Fast generation of spatially embedded random networks

Eric Parsonage and Matthew Roughan eric@eparsonage.com
matthew.roughan@adelaide.edu.au
http://www.maths.adelaide.edu.au/matthew.roughan/ with Jono Tuke
UoA

July 18, 2015

Random Graphs

- Graph: $G(N, E)$
- $N=$ set of nodes (vertices)
- $E=$ set of edges (links)

- Motivation
- simulations to test new network protocols
- models for structured connections in an epidemic
- ...
- Canonical example: Gilbert-Erdös-Rényi (GER) [1, 2]
- two cases:
$\star G(n, e)$: put e edges on random node pairs (n nodes)
$\star G(n, p)$: put edge between each node pair with probability p

SERNs

Spatially Embedded Random Networks

- GER is too simple
- many ways to generalise
- One approach is a SERN
- generate random points in some metric space
- generate links between node pairs independently with probability $p_{i j}$

$$
p_{i, j}=f\left(d\left(n_{i}, n_{k}\right)\right)
$$

- NB: links are not independent, because of distance dependencies
- Motivation:
- real actors are often in some space
- often some "cost" to a link that depends on distance
* e.g., computer network, you have to run a cable
* e.g., epidemic, spread of infection requires transport of vector

SERN variations

- Many choices for metric space and point generation
- typically points uniformly distributed over a unit square
- many obvious generalisations of space and measure
- Many choices for distance functions common cases:
- Random Plane Networks [3]:

$$
f(d)=I(d \leq r)
$$

- Waxman [4]:

$$
f(d)=q e^{-s d}
$$

Simulation

- Uses for these graphs often require simulation
- for testing protocols
- in estimation, e.g., ABC
- Often (in the past)
- simulation toolkits couldn't handle huge networks
- we didn't have large-scale data anyway
but neither of these features holds anymore
- I want to be able to generate graphs
- with thousands to millions or even billions of nodes
- I want to generate large numbers of them
- Most existing graph generation toolkits (for cases I deal with) use $O\left(n^{2}\right)$ algorithms
- usually in time
- sometimes also in memory but most real graphs are sparse $O(e) \ll O\left(n^{2}\right)$

GER

The history of the Gilbert-Erdös-Rényi (GER) is illustrative

- Almost all code for generating GERs
- $O\left(n^{2}\right)$ Bernoulli trials [5, 6, 7]

```
Input: \(n, q, s\)
                                    parameters of the graph
Output: \(E=\) set of edges
for \(i=1\)..n do
    for \(j=i+1 . . n\) do
        calculate \(d_{i j}\)
        calculate \(p_{i j}=q \exp \left(-s d_{i j}\right)\)
        generate \(r \sim U[0,1]\)
        if \(r \leq p_{i j}\) then
            add \((i, j)\) to \(E\)
        end
    end
10 end
```

Algorithm 1: Naive Waxman generation

- In 2005 Batagelj and Brandes [8] came up with an $O(e)$ algorithm
- Only two sets of software (I can find) use this: NetworkX and igraph None have better than $O\left(n^{2}\right)$ for a SERN [9]

Batagelj and Brandes algorithm

Their approach is based on the following insight

- Think of the possible edges in a list
- order doesn't matter
- The actual edges are selected (notionally) by Bernoulli trials
- we can instead just do geometric jumps between edges
- Just requires the idea of homogeneous memoryless renewal process

But it doesn't work for a SERN because not all links are equal

- we might be able to transform, but
- we don't want to even calculate all of the distances!

Fast Waxman 1

We can apply the same idea as follows

$$
p_{i j}=q e^{-s d_{i j}} \leq q
$$

Hence, the GER random graph $G(n, q)$ provides an "upper bound" graph

- that suggests an algorithm

```
Input: n, q, s
parameters of the graph
Output: E = set of edges
Construct a GER(n,q) graph Gl}(N,\mp@subsup{E}{1}{})\mathrm{ using geometric jumps
forall the (i,j)\inE
    calculate dij
    calculate p pij = exp(-sd}\mp@subsup{|}{ij}{}
    generate r ~U[0,1]
    if r\leq pij then
        add (i,j) to E
    end
end
```

Algorithm 2: q-jumping

How good is it?

- Algorithm complexity is $O\left(e_{1}\right)$ where e_{1} is edges in the $\operatorname{GER}(n, q)$
- efficiency depends on how close e is to e_{1}

$$
\begin{aligned}
\mathbb{E}\left[e_{1}\right] & =n \bar{k} / 2 \\
\mathbb{E}[e] & =n \bar{k} \tilde{G}(s) / 2
\end{aligned}
$$

* \bar{k} is average node degree
$\star \tilde{G}(s)$ is Laplace transform of PDF of the line-picking problem
- so we have an $O(e)$ algorithm, but how close to optimal optimal?
- Efficiency depends on $\tilde{G}(s)$
- $\tilde{G}(0)=1$
- $\tilde{G}(s) \rightarrow 0$ for large s
- efficiency is its good for small s
- but for large s we have $\mathbb{E}\left[e_{1}\right]=\mathbb{E}[e] / \tilde{G}(s)$

What can we do for large s

Consider breaking the region into M^{2} "buckets", e.g.,

We can put a lower bound $D_{I J} \leq d_{i j}$ on the distance between nodes i and j in buckets I and J, respectively.

Fast Waxman 2

- GER skipping algorithm didn't depend on the order of the potential edges, or even that we generated them all at once
- Group potential edges into bucket-pairs (I, J)
- Perform skipping to create

$$
\operatorname{GER}\left(n_{I J}, q \exp \left(-s D_{I J}\right)\right)
$$

upper-bound subgraph for each bucket pair

- Calculate the exact distance, and filter with probability

$$
p_{i j}=\exp \left(-s\left(d_{i j}-D_{I J}\right)\right)
$$

- Put all the edges back together

Coding

- This isn't quite trivial
- the time to create a link in this code isn't much longer than the time to access the relevant memory
- buckets can't be calculated on the fly
- can't sort the points into buckets (sorting $O(n \log n)$)
- controlling the memory allocated has to be done carefully
- The algorithm parallelises
- only other similar example on GER [10]
- we have a multi-thread implementation
- its hard to avoid blocking, so speedup limited

Results: small $s=0.1$, fixed \bar{k}

Results: large $s=10$, fixed \bar{k}

Results: fixed $n=1,000,000$

Results: fixed $n=1,000,000$

Conclusion

- Random graphs
- current generation techniques often naive
- we can do better
- SERNs
- showed how to do Waxman
- not to hard to see how to generalise to many other cases
- There are some problems
- what about non-convex regions
- what about non-monotonic distance functions
E. Gilbert, "Random graphs," Annals of Mathematical Statistics, vol. 30, pp. 1441-1144, 1959.
P. Erdös and A. Rényi, "On the evolution of random graphs," Publications of the Mathematical Institute of the Hungarian Academy of Sciences, vol. 5, pp. 17-61, 1960.
E. N. Gilbert, "Random plane networks," Journal of the Society for Industrial and Applied Mathematics, vol. 9, no. 4, pp. 533-543, 1961.
B. Waxman, "Routing of multipoint connections," IEEE J. Select. Areas Commun., vol. 6, no. 9, pp. 1617-1622, 1988.
E. W. Zegura, K. L. Calvert, and M. J. Donahoo, "A quantitative comparison of graph-based models for Internet topology," IEEE/ACM Transactions on Networking, vol. 5, no. 6, pp. 770-783, 1997.
M.-A. Weisser and J. Tomasik, "aSHIIP: autonomous generator of random Internet-like topologies with inter-domain hierarchy," in 18th IEEE Symposium on Modeling Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS'10), 2010.
D. Magoni, "nem: A software for network topology analysis and modeling," in Proceedings of the 10th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, MASCOTS '02, (Washington, DC, USA), IEEE Computer Society, 2002.
V. Batagelj and U. Brandes, "Efficient generation of large random networks," Phys. Rev. E, vol. 71, p. 036113, Mar 2005.
J. Lothian, S. Powers, B. D. Sullivan, M. Baker, J. Schrock, and S. W. Poole, "Synthetic graph generation for data-intensive HPC benchmarking: Background and framework," Tech. Rep. ORNL/TM-2013/339, Oak Ridge National Laboratory, October 2013.
S. Nobari, X. Lu, P. Karras, and S. Bressan, "Fast random graph generation," in Proceedings of the 14th International Conference on Extending Database Technology, EDBT/ICDT '11, (New York, NY, USA), pp. 331-342, ACM, 2011.

