitioning the n
nodes. Each pair of such buckets is considered once. If I =
J , then we are forming a subgraph consisting of the nodes
nI that are in bucket I . This is identical to the formation
of a Waxman graph on any other region, and so the edge
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generation step is O(eI,I) where eI,I is the resulting set of
edges in this bucket.

If I 6= J , then the two buckets are disjoint. Assume
buckets I and J contain nI and nJ nodes, respectively. The
resulting subgraph EI,J will be a bipartite graph, where each
edge has one end in bucket I the other in bucket J . The
considered node pairs take one element from each bucket,
so the number of nodes pairs is NI,J = nInJ , but as in the
other case, generation of the edges depends on the number
of edges found, not the number of potential edges, so this
step is O(eI,J).

The total computation cost is therefore

O

∑
I

eI,I +
M2∑
I=1

M2∑
J=I+1

eI,J

 = O(e),

where e is the final number of edges in the graph.

Note that in the complexity analysis above, we assume
s is a constant, and we scale q ∝ 1/n. As discussed earlier,
this is the natural scaling for these graphs.

If, however, one were to scale the graph by keeping q
constant, and changing s, then we can see from Figures 3
and 4 and Equation (4) that s would change non-linearly.
We can derive asymptotic expansions for G̃(s) for large s
from Tauberian theory [32, Theorem 2, pp.445-6], resulting
in the approximation (for 2D regions)

G̃(s)
s→∞∼ πs−2. (7)

Given this expansion, we can see that to assure constant
node degree, according to (4), we would need to have
s ∼
√
n, and the “efficiency” of Algorithm 1 (as measured

by the ratio of its computation time to that of the GER
bounding graph) would be O(1/n), i.e., the q-jumping algo-
rithm would be O(n2) losing the efficiency gains. However,
analysis of Algorithm 2 for this case is more complicated,
because if s changes, then it is natural to change the number
of buckets M . We will illustrate below the choice of M is
not intrinsically difficult, and that it obviates in large part
the reduction in efficiency of Algorithm 1.

4 RESULTS

We test the performance of the algorithms described above
using a C implementation, for which we provide stand-
alone code, library functions, and Matlab MEX bindings.
The latter allows us to compare the computation times of
various algorithms through the common mechanism of Mat-
lab’s tic()/toc() functions, which provide comparable
wall-clock time estimates between Matlab and C implemen-
tations. We test timing by generating 100 networks and
taking the shortest times for each on a Ubuntu 12.10 Linux
box running on an Intel i7 X990 CPU with 6 cores running at
3.47 GHz, with Matlab (R2013a), and gcc 4.7.2. In each case
we generate a network with fixed average node degree, i.e.,
a sparse graph with O(e) = O(n), achieved by scaling the
parameter q ∝ 1/n as described above.

Figure 6 shows the results for a small s value, over a
range of network sizes n, and for two bucket grid sizes
M = 1 and 10. The dashed blue curve shows results for
a vectorized Matlab implementation as a benchmark. The

dashed red curve is the naı̈ve algorithm implemented in C,
which shows clear O(n2) performance, with roughly a two
times speed up in comparison to the Matlab implementa-
tion. Note that Matlab has the capability to use multiple
threads to speed up vectorized computations, whereas this
C-version uses a single thread, hence the C-code speedup is
not as great as might be expected. The Matlab implementa-
tion uses O(n2) memory, so we do not attempt very large
Matlab tests. All others use O(n+ e) memory.

The solid curves show the bucket-based algorithm for
two bucket grid sizes M = 1 and 10 (when M = 1 the
bucket algorithm is equivalent to the q-jumping algorithm).

We can see for both values of M that the performance
for large n is O(e), and that the bucket grid size M has
negligible impact for large n. For small n we can see the
overhead of having more buckets.
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Fig. 6. Performance of the bucket algorithm compared to the naı̈ve
algorithm for s = 0.1 (single thread). Note that when M = 1 the bucket
algorithm is equivalent to the q-jumping algorithm.

Figure 7 shows the performance for large s, and although
we see the same broad features as in the previous figure, we
now also see the benefit of the buckets. A larger number of
buckets improves the algorithm for larger s, though there is
a diminishing return as M increases.
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Fig. 7. Performance comparison for s = 10 (single thread).

We consider the effect of M more carefully in Figure 8,
which shows the performance for fixed n over a range of s
values. Most obviously, any fixed number of buckets has a
“sweet spot” where it best balances the initial overhead of
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bucket creation with the performance drop off as s increases.
However, a relatively small number of buckets (around
M = 20) provides good performance over a very wide
range of parameters (note the log-log axes).
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Fig. 8. Performance as a function of s (n = 106, single thread).

The asymptotic overhead of increasing M is O(M4), and
so choice of M might seem to involve a difficult trade-off,
but the figure shows that over two orders of magnitude of s,
the choice of M is easy. Moreover, for such small M values
we have not reached the asymptotic performance limits: for
instance, increasing M from 1 to 10 does not involve a 104

increase in compute time (for small s where the overhead is
most obvious). Thus choosingM for a particular application
is not challenging, and could be accomplished by a simple
set of pilot runs with moderate sized networks.

The final results shown in Figure 9 show the multi-
threading performance compared with the ideal parallelized
performance. The figure shows that the parallelization
works, but the multi-thread implementation has significant
overhead in bringing the edges back together. If we were
aiming to calculate statistical properties of the graph that
did not require it to be stored as a whole (for instance,
average node degrees or link distances), then we could
construct the information required, in parallel, without this
overhead, and thus attain the ideal performance.
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Fig. 9. Multi-thread performance (n = 106, M = 20) for different thread-
buffer sizes B.

These results concern the Waxman case, but the key
matter to note here is that they apply for any sparse SERN
because either distance matters only a little, in which case

straight q-jumping will work, or distance is significant, in
which case buckets will reduce the computational workload.

5 IMPLEMENTATION DETAILS

Our implementation is based on a shared C library using
only standard POSIX packages including the pthread li-
brary. We also provide Matlab MEX bindings.

The aim is to create very large graphs, and so the use
of memory is important. We restrict integers to 32 bits to re-
duce the memory footprint (though this limits the number of
nodes to 232). We also avoid the use of data structures which
fragment memory and thus cause the processor to try to
cache memory from both ends of the available address space
simultaneously. Using linear data structures maximizes the
effectiveness of the cache.

The running time of our algorithm is dominated by the
time spent creating links, but most of the code is devoted
to setting the preconditions for the algorithm to work effi-
ciently. We need to make discovering the correct bucket for
a node an O(1) operation. Naı̈vely, it is easy to create the
buckets, but creating the memory structure above requires
some care. We synthesize the number of nodes in each
bucket in advance using a multinomial distribution [33] to
allow memory allocation to be performed once. That makes
node creation and allocation to buckets embarrassingly par-
allel. Also, all nodes can be stored in a single contiguous
memory block with a separate pointer to the start of each
bucket, rather than separate memory for each bucket.

The buckets are straight forward when the SERN is em-
bedded in a square region, but our implementation allows
for three types of regions in which to embed the SERN:

• A rectangular region, generalizing the square region
initially investigated by Waxman [7];
• An elliptical region allowing investigation of SERNs

where there are no corner effects; and
• A user defined polygon allowing real world boundary

data to be used.

We also provide efficient random number generators
based on [34] that are thread safe, and fast for the types
of random variables needed here.

The parallel execution of link generation is more com-
plex than that of node generation because we do not know
in advance how many links will be generated and we want
to maximize the size of the network that we can create in
a given amount of memory. We also want to be able to
return the data in a contiguous block of memory so that the
MEX code used to incorporate the library into Matlab need
only construct appropriate pointers in order to return the
data into Matlab’s standard data structures, and similarly
for linking the code into other high-level tools. Schemes
of node generation where each thread writes to its own
memory until all links are generated are thus not possible,
as they require either much more memory or a juggling act
where some sets of data are shrunk and others grown until
all data is in a contiguous space. The former is restrictive
and the latter likely to end up with a fragmented heap and
deadlock because it is not possible to transition to the next
state. The implementation chosen is a compromise, with
each thread generating the links for a pair of buckets at a
time and writing this data into a buffer which, when full, is
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written to shared memory using a common pointer to the
next available free location.

The current code allows generation of SERNs on rectan-
gles, ellipses and arbitrary polygons on R2. Our standard
wrappers implement the four distance metrics based on the
`p norm for p = 0, 1, 2 and ∞, and nine link probability
functions. The routines for both bucket and link generation
have been parameterized to accept pointers to functions that
implement distance and link probabilities, thus creating new
models involves only five or six lines of code.

6 CONCLUSION AND FUTURE WORK

This paper describes an algorithm to perform fast O(n+ e)
generation of SERNs. The results from the implementation
described show that the performance is several orders of
magnitude faster than competing code for large graphs.

Further details of the implementation are available at
[11], and the code itself is available at git@github.com:
lamestllama/conSERN.git.

Following presentation of the algorithm in [35], a similar
idea was exploited to generate a different class of random
graphs in [29], so this approach can clearly be extended: e.g.,

• Higher-dimensional spaces, and non-Euclidean mani-
folds.
• Better threading by predicting the amount of links that

will be generated and allocating memory in advance.
• The current implementation of polygon shapes can be

optimized by recursively finding the intersection of
buckets with the defined region.
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