
Fast generation of
spatially embedded random networks

Eric Parsonage and Matthew Roughan
eric@eparsonage.com

matthew.roughan@adelaide.edu.au

http://www.maths.adelaide.edu.au/matthew.roughan/ with
Jono Tuke

UoA

July 18, 2015

M.Roughan (UoA) FastGen July 18, 2015 1 / 17

http://www.maths.adelaide.edu.au/matthew.roughan/

Random Graphs

Graph: G (N,E)
I N = set of nodes (vertices)
I E = set of edges (links)

Motivation
I simulations to test new network protocols
I models for structured connections in an epidemic
I ...

Canonical example: Gilbert-Erdös-Rényi (GER) [1, 2]
I two cases:

F G(n, e): put e edges on random node pairs (n nodes)
F G(n, p): put edge between each node pair with probability p

M.Roughan (UoA) FastGen July 18, 2015 2 / 17

SERNs
Spatially Embedded Random Networks

GER is too simple
I many ways to generalise

One approach is a SERN
I generate random points in some metric space
I generate links between node pairs independently with probability pij

pi,j = f
(
d(ni , nk)

)
I NB: links are not independent, because of distance dependencies

Motivation:
I real actors are often in some space
I often some “cost” to a link that depends on distance

F e.g., computer network, you have to run a cable
F e.g., epidemic, spread of infection requires transport of vector

M.Roughan (UoA) FastGen July 18, 2015 3 / 17

SERN variations

Many choices for metric space and point generation
I typically points uniformly distributed over a unit square
I many obvious generalisations of space and measure

Many choices for distance functions
common cases:

I Random Plane Networks [3]:

f (d) = I (d ≤ r)

I Waxman [4]:
f (d) = qe−sd

M.Roughan (UoA) FastGen July 18, 2015 4 / 17

Simulation

Uses for these graphs often require simulation
I for testing protocols
I in estimation, e.g., ABC

Often (in the past)
I simulation toolkits couldn’t handle huge networks
I we didn’t have large-scale data anyway

but neither of these features holds anymore

I want to be able to generate graphs
I with thousands to millions or even billions of nodes
I I want to generate large numbers of them

Most existing graph generation toolkits (for cases I deal with) use
O(n2) algorithms

I usually in time
I sometimes also in memory

but most real graphs are sparse O(e)� O(n2)

M.Roughan (UoA) FastGen July 18, 2015 5 / 17

GER
The history of the Gilbert-Erdös-Rényi (GER) is illustrative

Almost all code for generating GERs
I O(n2) Bernoulli trials [5, 6, 7]

Input: n, q, s // parameters of the graph
Output: E = set of edges

1 for i = 1..n do
2 for j = i+1..n do
3 calculate dij
4 calculate pij = q exp(−sdij)
5 generate r ∼ U[0, 1]
6 if r ≤ pij then
7 add (i , j) to E
8 end

9 end

10 end

Algorithm 1: Naive Waxman generation

In 2005 Batagelj and Brandes [8] came up with an O(e) algorithm

Only two sets of software (I can find) use this: NetworkX and igraph

None have better than O(n2) for a SERN [9]
M.Roughan (UoA) FastGen July 18, 2015 6 / 17

Batagelj and Brandes algorithm

Their approach is based on the following insight

Think of the possible edges in a list
I order doesn’t matter

The actual edges are selected (notionally) by Bernoulli trials
I we can instead just do geometric jumps between edges

Just requires the idea of homogeneous memoryless renewal process

But it doesn’t work for a SERN because not all links are equal

we might be able to transform, but

we don’t want to even calculate all of the distances!

M.Roughan (UoA) FastGen July 18, 2015 7 / 17

Fast Waxman 1
We can apply the same idea as follows

pij = qe−sdij ≤ q

Hence, the GER random graph G (n, q) provides an “upper bound” graph

that suggests an algorithm

Input: n, q, s // parameters of the graph
Output: E = set of edges

1 Construct a GER(n,q) graph G1(N,E1) using geometric jumps
2 forall the (i , j) ∈ E1 do
3 calculate dij
4 calculate pij = exp(−sdij)
5 generate r ∼ U[0, 1]
6 if r ≤ pij then
7 add (i , j) to E
8 end

9 end

Algorithm 2: q-jumping

M.Roughan (UoA) FastGen July 18, 2015 8 / 17

How good is it?

Algorithm complexity is O(e1) where e1 is edges in the GER(n, q)
I efficiency depends on how close e is to e1

E[e1] = nk̄/2

E[e] = nk̄G̃ (s)/2

F k̄ is average node degree
F G̃(s) is Laplace transform of PDF of the line-picking problem

I so we have an O(e) algorithm, but how close to optimal optimal?

Efficiency depends on G̃ (s)
I G̃ (0) = 1
I G̃ (s)→ 0 for large s
I efficiency is its good for small s
I but for large s we have E[e1] = E[e]/G̃ (s)

M.Roughan (UoA) FastGen July 18, 2015 9 / 17

What can we do for large s

Consider breaking the region into M2 “buckets”, e.g.,

M

I

J

i

j

dij
DIJ

We can put a lower bound DIJ ≤ dij on the distance between nodes i and
j in buckets I and J, respectively.

M.Roughan (UoA) FastGen July 18, 2015 10 / 17

Fast Waxman 2

GER skipping algorithm didn’t depend on the order of the potential
edges, or even that we generated them all at once

Group potential edges into bucket-pairs (I , J)

Perform skipping to create

GER(nIJ , q exp(−sDIJ))

upper-bound subgraph for each bucket pair

Calculate the exact distance, and filter with probability

pij = exp
(
− s(dij − DIJ)

)
Put all the edges back together

M.Roughan (UoA) FastGen July 18, 2015 11 / 17

Coding

This isn’t quite trivial
I the time to create a link in this code isn’t much longer than the time

to access the relevant memory
I buckets can’t be calculated on the fly
I can’t sort the points into buckets (sorting O(n log n))
I controlling the memory allocated has to be done carefully

The algorithm parallelises
I only other similar example on GER [10]
I we have a multi-thread implementation
I its hard to avoid blocking, so speedup limited

M.Roughan (UoA) FastGen July 18, 2015 12 / 17

Results: small s = 0.1, fixed k̄

10
2

10
4

10
6

10
8

10
−4

10
−2

10
0

10
2

n

ti
m

e
 (

s
e

c
o

n
d

s
)

M = 1

M = 10

naive

matlab

M.Roughan (UoA) FastGen July 18, 2015 13 / 17

Results: large s = 10, fixed k̄

10
2

10
4

10
6

10
8

10
−4

10
−2

10
0

10
2

n

ti
m

e
 (

s
e

c
o

n
d

s
)

M = 1

M = 5

M = 10

M = 15

naive

matlab

M.Roughan (UoA) FastGen July 18, 2015 14 / 17

Results: fixed n = 1, 000, 000

10
−1

10
0

10
1

10
−1

10
0

10
1

s

ti
m

e
 (

s
e

c
o

n
d

s
)

M = 1

M = 5

M = 10

M = 20

M = 40

M.Roughan (UoA) FastGen July 18, 2015 15 / 17

Results: fixed n = 1, 000, 000

2 4 6 8 10 12
0

0.02

0.04

0.06

0.08

0.1

threads

ti
m

e
 (

s
e
c
o
n
d
s
)

M.Roughan (UoA) FastGen July 18, 2015 16 / 17

Conclusion

Random graphs
I current generation techniques often naive
I we can do better

SERNs
I showed how to do Waxman
I not to hard to see how to generalise to many other cases

There are some problems
I what about non-convex regions
I what about non-monotonic distance functions

M.Roughan (UoA) FastGen July 18, 2015 17 / 17

E. Gilbert, “Random graphs,” Annals of Mathematical Statistics, vol. 30, pp. 1441–1144, 1959.

P. Erdös and A. Rényi, “On the evolution of random graphs,” Publications of the Mathematical Institute of the

Hungarian Academy of Sciences, vol. 5, pp. 17–61, 1960.

E. N. Gilbert, “Random plane networks,” Journal of the Society for Industrial and Applied Mathematics, vol. 9, no. 4,

pp. 533–543, 1961.

B. Waxman, “Routing of multipoint connections,” IEEE J. Select. Areas Commun., vol. 6, no. 9, pp. 1617–1622, 1988.

E. W. Zegura, K. L. Calvert, and M. J. Donahoo, “A quantitative comparison of graph-based models for Internet

topology,” IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 770–783, 1997.

M.-A. Weisser and J. Tomasik, “aSHIIP: autonomous generator of random Internet-like topologies with inter-domain

hierarchy,” in 18th IEEE Symposium on Modeling Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS’10), 2010.

D. Magoni, “nem: A software for network topology analysis and modeling,” in Proceedings of the 10th IEEE

International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems,
MASCOTS ’02, (Washington, DC, USA), IEEE Computer Society, 2002.

V. Batagelj and U. Brandes, “Efficient generation of large random networks,” Phys. Rev. E, vol. 71, p. 036113, Mar 2005.

J. Lothian, S. Powers, B. D. Sullivan, M. Baker, J. Schrock, and S. W. Poole, “Synthetic graph generation for

data-intensive HPC benchmarking: Background and framework,” Tech. Rep. ORNL/TM-2013/339, Oak Ridge National
Laboratory, October 2013.

S. Nobari, X. Lu, P. Karras, and S. Bressan, “Fast random graph generation,” in Proceedings of the 14th International

Conference on Extending Database Technology, EDBT/ICDT ’11, (New York, NY, USA), pp. 331–342, ACM, 2011.

M.Roughan (UoA) FastGen July 18, 2015 17 / 17

