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Random Graphs

Graph: G (N,E )
I N = set of nodes (vertices)
I E = set of edges (links)

Motivation
I simulations to test new network protocols
I models for structured connections in an epidemic
I ...

Canonical example: Gilbert-Erdös-Rényi (GER) [1, 2]
I two cases:

F G(n, e): put e edges on random node pairs (n nodes)
F G(n, p): put edge between each node pair with probability p
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SERNs
Spatially Embedded Random Networks

GER is too simple
I many ways to generalise

One approach is a SERN
I generate random points in some metric space
I generate links between node pairs independently with probability pij

pi,j = f
(
d(ni , nk)

)
I NB: links are not independent, because of distance dependencies

Motivation:
I real actors are often in some space
I often some “cost” to a link that depends on distance

F e.g., computer network, you have to run a cable
F e.g., epidemic, spread of infection requires transport of vector
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SERN variations

Many choices for metric space and point generation
I typically points uniformly distributed over a unit square
I many obvious generalisations of space and measure

Many choices for distance functions
common cases:

I Random Plane Networks [3]:

f (d) = I (d ≤ r)

I Waxman [4]:
f (d) = qe−sd
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Simulation

Uses for these graphs often require simulation
I for testing protocols
I in estimation, e.g., ABC

Often (in the past)
I simulation toolkits couldn’t handle huge networks
I we didn’t have large-scale data anyway

but neither of these features holds anymore

I want to be able to generate graphs
I with thousands to millions or even billions of nodes
I I want to generate large numbers of them

Most existing graph generation toolkits (for cases I deal with) use
O(n2) algorithms

I usually in time
I sometimes also in memory

but most real graphs are sparse O(e)� O(n2)
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GER
The history of the Gilbert-Erdös-Rényi (GER) is illustrative

Almost all code for generating GERs
I O(n2) Bernoulli trials [5, 6, 7]

Input: n, q, s // parameters of the graph
Output: E = set of edges

1 for i = 1..n do
2 for j = i+1..n do
3 calculate dij
4 calculate pij = q exp(−sdij)
5 generate r ∼ U[0, 1]
6 if r ≤ pij then
7 add (i , j) to E
8 end

9 end

10 end

Algorithm 1: Naive Waxman generation

In 2005 Batagelj and Brandes [8] came up with an O(e) algorithm

Only two sets of software (I can find) use this: NetworkX and igraph

None have better than O(n2) for a SERN [9]
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Batagelj and Brandes algorithm

Their approach is based on the following insight

Think of the possible edges in a list
I order doesn’t matter

The actual edges are selected (notionally) by Bernoulli trials
I we can instead just do geometric jumps between edges

Just requires the idea of homogeneous memoryless renewal process

But it doesn’t work for a SERN because not all links are equal

we might be able to transform, but

we don’t want to even calculate all of the distances!
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Fast Waxman 1
We can apply the same idea as follows

pij = qe−sdij ≤ q

Hence, the GER random graph G (n, q) provides an “upper bound” graph

that suggests an algorithm

Input: n, q, s // parameters of the graph
Output: E = set of edges

1 Construct a GER(n,q) graph G1(N,E1) using geometric jumps
2 forall the (i , j) ∈ E1 do
3 calculate dij
4 calculate pij = exp(−sdij)
5 generate r ∼ U[0, 1]
6 if r ≤ pij then
7 add (i , j) to E
8 end

9 end

Algorithm 2: q-jumping

M.Roughan (UoA) FastGen July 18, 2015 8 / 17



How good is it?

Algorithm complexity is O(e1) where e1 is edges in the GER(n, q)
I efficiency depends on how close e is to e1

E[e1] = nk̄/2

E[e] = nk̄G̃ (s)/2

F k̄ is average node degree
F G̃(s) is Laplace transform of PDF of the line-picking problem

I so we have an O(e) algorithm, but how close to optimal optimal?

Efficiency depends on G̃ (s)
I G̃ (0) = 1
I G̃ (s)→ 0 for large s
I efficiency is its good for small s
I but for large s we have E[e1] = E[e]/G̃ (s)
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What can we do for large s

Consider breaking the region into M2 “buckets”, e.g.,

M

I

J

i

j

dij
DIJ

We can put a lower bound DIJ ≤ dij on the distance between nodes i and
j in buckets I and J, respectively.
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Fast Waxman 2

GER skipping algorithm didn’t depend on the order of the potential
edges, or even that we generated them all at once

Group potential edges into bucket-pairs (I , J)

Perform skipping to create

GER(nIJ , q exp(−sDIJ))

upper-bound subgraph for each bucket pair

Calculate the exact distance, and filter with probability

pij = exp
(
− s(dij − DIJ)

)
Put all the edges back together
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Coding

This isn’t quite trivial
I the time to create a link in this code isn’t much longer than the time

to access the relevant memory
I buckets can’t be calculated on the fly
I can’t sort the points into buckets (sorting O(n log n))
I controlling the memory allocated has to be done carefully

The algorithm parallelises
I only other similar example on GER [10]
I we have a multi-thread implementation
I its hard to avoid blocking, so speedup limited
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Results: small s = 0.1, fixed k̄
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Results: large s = 10, fixed k̄
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Results: fixed n = 1, 000, 000
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Results: fixed n = 1, 000, 000
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Conclusion

Random graphs
I current generation techniques often naive
I we can do better

SERNs
I showed how to do Waxman
I not to hard to see how to generalise to many other cases

There are some problems
I what about non-convex regions
I what about non-monotonic distance functions
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