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Healthcare data are arguably the most private of personal data. This very private information in the wrong

hands can lead to identity theft, prescription fraud, insurance fraud and an array of other crimes. Electronic-

health systems such as My Health Record in Australia holds great promise in sharing medical data and

improving healthcare quality. But, a key privacy issue in these systems is the misuse of healthcare data by

‘authorities’. The recent General Data Protection Regulation (GDPR) introduced in the EU aims to reduce

personal-data misuse. But, there are no tools currently available to accurately reconcile a domestic E-health

policy against the GDPR to identify discrepancies. Reconciling privacy policies is also non-trivial because

policies are often written in free text, making them subject to human interpretation.

In this paper, we propose a tool which allows the description of E-health privacy policies, represent them

using formal constructs making the policies precise and explicit. Using this formal framework, our tool can

automatically reconcile a domestic E-health policy against the GDPR to identify violations and omissions. We

use of our prototype to illustrate several critical flaws in Australia’s My Health Record policy, including a

non-compliance with GDPR that allows healthcare providers to access medical records by default.
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1 INTRODUCTION
Healthcare data are arguably the most sensitive of personal data belonging to a subject. Sensitive

information such as a person’s family history, demographic data, medical conditions, and current

medications are often embedded in healthcare data. Such very private information in the wrong

hands can lead to identity theft, prescription fraud, financial fraud, insurance fraud and a wide

array of other crimes [15]. Electronic-health (E-health) systems such as ‘My Health Record’ in

Australia hold the promise that in sharing medical data, we can improve healthcare quality and

reduce costs. E-health removes the need for doctors to work in silos without access to the full

range of clinical, prescription and health information about a patient. It enables each healthcare

provider to observe patient information online to make healthcare management easier and safer. It

can avoid common problems such as drug interactions and be life-saving in emergencies [3]. But,

the potential benefits also bring the serious issue of data privacy. The disclosure of medical records

is the most frequent of all reported privacy breaches [1].

A key privacy issue in the context of healthcare data is their misuse by ‘authorities’ [15]. For

instance, a health insurance provider accessing the medical records to verify the legitimacy of a

claim is acceptable. But, using the data to genetically discriminate against a subject when they

obtain health cover, is not. Likewise, a government’s ability to access the details of a person’s
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sexual behavior or abortion history might allow use of that knowledge for purposes not originally

intended; e.g., for a politician to gain advantage over their opponent by disclosing the information

during an election campaign. Similarly, access of a child’s healthcare data by a sexually abusive

father or access to patient data by doctors who malpractice could cause serious harm to the patient.

Data misuse can be reduced through granular control of the aspects of a person’s healthcare data

that can be accessed by who and for what purpose. The recent General Data Protection Regulation

(GDPR) [8] introduced in the EU provides a framework for granular control of personal data.

The GDPR offers a good baseline privacy policy for personal data and the robust enforcement

of this baseline applies to any organization that collects or processes EU residents’ personal

data. Reconciling E-health privacy policies against the GDPR for compatibility hence becomes

a priority for any such organization [13, 21]. But, reconciling privacy policies against the GDPR

is non-trivial because the regulation is written in free text making it largely qualitative and

subject to human interpretation [23]. Natural-language based descriptions can also potentially be

imprecise, incomplete and/or inconsistent. Reconciling against such a description could lead to

well-intentioned mistakes at best and legal battles at worst. A good example is how the placement

of commas in the US constitution describing its citizens’ right to bear arms caused the Supreme

Court to abolish a ban on handguns [19].

The problem of imprecise privacy-policy description can be overcome by representing policies

using formal constructs [16, 23]. Mathematical constructs allow policy properties to be captured

precisely and explicitly without ambiguity. More importantly, formal underpinnings allow one

to accurately reason about policies. So, one could for instance, rigorously reconcile, a domestic

E-health privacy policy such as Australia’s My Health Record policy against the GDPR. However,

policy makers are not mathematicians. They need tools which abstract away complex formal

semantics and allow them to intuitively specify and reconcile their policies. The then Australian

prime minister, Malcolm Turnbull, stated “The laws of mathematics are very commendable, but the

only law that applies in Australia is the law of Australia" [14]. Mathematical laws, in reality, are

not negotiable, however there is no reason that the laws of the land and mathematics need be in

conflict, if the former are designed well. Healthcare policy is a case in point. The challenge is to

find the right abstract model that could be used to describe policies at a human understandable

level and could also be used for mathematical reasoning.

In this work we bridge the gap between imprecise privacy-policy descriptions and formal

models by developing a rigorous mathematical model based on metagraphs that can be used for

expressing human-understandable description of policies and for rigorously analyzing them. We

build prototype software of the model - all code and data used in this paper are publicly available
1
.

Our software tool allows users to (1) naturally describe E-health privacy policies at a high level; (2)

model and analyze policy properties mathematically; and (3) formally reconcile an E-health policy

against another policy such as the GDPR.

We take Australia’s My Health Record [3] as a prime example to highlight the potential applica-

tions of our tool in this domain. Upon reconciling My Health Record policy against the GDPR, we

find that the former violates the latter on several counts. For instance, healthcare providers can

access My Health Record data by default, without the record owner’s explicit consent. Also, the

controller’s obligation in the GDPR to notify data recipients of subject data rectification, erasure or

processing-restriction is not upheld in My Health Record. No doubt clever people could ascertain

these facts, but providing water tight mathematical arguments can aid convincing policy makers

(other than the aforesaid ex prime minister) of the validity of the arguments and when a policy is

1
at https://github.com/dinesharanathunga/MyHealthRecord
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right, it is valuable to be able to show this. The problem is also much wider than just that of health

records as we shall see in the following section.

The rest of the paper is organized as follows. In Section 2, we describe the related work and

background materials. In Section 3, we discuss the granularity dimensions of privacy policies. We

explain in Section 4 how our model could be used to encode My Health Record and GDPR policies.

The two policies are reconciled in Section 5. Finally, we conclude the paper with discussions of its

limitations in Section 6.

2 BACKGROUND AND RELATEDWORK
We review related work and background knowledge in this section. The list of abbreviations is

provided at the end of the paper.

2.1 Policy Models, Languages and Tools
Organizations often have a privacy policy which describes how they collect, store and use per-

sonal information. These policies are intended to help consumers make informed decisions when

interacting and sharing their personal information with the organization. For instance, the popular

social media site Facebook’s privacy policy describes that a user’s profile can only be disclosed to

third parties for research purposes if the user has explicitly consented [9]; and the online shopping

site eBay’s privacy policy states that a user’s email addresses can only be disclosed to members

involved in a completed eBay transaction [7].

However, there is no standardized vocabulary to describe privacy policies. Moreover, these are

often long and involve statements that are at best difficult for an average user to comprehend and

at worst impossible to avoid because they are shrink-wrapped with a product or service that is

already purchased. Privacy policies are meant to inform users of how an organization collects and

shares their user data. But the lack of policy comprehensibility prevents such transparency.

The EU’s GDPR is a recent example of how privacy policies are still being articulated in user-

unfriendly language. The regulation outlines for instance, conditions for accessing a user’s personal

data by recipients. For most access purposes (e.g., to research on personal data), explicit user consent
is required. However, there are exceptions where user consent is not sought (e.g., when accessing

the data is in the public’s interest). Such exceptions must be clearly conveyed to stakeholders.

Many policy languages [2, 6, 10, 22] have been proposed to assist with the specification, analysis

and enforcing of privacy policies. Most of these languages were designed for specific purposes. For

instance, IBM designed the Enterprise Privacy Authorization Language (EPAL) to formalize internal

enterprise privacy policies [2]. But, EPAL lacks automated support to reconcile two policies – a key

goal of our work.

The Platform for Privacy Preferences (P3P) language was introduced [22] by the World Wide

Web Consortium (W3C) to enable expression of website privacy policies in a machine-interpretable

format. Likewise, the Role Based Access Control (RBAC) language XACML was developed for

expressing both privacy and security policies so that they can be interpreted by computers to

perform the actions stated in the policies [10]. Both P3P and XACML are light-weight XML markup

languages and are not formally rigorous; i.e., we cannot precisely reason about policies using them.

Solid [5] is a decentralized platform recently proposed for managing users’ data in social Web

applications. The approach gives a user control over the privacy of their data. Using Solid a user

can manage who can access what elements of their data, independent of the applications that create

and consume this data. This flexibility enables a user to easily switch between similar applications

enabling the reuse of their data.

There have been significant development in the last three years in modelling of privacy policies

related to GDPR. Closest to ourwork is thework ofWang et al. [23] where the authors use knowledge
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graphs to compare Chinese and European Internet companies’ privacy policy. A privacy knowledge

graph contains as nodes the set of all companies and the privacy information that being collected

and as edge the links between each company and the privacy data collected by that company. The

authors first construct one knowledge graph for all companies in Europe and one knowledge graph

for all companies in China. The two graphs are then compared. A different model using ontology

design pattern for privacy policies was presented in [16]. PrivacyGuide [20] is a privacy policy

summarization tool that uses machine learning and natural language processing techniques to

summarize privacy policies using General Data Protection Regulation (GDPR) framework as a

guideline for interpretation. PrivacyBot [21] uses the same techniques to detect privacy sensitive

information that users post on-line, again using GDPR as a guideline for interpretation of privacy

data. An longitudinal assessment of the impact of GDPR on privacy policies online was provided

in [13].

Each of the above languages and tools provides formalized policy descriptions with the intention

of automating policy implementation but they lack tools tomathematically reason about policies.We

develop in this work a generic mathematical tool that rigorously models a broad ranges of privacy

policies. These models can then be cross-compared and reconciled using precise mathematical

procedures. We present here one example application of our approach in reconciling domestic

health policies with GDPR. Our formal policy reconciliation approach can potentially be extended

in multiple dimensions. For example, we could use our model to check if privacy preferences in

Solid conform with a website’s privacy policy. We could also apply the machine learning algorithms

in [20, 21] on our metagraph model for privacy compliance of Internet companies and users.

2.2 Mathematical Modeling of Policy with Metagraphs
We provide here, a very brief background on the formal modeling and reconciliation framework

used in this paper. We use the concept of a metagraph, which is a generalized graph-theoretic

structure that offers rigorous formal foundations for modeling and analyzing communication-

network policies in general [11, 18] and business management policies [4].

A metagraph is a directed graph between a collection of sets of “atomic” elements [4]. Each set

is a metagraph node and each directed edge describes a relationship between two sets. Fig. 1 shows

an example where a set of users (U1) are related to sets of network resources (R1, R2, R3) by the

edges e1, e2 and e3 allowing a user ui to access a resource r j .
A metagraph is more useful than a graph because graphs associate individual elements not

sets of elements (which can have some overlap). As per the access-control example in Figure 1,

real-world policies often associate sets of elements and metagraphs allow capture and visualization

of such policies naturally and parsimoniously. Graph-based representations require the user to

explicitly track node overlaps when analyzing properties such as reachability. Metagraphs reduce

this complexity by handling node overlaps automatically. Note that the metagraphs we use in

this paper is more general than the meta-graphs used for analyzing heterogenous information

networks (HIN) in [24]. In our metagraphs each vertex contains multiple elements whereas the

the meta-graphs in [24] use single element for each vertex. This generalization is needed to model

privacy policies where each rule can apply to multiple entities.

Metagraphs also support edge attributes. An example is a conditional metagraph which has

propositions – statements that may be true or false – assigned to its edges as qualitative attributes [4].

A conditional metagraph is formally defined as

Definition 1 (Conditional Metagraph [4]). A conditional metagraph is a metagraph S=⟨Xp ∪

Xv , E⟩ in which Xp is a set of propositions and Xv is a set of variables, and:
1. at least one vertex is not null, i.e., ∀e ′ ∈ E,Ve ′ ∪We ′ , ϕ
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Fig. 1. A metagraph consisting of six variables {u1,u2, r1, r2, r3, r4}, five sets U1,R1,R2,R3,R4 and
three edges e1, e2 and e3. One could imagine ui to be users, ri to be resources and ei to express valid
relationships.
2. the invertex (source vertex) and outvertex (destination vertex) of each edge must be disjoint, i.e.,

X = Xv ∪ Xp with Xv ∩ Xp = ϕ
3. an outvertex containing propositions cannot contain other elements, i.e., ∀p ∈ Xp,∀e

′ ∈ E, if
p ∈We ′ , thenWe ′ = p.

These metagraphs are useful to model stateful policies. For instance, in My Health Record,

third parties can access a subject’s medical records for research purposes, only if the subject (or

their representative) provides explicit consent. This conditional access can easily be modeled by

propositions. Metagraphs also support several useful operators which allow one to analyse policy

properties like consistency. One such operator is a metapath [4] which describes connectivity

between sets of elements in a metagraph, but is somewhat different from a simple path in a graph.

A metapath is represented by a set of edges and can inform of redundancies (edge or element

wise) in a metagraph. Hence it is a very useful operator when reconciling metagraphs because

only metapaths with no redundancies (i.e., dominant metapaths [4]) need to be considered. An

implementation of metagraphs with the associated mathematical operators described in this paper

is provided in [17].

We want to emphasize here, the strong mathematical foundations of this work, but a key aim

is also to provide access to these ideas and tools to non-mathematical users. Metagraphs have

the advantage of providing both mathematical rigour but also an intuitive, visual description of

policies.

3 PRIVACY POLICY DESCRIPTION
The goals of privacy policies vary, but they can be roughly categorized as Transparency, Inter-

venability and Unlinkability [12]. The protection goal of Transparency is defined as the ability

to understand and reconstruct all personal data processing enabled at any given point of time.

Intervenability is the ability to enforce changes and corrective measures to ongoing or planned

personal data processing. Unlinkability ensures that personal data cannot be linked across multiple

data-collection platforms [12].

An important consideration when achieving a privacy goal is the granularity at which the

goal needs to be specified. Granularity refers to the finest level of discrimination we can make.

For instance, in an image, resolution or granularity is the pixel size (we can’t separate objects in

an image that are smaller). The first concern when compressing an image would be how many

pixels do we need, and so this is an initial step in considering how a privacy goal needs to be

achieved. Finer granularity allows more control but creates extra complexity in the policy. For

instance, understanding what data processing is enabled at a given point of time (i.e., Transparency)
requires us to consider aspects such as what data is processed, by who and for what purpose. We

refer to these multiple aspects as granularity dimensions. Granularity dimensions requirements
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Fig. 2. Data class granularity hierarchy: coarse granularities are subsets of the finer.

are determined by the use case of the data. We describe below the use cases and the granularity

dimensions required for modeling My Health Record and GDPR in metagraphs.

3.1 Data Use Case
In My Health Record, the various uses of its data are

Healthcare provision: Sharing of medical records allows healthcare providers to better diagnose

patients and improve their treatments;

Representation: a legally-authorized or nominated representative may be required to manage a

patient’s medical records on their behalf;

Safeguard public interest: healthcare providers can also use a patient’s medical records to

prevent serious threats to public health or public safety;

Authority: Patient medical records can also be used in the exercise of official authority. For instance,

the data may need to be disclosed to courts for coroner’s investigations or for law enforcement

purposes;

For research and evaluation: Patient medical records can be of value to medical and public

health researchers.

Managing medical records on a subject’s behalf (i.e., representation) would have coarser Trans-

parency requirements in comparison to providing healthcare to the subject (for instance, due to

higher auditing requirements). We can systematically construct privacy policies per use case by

identifying privacy-goal granularity requirements, discussed in the next section.

3.2 Granularity Dimensions
We identified the granularity dimensions applicable to each of the three privacy goals discussed

for the GDPR in this section. For each dimension, we propose granularity levels applicable to

the universal concept of E-health. These dimensions and levels enable systematic construction of

privacy policies for each E-health use case. We provide a high-level explanation of the granularity

dimensions here and details can be found in the Appendix.

Data class: describes the type of healthcare data available for processing. An example of the data

class granuality is shown in Fig. 2.

Data category:Although a data class informs the type of data processed, it provides little contextual

information. Thus, we define data category to additionally describe the context of the data processed.

Each category can comprise of multiple data classes.

Purpose limitation: The GDPR also specifies the data-protection principle of purpose limita-

tion [8], by restricting data processing to legitimate purposes only.
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Processing purpose: We define processing purpose to describe legitimate objectives of processing

medical records. The purposes applicable to E-health are linked to the use cases described earlier.

A processing purpose differs from a use case in that the latter may require data processing for

multiple purposes; e.g., providing healthcare to a subject requires data processing for view, subject
interest, public Interest and official authority.

Data recipient: As per the GDPR, a data recipient describes an entity who is allowed to process

personal data.

Data-recipient category: Likewise, data-recipient category describes the type of entity allowed to

process the data.

Consent provider:We define consent provider to describe the entity providing consent for purposes

which require explicit consent. Where data processing is based on a subject’s consent, privacy

legislations specify a minimum age for a subject to give consent. For instance, the GDPR recognizes

individuals who are 16 years or over as subjects being able to give consent [8]. This minimum age

is increased to 18 years in the My Health Record policy [3]. Thus, an important consideration in

determining the consent provider is the subject’s age.

Data breach nature: describes the type of data breach occurred. E-health privacy policies also

often cover how data breaches within a system are notified to authorities, affected subjects and

the public. This notification obligation is, enforced upon E-health system operators by privacy

legislations (e.g., in My Health Record the operator (ADHA) is bound by the data breach notification

obligations in the My Health Records Act [3]). Thus, the ability to understand the data-breach

notification mechanisms enabled in a system, is an important aspect of Transparency.

Data breach scope: describes the extent of a data breach.
Data breach consequence: describes the impact of the data breach in terms of what subject rights

were violated.

3.3 Policy Model with Data Use Case and Granualtiy Dimensions
A summary of privacy-goal granularity requirements for three My Health Record use cases is

provided in Table 1, based on the framework described above and the Appendix.

For instance, data processing is required at a file level granularity when providing healthcare

to a subject, but is sufficient at a coarser directory level when representing a subject. Using these

granularity requirements, we can systematically construct privacy-policy descriptions for each

E-health use case. The policy description for representing a My Health Record owner can be

constructed as shown in Figure 3.

We describe next, Australia’s domestic E-health policy using the granularity framework above and

formally compare it to the GDPR. We use My Health Record to demonstrate a concrete comparison,

but the approach can be used with any domestic E-health policy.

4 POLICY METAGRAPHS
4.1 My Health Record Policy Metagraph
Figure 4 shows a use case of a conditional metagraph model of the privacy policy for representing a

My Health Record owner. The nodes of this metagraph comprise of the data recipient (i.e., the set of
individuals comprising the subject and his/her representatives) and the My Health Record data set.

We use the propositions purpose, consent_provider and subject_age to capture the access conditions.

They describe that an individual is allowed to manage a subject’s medical records on their behalf (a)

if the subject is 18 years or over and the subject or their representative has consented for viewing
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Table 1. Summary of privacy-goal granularity requirements for three My Health Record use cases:
(a) representing a My Health Record owner; (b) research and evaluation; and (c) providing healthcare
to the owner. rep.=representative, cons.=consequences, conn.=connections, doc. = documents.

Goal Dimension Required granularity for use case

Representation Research Provide care

Transparency Data class directory directory file

Data category all categories documents profile, doc.

Data recipients individuals third parties care providers

Recipient category level-1 conn. indirect conn. level-1, indirect

Purpose manage research subject interest

Consent provider subject, rep. subject, rep. subject, rep.

Breach nature disclosed corrupted corrupted

Breach scope single subject subject group subject group

Breach cons. freedom affected rights affected rights affected

Intervenability Access data send my data copy send data copy send data copy

Rectify data data category data category data category

Erase data data category data category data category

Restrict processing single purpose single purpose single purpose

individuals −−> my_health_record {
use_case = representation;
granularity.transparency={
purpose={manage};
consent_provider={subject,representative}
subject_age={>=18}
data_class={directory};
data_category={profile,documents,history,

access_control,personal_notes};
data_recipient={individuals};
recipient_category={level_1_connections}}}

individuals −−> my_health_record {
use_case = representation;
granularity.transparency={
purpose={manage};
consent_provider={representative}
subject_age={<18}
data_class={directory};
data_category={profile,documents,history,

access_control,personal_notes};
data_recipient={individuals};
recipient_category={level_1_connections}}}

Fig. 3. Privacy policy description (partial) for representing a My Health Record Owner. The description
is based on the granularity requirements in Table 1.
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Fig. 4. A conditional metagraph describing conditions for accessing medical records of individuals as
defined in My Health Record policies. The conditional edges of metagraphs provide a powerful tool to
encode Event-Condition-Action rules.

or managing the records; or (b) if the subject is less than 18 years and the subject’s representative

has consented for viewing or managing the records.

Likewise, we modeled the privacy policies of all My Health Record use cases using conditional

metagraphs. The resultant composite metagraph is shown in Figure 5.

As the figure shows, the complexity of the My Health Record policy metagraph is manageable;

we can clearly describe the entire policy using a metagraph that fits a single A4 page. It only takes

141 LoC in our metagraph specification language (which we describe in Section V) to specify this

policy metagraph model. This is in contrast to the privacy policy description in [3], which has

more than 5000 words of hard-to-read text.

The edge propositions on this metagraph describe for instance, how access to a subject’s medical

records by healthcare providers is conditional on (a) the subject or their representative providing

consent; or (b) access being in the interest of the subject; or (c) access being in the interest of public

health and safety; or (d) access being the default system behavior.

The propositions on Figure 5 also show that third parties (such as portal operators and law

enforcement agencies) are allowed read-only access to the medical records if the subject or their

representative consents or if access is required for duties of official authority. Health researchers are

also allowed access to the medical records if the subject or their representative provides consent.

The controller – the organization which determines the means and purpose of data processing –

can also maintain healthcare data belonging to a subject (e.g., by synchronizing Medicare data with

the My Health Record) once the subject (or their representative) has given consent. In My Health

Record, a subject can also intervene in the processing of their medical records by requesting the

controller to (a) rectify incorrect or incomplete data; or (b) restrict data processing for a particular

purpose; or (c) erase the data; or (d) withdraw the subject’s consent. The controller is also obliged

to promptly report details of any data breaches including the nature, scope and consequences of the
breach to the Supervisory Authority (the COAG Health Council) and affected subjects. We use the

propositions shown in Figure 5 to model these conditions accordingly.

4.2 GDPR Metagraph
Likewise, we modeled the privacy policies outlined in the GDPR. The resulting conditional meta-

graph is depicted in Figure 6. According to the GDPR, access to personal data by a recipient is

conditional on (a) the subject or their representative providing explicit consent for purposes such

as to view, manage or for research; or (b) access being in the interest of the public; or (c) access

being required for duties of official authority; or (d) access is by the subject’s employer and is in the
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subject’s interest. We use the propositions purpose, consent and subject_age to model these access

conditions.

The GDPR also aims to preserve several rights of the data subject. Namely, the right to (a)

rectify a subject’s incomplete or incorrect data; (b) erase all subject’s data; (c) restrict processing of

subject’s data for a particular purpose; (d) withdraw consent; and (e) access a subject’s own data.

We describe conditions (a) to (d) using the propositions rectify_data, erase_data, restrict_processing
and withdraw_consent respectively. Similarly, the subject right (e) is described using the proposition

data_access. The proposition indicates that the subject can request from the controller, if their data

is processed, if so for what purpose and request a copy of the subject’s data for inspection.

The GDPR, also bestows several obligations on the controller. For one, the controller must report

alterations to a subject’s data (e.g., due to rectification or erasure) to all affected data recipients.

This obligation is captured by the proposition subject_data_altered. Also, the controller must inform

a subject of any data breach which affects their rights or freedom without delay. The controller
must also report all data breaches (regardless of consequence) to the Supervisory Authority within

72 hours [8]. We use the propositions nature, scope and consequences to describe these obligations

respectively.

5 RECONCILIATION OF THE TWO POLICIES
The GDPR andMy Health Record metagraphs appear similar but there are differences. An important

question is “are the differences important?" We show in the rest of this paper through mathematical

analyses of the metagraphs that these differences have significant implication on the privacy of

personal health data.

A first step to reconciling a domestic E-health policy against the GDPR is to identify the privacy-

goal granularity requirements per E-health use case. We described in Section 3 the use cases

applicable to My Health Record. Once the policy descriptions are constructed, we model them

using conditional metagraphs as per Section 4.

5.1 Policy Definition and Formal Reconciliation
WeuseMGtoolkit [17] – a package wewrote for implementingmetagraphs – to instantiate our policy

metagraph models. MGtoolkit is implemented in Python 2.7. The API allows users to instantiate

metagraphs, apply metagraph operations and evaluate results.

The toolkit provides a ConditionalMetagraph class which extends a Metagraph and supports

proposition attributes in addition to variables. A ConditionalMetagraph inherits the base proper-

ties and methods of a Metagraph and additionally supports methods to check reachability properties

and redundancy properties. We use the ConditionalMetagraph class to instantiate our My Health

Record policy models. We then invoke the API methods to reconcile the metagraphs.

We use the property dominance [4] to reconcile policy metagraphs. Dominance can be introduced

constructively as follows:

Definition 2 (Edge-dominant Metapath). Given a metagraph S=⟨X , E⟩ for any two sets of
elements B andC in X , a metapathM(B,C) is said to be edge-dominant if no proper subset ofM(B,C)
is also a metapath from B to C .

Definition 3 (Input-dominant Metapath). Given a metagraph S=⟨X , E⟩ for any two sets of
elements B and C in X , a metapath M(B,C) is said to be input-dominant if there is no metapath
M ′(B′,C) such that B′ ⊂ B.

In other words, edge-dominance (input-dominance) ensures that none of the edges (elements)

in the metapath are redundant. Based on these concepts, a dominant metapath can be defined as

follows:
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Fig. 5. My Health Record policy metagraph describing conditions for accessing medical-record data
by all recipients.
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Fig. 6. European Union’s General Data Protection Regulation (GDPR) policy metagraph describing
conditions for accessing a subject’s personal data.
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Definition 4 (Dominant Metapath). Given a metagraph S=⟨X , E⟩ for any two sets of elements B
andC in X , a metapathM(B,C) is said to be dominant if it is both edge dominant and input-dominant.

We consider only dominant metapaths when reconciling policy metagraphs because such metap-

aths provide the least-restrictive access enabled between a data recipient and a data class/category.

Least-restrictive access corresponds to the minimal propositions set; where redundant elements

exist in a metapath (edge or input element wise) it does not yield this minimal set.

We test if a policy complies with another, by evaluating if it is equally or more restrictive. In that

context, we define an inclusive metapath as follows

Definition 5 (Inclusive Metapath). Let S=⟨X , E⟩ and S ′=⟨X ′, E ′⟩ be conditional metagraphs
and B,C ⊆ X and B′,C ′ ⊆ X ′. A dominant metapathM(B,C) in S is included by a metapath in S ′ if
and only if there exists at least one dominant metapathM ′(B′,C ′) in S ′ such that B ⊂ B′, C ⊆ C ′ and
Propositions(M ′) ⊆ Propositions(M).

Thus, a policy complies with another if each of its dominant metapaths is an inclusive metapath.

A non-inclusive metapath indicates a potential policy violation; by finding such metapaths in

the My Health Record policy we can detect instances where it violates the GDPR. Likewise, we

can detect omissions in the My Health Record policy by applying the process in reverse; i.e., by
finding non-inclusive metapaths in the GDPR. For example, the metapath from “Medical Doctors”

to “Personal Data” in the My Health Record metagraph is non-inclusive in the GDPR graph. This

metapath represents a violation. The metapath from “Controller” to “Healthcare Providers” in the

GDPR graph is non-inclusive in the My Health Record graph. This path represents an omission.

Complete analysis of the two graphs is provided in the next section.

5.2 Results and Discussion
We ran our policy reconciliation tool on a standard desktop computer (an Intel Core CPU 2.7-GHz

computer with 8GB of RAM running Mac OS X). Table 2 shows the number of compliances and

violations found in the data processing enabled by the My Health Record policy.

We identified GDPR-compliant processing instances by determining inclusive metapaths in the

My Health Record policy. Likewise, GDPR violations were identified using non-inclusive metapaths.

Our reconciliation algorithm consists of two steps. In the first step, we check all the dominant

metapaths in the My Health Record graph to see if they are inclusive in the GDPR graph. Inclusive

paths indicate compliance and non-inclusive paths indicate violations. We then run the reverse

check to determine if all dominant metapaths in the GDPR graph are inclusive in the My Health

Record graph. For each path, inclusive means compliance and non-inclusive indicates omission.

Our analysis found that for instance, the data processing enabling an individual to represent a

My Health Record owner is compliant with the GDPR. The privacy policy in My Health Record

ensures that a representative can only be assigned with the subject’s explicit consent.

In contrast however, data processing enabling healthcare providers to care for a subject in My

Health Record, is not GDPR compliant. The violation stems from healthcare providers being allowed

access to a subject’s medical records by default. This is a serious flaw; personal data is analogous

to ‘toxic waste’ and healthcare data has highest toxicity. The collection, storing and processing

of such ‘waste’ must be minimized to reduce contamination. So, giving healthcare providers who

are not treating a subject access to all their medical records is unnecessary, reckless and can only

promote data misuse! The policy violates the GDPR’s protection goals of privacy by design and

data minimization, and should be rectified.

The last column in Table 2 describes the types of data processing enabled in the GDPR which

are ignored in the My Health Record policy. These omissions are an important consideration in
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Table 2. Metagraph-based reconciliation summary of the My Health Record policy against the GDPR.
Each metapath source and target identifies nodes in the My Health Record policy metagraph in Figure 5.
# Compliances indicate occurrences of GDPR-compliant data processing enabled between the source
and the target. # Violations indicate the number of GDPR breaches (data processing allowed by My
Health Record but not by GDPR) and # Omissions indicate the occurrences of data-processing enabled
in the GDPR, but absent in My Health Record.

Metapath source Metapath target #Compliances #Violations #Omissions

Individuals My Heath Record 2 0 0

Healthcare providers My Health Record 4 2 0

ADHA registered 3rd parties My Health Record 3 0 0

AIHW registered 3rd parties Medical documents 2 0 0

Data subject Controller 7 0 0

Controller My Health Record 2 0 0

Controller My Medicare data 2 0 0

Controller Data subject 4 0 0

Controller Supervisory Authority 1 0 0

Controller Healthcare providers 0 0 3

privacy-policy reconciliation and we identify them using non-inclusive metapaths in the GDPR

metagraph model. We find that alarmingly, the controller’s obligation in the GDPR, to notify all

affected data recipients when a subject’s data has been rectified, erased or processing restricted, is

not upheld in the My Health Record policy. This omission means that a healthcare provider for

instance, may not be able to stop the administering of a medication or treatment prescribed based

on an erroneous blood report of a subject, if this has been updated but not checked.

6 CONCLUSION AND LIMITATIONS
Reconciling privacy policies helps to reduce misuse of personal data, but the task is non-trivial

because privacy policies are often written in free text, making them subject to human interpretation.

In this paper, we propose a tool which allows to describe E-health privacy policies granularly, repre-

sent them using formal constructs, making policies precise and explicit. Our tool can automatically

reconcile an E-health policy against the GDPR to identify violations and omissions. We use our

prototype to illustrate several critical flaws in Australia’s My Health Record policy.

The research has several limitations. First, we assume that the My Health Record policy needs to

comply with the GDPR. GDPR is a European legislation and as a sovereign nation, Australia’s My

Health Record is not required to be GDPR compliant. There may be political reasons behind the

different requirements that we did not explore in this research. Second, at the moment, the meta-

graph model for each policy has to be developed manually. This process could be time consuming.

An automatic tool that allows auto-parsing of the policies would make the tool more scalable and

applicable to dynamic policies. Third, we have shown that metagraphs have great potentials in

modeling and analyzing policies. In this work, we have concentrated mostly on dominant metapath

properties. Other mathematical properties associated with metagraphs should be explored in future

work for more advanced analyses.

LIST OF ACRONYMS
GDPR European General Data Protection Regulation
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EPAL Enterprise Privacy Authorization Language

RBAC Role-Based Access Control

XACML eXtensible Access Control Markup Language

ADHA Australian Digital Health Agency

MBS Medicare Benefits Schedule

PBS Pharmaceutical Benefits Scheme

COAG Council of Australian Governments

AHPRA Australian Health Practitioner Regulation Agency

AIHW Australian Institute of Health and Welfare
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APPENDIX - GRANULARITY DIMENSIONS
We provide details of the granularity dimensions in our model in this section. High-level description

was provided in Section 3.

Data class describes the type of healthcare data available for processing. We define these types in

decreasing granularity:

• Text, Numeric, Audio, Video, Image are fundamental data types used to describe health-

care data.

• File is a collection of fundamental data identified by a filename. A file can be a document,

picture, audio or video data etc. Enabling processing of this type of data may be required

when providing healthcare to the subject.

• Directory is a collection of fundamental data and files. Enabling processing of this type of

data is required when representing a subject.

Data category describes the context of the data processed. Each category can comprise of multiple

data classes. Categories applicable to E-health are

• Profile which describes an individual’s name, DoB, address, picture and other identification

information.

• Documents which describe a subject’s medical reports such as pathology reports, surgery

reports, current medications, allergies and immunization history etc.

• Historywhich describes E-health platform activity history and subject’s (or representative’s)

interaction history with the controller (i.e., queries and resolutions).

• Access control which describes access codes enabling medical record access by individuals,

healthcare providers etc.

• Personal notes which describe health-diary entries which are only accessible by the subject

and his/her representatives.

Processing purpose differs from a use case in that the latter may require data processing for

multiple purposes; e.g., providing healthcare to a subject requires data processing for view, subject
interest, public Interest and official authority.

Data recipient As per the GDPR, a data recipient describes an entity who is allowed to process

personal data. In E-health, recipients who can process medical records can be

• Individuals are the subject and his/her representatives.

• Healthcare providers are individuals and organizations who provide healthcare services

in general. In My Health Record, only providers registered with the Australian Health Practi-

tioner Regulation Agency (AHPRA) are allowed to access a subject’s data. This prerequisite

restricts overseas healthcare providers from accessing this data.

• Subject employer is the organization which employs the medical-records owner (if em-

ployed).

• Third parties include other individuals and organizations such as mobile application opera-

tors and law enforcement agencies. In My Health Record, only those third parties registered

with the Australian Digital Health Agency (ADHA) are permitted to access medical records.
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Data-recipient category describes the type of entity allowed to process the data. Each recipient

category (listed below) can comprise of multiple data recipients.

• Level-1 connections are a subject’s representatives and their immediate healthcare providers.

• Indirect connections are healthcare providers and third parties who do not provide direct

services to the subject.

• Blocked users are individuals and organizations who are prohibited from accessing a sub-

ject’s medical records.

• Controller is an organization which determines the purpose and means of data processing.

In My Health Record, this entity is the Australian Digital Health Agency.

• Processor is an organization appointed and directed by the controller to collect and/or

process medical records.

• Supervisory authority is an independent public authority responsible for monitoring the

application of E-health privacy policies. In My Health Record, this entity is the Council of

Australian Governments (COAG) Health Council.

Consent provider describes the entity providing consent for purposes which require explicit

consent. Entities applicable in E-health are

• Subject i.e., the medical-records owner.

• Representative an individual who manages medical records on behalf of the subject.

• subject’s age

Data breach nature describes the type of data breach occurred. These types in decreasing granu-

larity are:

• Disclosed means the medical records were only viewed by an unauthorized party. A subject

or their representative needs to be informed of breaches of this granularity or finer by law [3].

• Copied means the data was additionally copied.

• Corrupted means the data was additionally modified.

• Deleted means the data was additionally deleted.

Data breach scope describes the extent of a data breach. The levels below describe this scope in

decreasing granularity.

• Single means the breach affected only one subject.

• Group means the breach affected multiple subjects.

• All means all subjects in the E-health platform were affected.

Data breach consequence describes the impact of the data breach in terms of what subject rights

were violated. We describe these impacts below in decreasing severity.

• Subject freedom affected indicates that the subject’s freedom was violated.

• Subject rights affected indicates that the subject’s rights were violated.

• None indicates that neither the subject’s rights nor freedom were violated.
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