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Abstract—The traffic matrix of a network is useful in a
variety of applications: network planning and forecasting, traffic
engineering and anomaly detection. Much work has focused
on estimating traffic matrices, but methods are often tested on
limited data. There is then the possibility of unrepresentativeness
of the datasets, and the lack of generalizability of the subsequent
results. Synthesis can help alleviate this problem.

In this paper, we examine a fundamental question: what
constitutes a good class of statistical models for traffic matrix
synthesis? The results of our study is the definition of a set of
axioms specifying structure on traffic matrix models, including
the incorporation of organizational structure (hierarchies) in
network traffic. We introduce the Hierarchical Traffic Matrix
(HTM) which satisfies these requirements. We then study the hi-
erarchical structure of the GEANT network, a research network
based in Europe, to validate our ideas. Finally, we illustrate how
structure in traffic matrices can affect network topology design.

I. INTRODUCTION

The traffic matrix (TM), which describes the volume of
traffic between all pairs of nodes in a network, is an important
aspect of the network. TMs are used in several applications
such as forecasting future traffic for network planning [27]
and topology generation [6], and as a baseline for anomaly
detection [17,39].

Most of the literature has focused on estimations of TMs,
but data is limited. Most TM data from commercial networks
is proprietary: network operators are not keen to release such
data as they fear they may lose their competitive edge. Publicly
available data, on the other hand, generally derives from
research and education networks (RENs) such as Abilene [21]
or GÉANT [34], and may not be representative of commercial
networks. From a statistical viewpoint, however, even the
release of a single commercial operator’s TM data would not
quell the question of representativeness, and so the current
deficit is unlikely to be remedied in the foreseeable future.

Also, researchers require a large ensemble of TMs to test
new routing protocols or traffic engineering techniques. TM
synthesis models can generate large ensembles of TMs to help
with both problems.

In our previous work [33], we proposed that synthesis
models incorporate prior knowledge about TMs systematically
(e.g., the non-negativity of network traffic). Prior knowledge
can be viewed as constraints (assumptions), which can be
naturally incorporated into models using the the principle of
maximum entropy [13] (MaxEnt). These models have a very

important advantage: assumptions are laid out explicitly, and
therefore the model has no hidden assumptions.

There are some drawbacks, however. First, specifying con-
straints on TMs of a large network is onerous, and potentially
error-prone. For instance, the GÉANT network and its asso-
ciated national European REN partners have of the order of
thousands of routers, so specifying constraints for each end-
point is tedious. Second, publicly available GÉANT data pro-
vide TMs at the core-level Points-of-Presences (PoPs). Fine-
grained data at the end-points is not available, yet researchers
may need to generate TMs at this finer granularity.

Moreover, in general, there are several other unresolved
issues in TM modeling:

• A network is constantly evolving through the inclusion of
new nodes and links. It stands to reason that TM models of
the network should change as well, but how should this be
done consistently?
• If we only have highly aggregated views of the TM, what

can we do if we want to generate TMs at a finer level, such
as at the end-points? How can we “zoom” into a part, or
out to find a general trend?
• Content Distribution Networks (CDNs) distribute content

locally, resulting in traffic concentrated in local regions.
How can we include such locality properties?
• How can we incorporate a particular traffic structure of

data centers, as these networks have very different traffic
properties from traditional carrier networks?

In this paper, we tackle the problem at a foundational level.
Previous approaches, including our prior MaxEnt models,
relied on detailed knowledge gained, perhaps, from data. Here
we introduce new types of consistency constraints, which may
not necessarily come from data. To that end, we define a set
of axioms, properties large sets of TMs should obey without
reference to data. The goal is not to fully describe the TMs.
Instead, given there is potentially a large space of possibilities,
we want to define a few “rules” that encompass a large enough
set of important models, and are useful for generating practical
and controllable ensembles of synthetic TMs.

For instance, real networks define zones for security and
management purposes. Members within a zone are often
statistically homogenous, so the traffic they generate are
statistically similar. Furthermore, for instance, in the GÉANT
[34] network, PoPs are organized in levels, i.e., comprising a
hierarchy. Yet, there has been, as far as we are aware of, no



attempt to capture hierarchical structure in TM models, though
TMs has been analyzed in multiple resolutions before [36].

We introduce the Hierarchical Traffic Matrix (HTM) model,
which arises naturally under the set of TM axioms we pro-
pose. The HTM also incorporates knowledge about network
zones and hierarchy. This is an improvement over previous
models and definitions of the TM, including our previous
work. Allowing constraints to be specified in zones simplifies
the specification of the model, yet captures general trends
about the TM, and allows us to “zoom” into a part of the
network’s traffic to capture locality properties, thus resolving
the aforementioned issues.

Our contributions in this paper are the following:
• we lay the foundation of an axiomatic framework for TM
synthesis models,
• the HTM, which arises naturally from a set of axioms and
captures the interaction between the hierarchical structure
of a network and the TM, and
• an example of the model application on real-world TM
data from GÉANT.

We then apply the HTM to artificially generate network topol-
ogy and show how hierarchical structure in the TM is reflected
in the generated network topology. The generated topologies
form zones based on the HTM’s structure, in contrast to
previous works [6,33] that showed network topologies are
largely insensitive to the TM.

II. BACKGROUND AND RELATED WORK

A. Modeling traffic matrices
A general introduction to TM models can be found in

[32], but we summarise some of this literature here. Many
TM models have been proposed over the years [7,30,35].
Successive models [11,20,28,37,38] based on better assump-
tions of network traffic, resulted in better inference techniques.
However, most of the modelling has been aimed at inference
rather than synthesis.

Roughan [26] proposed using a random gravity model as a
spatial model for TM synthesis, and Oikonomou [23] noted
that it is a MaxEnt model for traffic under a certain set
of assumptions. In fact, if one examines the transportation
literature, that insight is even older [25]. This is a special case
of the framework presented here.

Our work differs from prior art in two ways. First, to the
best of our knowledge, there have been no attempts in past
works in formulating a set of axioms for TM statistical models.
We introduce novel consistency constraints that are useful in
developing synthesis models. We believe that an axiomatic
approach will further advance the state-of-art in modeling TMs
(and network traffic) by encouraging clear thinking about TMs.

Moreover, past models do not account for organizational
structure in the network as we do in the Hierarchical Traffic
Matrix in §IV. Hierarchical structures exist in real networks
[24] and we show this in an example of a real European
network (see § IV-B). Aggregating traffic from IP addresses
to subnets and to PoPs to form TMs at various levels of
coarseness have been discussed before and a taxonomy was
proposed [19], but this is different from incorporating hierar-
chical structure of the network topology itself into TMs.

Hierarchical models themselves have been studied in geo-
graphical modeling. In this context, multiscale spatial models
have proven useful [8,16]. Such models also appear in image
analysis [10]. However, spatial structure in these fields is
different from what we consider here, because geographic
locality has direct implications for the data. For instance,
in image analysis, we can consider an image as a matrix.
Each row has a strong spatial relationship with other rows, so
permuting an image row-wise will distort the original image.
In contrast, the labels of the rows of a TM are arbitrary so
permutation of rows is no less arbitrary.

The closest work to ours is a proposed framework for multi-
resolution analysis of TMs [36], but their work focuses on
analysis rather than modeling. To our knowledge, there have
been no attempts to apply hierarchical models to TMs, as we
do so here.

To develop useful statistical models from these ideas we use
the principle of maximum entropy, which we describe next.

B. The principle of maximum entropy

The application of parsimony to describe collected data
dates back to the late 18th century [29]. The principle of
insufficient reason often credited to Pierre Simon Laplace,
states that given an observation, one should remain undecided
about all the potential events explaining the observation so we
assign equal probability to potential events. Laplace and Jacob
Bernoulli considered the concept to be intuitively obvious,
seeing little need to formalize it.

It wasn’t until the concept of information entropy [9] was in-
troduced that significant progress was made. Shannon’s infor-
mation entropy is defined as H(X) = −

∑
x∈X p(x) log p(x),

where X is a discrete random variable taking values in set
X with probability mass function p(x), with the convention
0 log 0 = 0. Entropy measures the average uncertainty of a
random source.

The uniform distribution over X represents the least com-
mitted distribution in the absence of further data. The entropy
is maximized by this distribution, i.e., p(x) = 1/|X |,∀x.
Equal weights are assigned for all outcomes of X , consistent
with the intuitive notion of being least committed.

If new information, formulated as constraints, is available,
the principle of maximum entropy states that the best strategy
is to choose a distribution that maximizes entropy subject to
these constraints. Therefore, the solution is one that conforms
to known observations about the data and no more than that.

Jaynes [13] used the Shannon entropy to construct the
maximum entropy (MaxEnt) framework. Since we consider
continuous random variables as an approximation of the traffic
volumes, we use the differential entropy [9], denoted by

h(f) = −
∫ ∞
−∞
· · ·
∫ ∞
−∞

f(X) log f(X) dX (1)

for a random TM X distributed with density f(X). Let C ={
X | {φ`(X) = a`}L`=0

}
be a convex set of L+ 1 constraints

on X, with φ0(X) = 1 since f(X) is a density function. The
MaxEnt optimization problem is

max
f(X)

h(f) s.t. X � 0, X ∈ C, (2)



where X � 0 denotes non-negativity of X. The problem is
convex1 so any local maximum is the global maximum, the
solution being the maximum entropy model.

The optimal solution comes from the Boltzmann distribution
[13], generically given by

f(X) =
1

Z
exp

(
−

L∑
`=1

λ`φ`(X)

)
, X � 0, (3)

where {λ`}L`=1 are the Lagrange multipliers obtained via the
Calculus of Variations applied on (2), Z is the normalization
factor (note: the constraint φ0(X) is included via Z) and X is
the support of the distribution. There is only one Lagrange
multiplier per constraint. These distributions appear in our
models, with their form determined by the constraints, by (3).

MaxEnt was applied to TM synthesis modeling in [33].
In that work, various statistical constraints on traffic (spatial,
temporal and spatio-temporal) were considered, which resulted
in variants of the random gravity model [26], and several
other new models. However, no axioms for TM models were
proposed, nor was hierarchical structure included. In this
paper, we do both, and also incorporate MaxEnt with hierarchy
to develop new TM models.

III. AXIOMATIC FOUNDATION

A. The case for axioms
An axiom is often stated to be a premise so evident as to be

accepted as true without controversy. Axioms are the starting
point – the bedrock – on which foundations of a subject are
built. In mathematics, however, there is a subtle implication
that an axiom is considered “unprovable”. It is an assumption
made to start a chain of logic, but without incontrovertible
truth in itself.

The classical case is Euclidean geometry. For centuries,
mathematicians wrestled with the axioms of geometry, even-
tually realizing that they could be altered, leading to new and
interesting non-Euclidean geometries. So an axiom fulfils this
dual role of stating the properties that we believe true (without
proof), and partitioning an unruly space of possibilities into
meaningful classes for which we can prove useful properties.

With modeling, such mathematical niceties are often dis-
carded in favor of empirical data. In the era of “Big Data”,
statisticians and computer scientists have presumed that ax-
iomatic approaches to modeling might be ignored in favor of
“realistic” models, or even that modeling might be discarded
altogether in favor of machine learning and related techniques.

There are, however, many cases where data cannot ever
replace clear thinking, notably in the generation of synthetic
complex-structured data such as large structured matrices,
or graphs. The reason data cannot just fix our problem in
these cases is that when dealing with such problems we are
aiming to create an N2 dimensional dataset, with large N ,
and inhomogeneous structure. Real measurements of the world
contain at most a few samples of such. For instance, we have
only one Internet, i.e., one sample of such a network. We
could view multiple snapshots of this network, but they are
not independent samples.

1Strongly convex under linear constraints.

We therefore want to describe some objects in N2 space, but
have K � N2 samples. Statistically, we cannot hope to derive
a sensible model. The solution most commonly applied is to
assume that the object in question actually has homogeneous
structure (i.e., repeats in some way). We then look at statistical
properties of this structure: for instance, in graphs, we look
at properties of node degree, centrality, or clustering, and we
effectively project this very high-dimensional object into a few
dimensions. Generally, at most two dozen such graph charac-
teristics are considered. By assuming independence between
sub-components, and homogeneity across them, we can reuse
the sub-components of the graph to obtain statistical charac-
terizations. For example, if all nodes are assumed alike and
independent instances of a generic “node”, we can use each
node to provide one sample of the node-degree distribution.

However, the data we observe isn’t homogeneous. Real
networks can have subnetworks that are both dependent and
different! Statistical summaries based on the homogeneity
assumption may appear to support the assumption of homo-
geneity though, making it appear that simple random graphs
are a viable model. But this is hidden in complex matrix and
graph analysis – our goal here is to make such assumptions
completely explicit.

When using such data we are often trying to answer some
questions about the effect of some set of properties as they
vary, but we only have a few datasets, and these don’t exhibit
the range of properties we care about. So we need to account
for cases outside of the range of the available data, but do
so in a constrained manner, otherwise the space to explore
is too large. Moreover, we should generate multiple (non-
isomorphic) instances in order to provide statistical analysis
of results. Sometimes we need to generate a large number.

The result is that data, while helpful, cannot solve the prob-
lems of modeling of large, complicated matrices or graphs.

Instead, we go back to basics. We consider an axiomatic
framework for TMs. Remember though, that while we will
choose axioms based on their “self-evident” truth, we consider
these as features that we can incorporate, or not, to constrain
the exploration of the modeling space, not as “facts.”

B. TM definition

We first define an abstraction of TMs. Let Ω be a non-empty
set of nodes of a network (graph), with |Ω| = N . Nodes may
be physical or logical, where the former is tied to geographic
location, while the latter is related to the Internet’s address
structure, such as the IP address space. However, here we
arbitrarily label each node by a unique integer k = 1, 2, · · · , N
to emphasize that spatial relationships play less part here. For
instance, typically, there is little similarity between traffic from
adjacent IP addresses.

Traffic matrices evolve over time, but here we shall examine
purely spatial TMs (for a discussion of spatiotemporal TMs,
see [33], from which it should be clear that many of the ideas
presented here generalise).

Let X be the TM. We adopt the convention where each row
i of X denotes the outgoing traffic from the source, i, to each
j, while each column j denotes the incoming traffic from all i
into a node, the destination, j, so the TM entry Xi,j describes



the volume of traffic from i to j (measured in bytes or packets
per time interval) for all pairs (i, j) ∈ Ω× Ω.

C. The class of models and axioms

A class C of statistical TM models is defined as an ensemble
of matrices X satisfying at least one constraint and which
is equipped with a probability measure µ(·). A probability
measure, informally, assigns a value between 0 and 1 to the set
of events in a probability space. We could be more formal in
our definitions by bringing in the machinery of measure theory
[5], however, we favor a lightweight approach to motivate this
work, as deeper theory is not fundamental to our arguments
and would detract from the main points.

Information about the ensemble to be simulated will be
incorporated in the form of constraints. There are three types
of constraints: deterministic, or hard constraints on allow-
able matrices, probabilistic, soft constraints on the measure
that specifies the probability of matrices, and consistency
constraints that incorporate properties of the ensemble under
transformations. The former two were included in past work,
the latter is new here, but we describe each in detail below.

Deterministic constraints. Deterministic constraints are hard
constraints because they restrict the space of TMs. Determin-
istic constraints can be equality or inequality constraints. For
example, we usually require TM entries to be non-negative,
since they represent traffic. An example of an equality con-
straint is fixing the total traffic of a TM via

∑
i,j Xi,j = T ,

so all TMs in an ensemble have their total traffic equal to T ,
as used in oblivious routing design [3,40].

A more subtle example is that some existing definitions of
TMs do not allow self-traffic, i.e., there are zeroes on the
diagonal. This would, however, depend on the definition of
the node. For instance, with IP address-to-IP address TMs,
self-traffic should be zero, but a PoP-to-PoP TM can have
self-traffic that describes the internal traffic within a PoP. If
self-traffic is not allowed, then we require Xi,i = 0 for all i.

Note that deterministic constraints may not just be linear
constraints, though typical TM models include only such.

Let the region of admissible TMs constrained by the de-
terministic constraints be denoted as X . We assume that the
constraints result in a set of matrices that is non-empty, is not
a singleton and whose elements are not all isomorphic under
permutation2. We still require a way to synthesize TMs from
X , and this requires that we impose a probability measure,
which we describe next.

Probabilistic constraints. We could specify the probabilistic
measure on our ensemble explicitly, but we rarely have enough
information to do so. Instead, we have some constraints on
the measure. To avoid technical issues, we assume that the
constraints result in a non-empty set of positive measure.

Let Eµ be the expectation operator with respect to measure
µ(·). Constraints, for instance, could be

Eµ[AX] = B, (4)

2The arbitrary nature of the indices means that matrix and its permutations
are equivalent for our purposes.

i.e., the set of linear constraints on the expected values of the
components of the members of the ensemble of TMs. As an
example, the random gravity model class [26] is defined as
the class of matrices

X = UVT/T, (5)

where U and V are both random vectors such that

Eµ[Ui] = ri, Eµ[Vj ] = cj ,

and ri, cj are the mean row i and column j sum constraints,
i.e., the average sum of the entries of the rows and columns,
respectively, and T is the mean total traffic constraint on
the TMs. The measure on these spaces can be specified
indirectly, for instance in [26], the class above was given
a measure implicitly via the random gravity model, or the
MaxEnt measure which we will apply in the next section.

Consistency. There are certain facts: for instance, if we take
a IP-address-level TM, and add the traffic from IP addresses
within given prefixes and form a matrix of these, the result will
still be a traffic matrix, albeit at a different level of aggregation.
We might therefore expect that the new aggregated ensemble
preserve some properties of its more fine-grained parent.

Consistency conditions generalise this idea — after some
transformation, we expect that the matrix will have some of the
same properties. We express this by requiring that some set of
deterministic or probabilistic constraints retain their functional
form after a transform on the TM.

Suppose we start with an ensemble X of TMs with a set
of constraints, such as (4), on the measure µ(·). Let there be
a mapping φ : X → Y , i.e., from the class C = (X , µ) to
C′ = (Y, µ′) such that a measure exists and satisfies

µ′(y) =

∫
X
µ(x)1[φ(x) = y], (6)

where 1[·] is an indicator function. In non-measure theoretic
terms, (6) is simply a statement about the marginal distribution

Pr(Y = y) =

∫
φ−1(y)

Pr(φ(X) = y |X = x) dx, (7)

where φ−1 is the inverse map of the transform φ.
Now, we want to ensure that constraints on any TM statis-

tical model are still consistent after transformation of the TM
via a mapping φ. As an example, suppose we have a constraint,
for all i, j,

Eµ
[∑
i,j

Xi,j

]
= T, (8)

that is, the expected total traffic in the TM.
Take a partition S1, S2, · · · , SK , i.e., disjoint subsets such

that their union is Ω. An important transform is the aggrega-
tion transform: φ(X) takes X and results in Y with

Yi,j =
∑
k∈Si

∑
`∈Sj

Xk,`. (9)

Under the transform φ, (8) remains consistent since

Eµ′
[∑
i,j

Yi,j

]
= T, (10)



remains true, and therefore the measure µ′(·) is consistent
under aggregation, with respect to constraint (8).

Similar to the aggregation transform we can define a sub-
sampling transform: partition Ω into two subsets, S and Ω\S,
and restrict our attention to the entries of members in Ω\S,
i.e., form Yi,j = Xi,j for i, j ∈ S. This allows us to “zoom
in” on a submatrix of the TM, but the constraint (10) is only
consistent under the subsampling transform if we restrict the
probability of certain matrices.

On the other hand, a measure cannot be consistent under
aggregation with respect to the constraint

Eµ[Xi,j ] = 1, (11)

because under transform (9), using the same functional form
as (11) would form the new constraint

Eµ′ [Yi,j ] = 1, (12)

but, due to the linearity of expectation, Eµ′ [Yi,j ] = |Si||Sj |,
i.e., a different functional form from (11).

The random gravity model (5) is an example of a generative
model that is consistent under the aggregation transform, since
the row, column and total traffic sum constraints still hold
after a change of measure. It is, however, not consistent
with a no self-traffic constraint under this transform, i.e., the
diagonals Xi,i = 0. For instance, after aggregating entries in
the Origin-Destination TM, where the labels are IP addresses,
the resulting Ingress-Egress TM does satisfy the no self-traffic
constraint, because there may be traffic between IP addresses
in a PoP. An illustrative example of this is found in [32].

So, consistency under constraints means that the model
specified in class C can be transformed without changing these
constraints in class C′, though the actual values could change.

TMs are transformed in different ways for analysis or for
storage. We have seen that one such operation is the aggre-
gation operation, where sub-matrices of the TM are summed
together to form a lower-dimensional TM with N ′ < N rows
and columns. Often, there is an interest in different levels of
aggregation. For instance, planning a network requires coarser
partitions of traffic, say at the PoP-level, while finer levels
at the IP level are needed for anomaly detection. When we
specify constraints at a finer level, we want the constraints to
carry over after aggregation, and we expect constraints defined
on the TM model to be consistent in this sense.

Clearly, not all constraints will be consistent under a trans-
form. Likewise, given a constraint, there may be a limited set
of consistent transforms. The key point, however, is that we
want consistency of the constraints to apply to transforms that
we deem important, such as the aggregation transform.

We require another condition. A TM model has consistency
of measure, if after a transform ψ : X → Y , the measure
remains unchanged i.e., µ′(Y) = µ(X). What this means
is that changes to the TM should not affect the underlying
probability density.

One example is the measure consistency under the per-
mutation transform, where, when the rows or columns of a
TM ensemble are permuted, the model’s probability density
remains unchanged. However, one cannot simply permute any
row or any column in a TM. For example, permuting rows in a
PoP-level TM is valid, but swapping a member in PoP A with

another in PoP B fundamentally changes the structure of the
PoP-level TM. In the latter case, the TM model has changed.
Thus, we need a constrained definition of permutation.

Suppose there are L levels of aggregation, 1 being the
coarsest, say at the PoP-level, and L the finest, say the IP
address level. Let S1,`, S2,`, · · · , SK,` be disjoint subsets of
Ω such that their union is Ω at level 1 ≤ ` ≤ L. Let XSi,`,Si,`

be the submatrix of a TM X of nodes in Si,`. Also, let P
denote a permutation matrix (note: the identity matrix is also
a permutation matrix). Then, the class C has consistency of
measure under permutation if

µ′(PXSi,`,Si,`
PT) = µ(X),

µ′(PXSi,k,Sj,`
PT) 6= µ(X), for i 6= j, or k 6= `.

That is, we require measure consistency when permuting
within a group at some level of aggregation, but not when per-
muting between groupings. For example, routers are assumed
to be exchangeable within a PoP, but not between PoPs (within
the model). So measure consistency applies only to members
of the subset at a level, but not members in different subsets
or different levels.

In summary, we require models to obey deterministic and
probabilistic constraints, as explained in [33] do too. What’s
new is our requirement of model consistency:

To reiterate, given a transform φ : X → Y , which implies
a measure µ′(Y), we can define:

Axiom 1 (Consistency under constraints): A model is con-
sistent under transform φ with respect to its constraints, if its
set of deterministic and probabilistic constraints in the new
class (Y, µ′) take the same form.

Axiom 2 (Consistency of measure): A model has consis-
tency of measure under transform φ if µ′(Y) = µ(X).

D. Discussion
There is a limit to any axioms and constraints. They may

apply in one setting but not another.
For instance, we could propose a “scaling” transform, where

a TM is multiplied by a scalar. In many settings this should
result in consistent constraints, however, that presumes that
there are no capacity constraints imposed by the network. If
not, congestion could alter the carried load (carried load is the
usual observable when dealing with traffic matrices).

It is important to choose appropriate axioms/constraints for
the setting of interest.

IV. HIERARCHY AND MODELS

A. Hierarchical Traffic Matrices
Network nodes, for instance, hosts and routers, are often

grouped by location (physical PoPs), or logical groupings
(by function, purpose or access type) [24]. We refer to such
groupings in general as zones. Network zoning, or network
segmentation and segregation, is considered a best practice in
network management because it simplifies network manage-
ment and improves security [2].

For larger networks, there might be multiple levels of group-
ing. For instance GÉANT connects many smaller European
national RENs, each independently managed, and each with



its own internal structure, e.g., PoPs, OSPF areas and so on.
In this section we consider natural models that arise in the
presence of such hierarchy.

1

2

ZONE A ZONE B ZONE C

Fig. 1: Example of zoning in a network. Here, the network is
divided into three zones: A, B and C. Zone A has two nodes
labeled 1 and 2.

It is natural to model members within a zone as possessing
similar characteristics. This suggests a TM model defined in
terms of a hierarchy: the coarse level covers the network zones,
with members within the zones forming the finer level.

The HTM seeks to incorporate the information we may
have about the traffic properties of each zone. Conceptually
the idea is simple: traffic parameters describe the traffic per
zone, with the idea that the nodes within a zone are statistically
homogenous. If there is a set of nodes which are not, then these
nodes can be separately grouped into their own zone.

Figure 1 presents an example of a network divided into three
zones. The HTM is

X =

XA,A XA,B XA,C

XB,A XB,B XB,C

XC,A XC,B XC,C

 .
Each sub-matrix Xi,j describes the traffic traversing from
Zone i to Zone j. Here, the diagonals describe the traffic
within zones, while the off-diagonal elements describes traffic
between zones. Within each zone, we can specify the sub-
matrix, for instance, in Zone A,

XA,A =

[
XA,A

1,1 XA,A
1,2

XA,A
2,1 XA,A

2,2

]
.

The hierarchy naturally lends itself to aggregation and permu-
tation consistency requirements. However, here, we still need
to develop statistical models that (i) have this property, and
(ii) come with a practical synthesis algorithm.

B. Example hierarchy in real networks
Before moving on to the models, we study an example

of hierarchical structure on actual networks. We look at the
GÉANT network, a REN, based in Europe. We chose GÉANT
because it is a well-documented network [12,22,34].

Figure 2 presents the geographic and logical structure of
GÉANT (2010). Notably, in the logical view, we see groups
of geographically related networks that link both through
GÉANT, and directly. For instance SANET, ACOnet, CES-
NET and PSNC (Austria, Czech Republic, Poland and Slo-
vakia), connect directly, and NORDUnet connects a sub-group
of national RENs in Scandinavian countries (denoted IS, NO,
SE and FI in the northern region of the geographical layout).

In previous work [1], it was shown that a direct applica-
tion of a gravity model to GÉANT TM data [34] without
accounting for the structure of NORDUnet resulted in a
poor fit. GÉANT TM data only provides the traffic between
directly connected RENs, so the traffic between members of
NORDUnet is not available. The gravity model was modified
to account for NORDUnet members by assuming that each
member is statistically homogenous. Once the group informa-
tion from NORDUnet’s members was included, the modified
gravity model fits the data extremely well [1, Figure 4, p. 13].

Thus a TM synthesis model in this context should (i) take
into account the nature and structure of the hierarchy, (ii) be
able to exploit the available information at the level given.

C. MaxEnt Hierarchical models
We now apply MaxEnt to the problem. The beauty of

MaxEnt is that, without additional knowledge on the members
within a zone, they will automatically be statistically homo-
geneous (satisfying our requirements) but if more detailed
information is available it can be incorporated. We use here
constraints based on the type of data that has typically been
available (in much of the literature), and we present two
models: the hierarchical gravity model and the intra- and inter-
zone (IIZ) model.

Hierarchical gravity model. Suppose a network has M zones.
There are three basic probabilistic constraints for the model:
• fixed mean incoming (ingress) traffic per zone, c;
• fixed mean outgoing (egress) traffic per zone, r; and
• fixed mean overall total traffic, T (which is implicitly

determined by the previous two constraints, but which we
add here for clarity).

We can increase control by specifying the variance parameters
of above quantities, essentially adding another three proba-
bilistic constraints.

Suppose Zone A and Zone B have N members each. The
traffic generated by a member within the group then is a simple
scaling of the traffic of the zone. If traffic constraints between
zone A and B are given by rA and cB , and there are N nodes
within the zone, then entries within the zone have the form

XA,B = T Ū V̄
T (13)

where now Ū and V̄ are IID random vectors where entries
come from the exponential distribution with mean rA/(NT )
and cB/(NT ). Members within a zone are statistically homo-
geneous by MaxEnt. This form is similar to the random gravity
model [26,33], but with a scaling factor 1/N2 for each entry.

Intra- and inter-zone (IIZ) model. Additional knowledge
can be obtained by measuring the traffic between zones. For
instance, consider the GÉANT TM data which provides a TM
over the top-level of GÉANT but no visibility into distribution
of traffic within NORDUnet. The constraints are specified in
terms of the average total traffic within and between the zones,
and represented in a matrix T, e.g.,

T =

TA,A TA,B TA,C
TB,A TB,B TB,C
TC,A TC,B TC,C

 . (14)



Fig. 2: The GÉANT network topology (as of 2010). Left: Geographical layout, Right: Logical topology.

MaxEnt again treats each node within a zone as independent
and homogenous, but with constraint on the sums over the
groups of nodes given by the elements of T. Hence (again
assuming constraints on means but not variances) the elements
Xi,j will be independent exponential random variables with
mean given by TSi,Sj/|Si||Sj | where i ∈ Si and j ∈ Sj .

The IIZ model is more refined than the hierarchical gravity
model, since its constraints are more detailed than the latter
model.

In either model, adding a variance constraint changes the
exponential distributions used into truncated normal distribu-
tions [33].

A major advantage of HTMs in synthesis as compared to
other TM models is that, rather than specify parameters for
each node in the network, parameters for the zones need
only be specified. This could allow the model to be matched
to a setting such as GÉANT where only limited data is
available, or aid in model specification. For instance, in data
center networks, hosts and routers number in the hundreds of
thousands. Trying to specify parameters for all these nodes
would be an ardous and error-prone task. Thankfully, data
center TMs are known to have strong locality effects [4,14].

D. Relation to the axioms

Here, we show that the HTM naturally arises under the
simple set of axioms and constraints outlined in §III.

Formally we defined the hierarchy by a set of nested
partitions of the set of nodes Ω [16]. Take a collection of
subsets Si,j ⊂ Ω, i = 1, 2, · · · ,K, and level 1 ≤ j ≤ ` that
satisfy

• for each level j, the collection {Si,j}
Nj

i=1 must form a
proper partition of Ω, and
• each subset Si,j can be expressed as the union of a
unique set of elements in the partition at level j, i.e.,
Si,` = ∪i′∈child(i)Si′,`+1, where child(i) is the collection
of indices of the children of Si,`.

Here j = L is the finest, and j = 1 the coarsest level of
aggregation.

HTMs are consistent under aggregation with respect to non-
negativity as a direct result of summation.

HTMs are consistent under aggregation with respect to row-
and column-sum constraints in the aggregation transform (9).
Linearity of expectations requires this.

However, constraints such as the no self-traffic constraint
i.e., the diagonal entries are zero, might hold at the finest
level, but not at the coarser levels, and so the model is not
consistent under aggregation with respect to this constraint –
but we did not require it to be.

HTMs have consistency of measure under permutation be-
tween zones, or members within a zone, but this consistency
does not apply between members of different zones. For
instance, permutation is not admissible for a scenario involving
swapping the labels between router 1 in zone A and router 1
in zone B, since these two routers are homogeneous entities
only within their zone.

By imposing the MaxEnt measure on our models, the
MaxEnt HTM models satisfy another axiom:

Axiom 3 (Subset independence): Let S1, · · · , SK be dis-
joint subsets of Ω whose union is Ω. Constraints on Si are
independent of other subsets Sj , j 6= i.

While more restrictive than the other axioms, there are
advantages to subset independence. First, independent sub-
sets can be generated separately, allowing parallelization for
fast generation. Second, the MaxEnt HTM models allow a
researcher to focus on one submatrix of the TM if need be, so
there is greater control over the generation of the ensembles,
such as adding locality constraints for CDN TMs. It is also
very useful for testing and tuning of applications that require
TMs.

V. EXAMPLE

In this section, we study how hierarchy in TMs affects the
design of a PoP-level network topology by applying the HTM
to generate such topologies.

Real-world PoP-level topologies are determined by factors
such as demographic and geographical constraints, traffic
demand, the designer’s experience, and financial costs [18].
The Internet Topology Zoo [15] demonstrates that real designs
are variable, with some as simple as a hub-and-spoke networks
to more complex designs.

If we are to create synthetic topologies then we must have
input TMs to the generation process as in [6,33]. Surprisingly,



[6,33] found that the resulting designs were largely insensitive
to the statistical properties of these TMs. In these works,
however, hierarchy in the TM was not included and the
topology of the network was primarily determined by the
peak TMs, i.e., the TMs with the largest amount of total
traffic. We here show that introducing hierarchy can change the
network topology; in particular, there is an observable effect
of clustering of nodes into zones (see below). Through in this
example we show how TMs impact the topology design.

We note that the relationship between TMs and topology is
not strictly one-way. Network topology also affects traffic, so
it is important to understand the topology of the network to
understand the TMs that arise. In fact, it is likely that both
the network topology and the TM co-evolve over time. As
the network gets larger it can cope with more demand, and
the TM properties change, for instance, due to hierarchical
structure changes. Conversely, the resulting changes in TM
properties, driven by new demand, necessitate upgrades in the
network topology.

We discuss how to generate the topologies and how a
hierarchical structure in TMs is reflected in the topological
structure of a network next.

A. Simulation setup

The topologies we generate have N = 20 nodes. Nodes are
placed on a 20 by 20 unit square. The plane is divided into 4
quadrants, to simulate the zones, with the zones containing 5,
6, 5 and 4 nodes. Nodes in each quadrant are placed randomly
around the center of the quadrant. We will vary the distance
of the nodes from the centers of each zone by controlling a
parameter λ, where by increasing λ, the average distance from
the center increases. We performed similar experiments with
other setups, and similar results, so we report the simplest case
here for clarity.

Topology design involves tradeoffs between different costs.
Here we use COLD [6] to model and solve the resulting
combinatorial optimisation problem. COLD applies a genetic
algorithm as a heuristic to solve for the topology with the
minimum cost, based on a function with four cost parameters:
• k0: the cost for the existence of a link,
• k1: the cost for the physical length of a link,
• k2: the the bandwidth cost over the length of the link,
factoring in operating expenses, initial expenditures on
equipment etc., and
• k3: a complexity cost of a PoP with more than one link,
called a non-leaf or core PoP.
The two costs of primary interest here are costs k2 and k3.

The idea here is to set the cost of a hub high i.e., k3 is large,
so the nodes are less likely to connect if there is little traffic
between them. In this way, a hierarchical structure in the traffic
will be expressed in the topology. In our experiment, we set
the costs to be (k0, k1, k2, k3) = (1, 20, 10, 1000). Note that
the scales here are different, so k3 is not 50 times larger than
k2; each cost is different and not trivially comparable.

For hierarchy, we use the IIZ model from § IV-C. We
presume we do not possess refined knowledge of traffic of the
PoPs in each zone, and so each PoP within a zone is treated as

statistically homogenous. We will compare this model against
a random gravity model (5) [33], where hierarchy is absent.
COLD’s parameters are the same for both models.

For fair comparison, both models are scaled to have the
same row, column sum and total traffic constraints, so that
the random gravity model acting as a control to compare the
effect of hierarchy. We also include a parameter σ2 to control
the traffic variation, so the entries of the TMs of both models
are distributed according to the truncated normal distribution
[33].

We need a metric to measure the differences in the topology
between the two models. We use a simple clustering metric:
the ratio of the number of outgoing links from a zone (inter-
zone) to the number of links contained within a zone (intra-
zone). We expect topologies with hierarchical structure to rate
low on the metric, since there should be more intra-zone
connections than inter-zone connections.

B. Results

As a concrete example, Figure 3 presents two topologies
generated by COLD: one generated with the HTM and another
with a random gravity model. Figure 3(b) shows that the HTM
induces 4 distinct clusters around the corners of the plane,
while Figure 3(a) has a meshier topology. We see that the
clusters are formed due to higher intra-zone traffic compared
to inter-zone traffic in the IIZ model. In contrast, since all
nodes are statistically homogeneous in Figure 3(a), there is no
such concentration of traffic in any one cluster.

We then investigate what happens when one changes the
ratio of traffic in- and between zones in the IIZ model. To
that end, we defined a new parameter 0 ≤ γ ≤ 1 such that the
total traffic for each zone i = 1, 2, · · · ,M (i.e., the rows of
(14)) obeys

ri = γTi,i + (1− γ)
∑
j 6=i

Ti,j . (15)

The extremes, γ = 0 and 1, imply that the TM has zero intra-
and inter-zone traffic respectively. Intuitively, we expect the
clustering ratio of the HTM to be smaller than the random
gravity model as γ → 1, when inter-zone traffic is low. Indeed,
this intuition is correct.

We generated 100 topologies (trials) with the parameter sets
λ = 1 and σ2 = {10, 100}. As a preliminary result, Figure 4
presents the boxplots of clustering coefficients for σ2

s = 1 and
σ2 = 10 with γ = 0.6. For each trial, the node locations
remain the same but the input TMs differ between plots (a)
and (b). The clustering coefficients are measured per zone,
and in plots (b), though technically there are no zones here, for
comparison the exact same nodes are grouped into zones as per
the case in (a). It is clear that even with different parameters,
the clustering coefficients for topologies generated with the
HTM is smaller than that of the random gravity model for
every zone.

We next vary γ. Figure 5 presents the average clustering
ratio for the 4 zones with λ = 1 and σ2 = 10 respectively.
The vertical lines represent the 95% confidence interval. As γ
increases, we see that the clustering metric for HTM decreases,
especially once γ ≥ 0.5. In comparison, the average clustering
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Fig. 3: Examples of generated topologies with the random gravity model and the IIZ model on the same set of PoPs. The PoP
locations were randomly generated on a 20 by 20 unit square in quadrants. In (a), when no hierarchical structure is present,
the topology becomes mesh-like with no clear groups. In contrast, in (b), we can see 4 groups of PoPs at the 4 corners of the
plane, due to the strong hierarchical structure present in the HTM.
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Fig. 4: Boxplots of the clustering metric for each zone for the 100 topologies generated with (a) no hierarchy, (b) hierarchy.
Here, λ = 1 and σ2 = 10. The notch represents the mean, the edges of the box are the 25th and 75th percentile, while the
whiskers extend to the most extreme outliers. We can see that there is tighter clustering with the IIZ model as input into COLD.

ratio for the random gravity model is {1.62, 1.28, 1.68, 2.04},
so there is a significant decrease after γ ≥ 0.5. Tests with σ2 =
100, i.e., larger TM entry variation, showed similar results.

Though the results are not presented here because of space
constraints, we tested COLD with other zone parameters, for
instance, with 8, 2, 3, and 7 nodes in the 4 zones to test the
effect of smaller zones, the results are largely the same, with
slightly larger confidence intervals due to the fact that some
zones are now larger, and therefore has larger variations in
traffic. We performed experiments where we increased both
the number of nodes and zones, and the results are similar to
the results discussed here.

The key point of our example is that TMs themselves, con-
trary to results in previous work [6,33], do affect the topology
design, especially when designing a network from the ground
up. The results suggest that the two conditions influence the
appearance of such topologies are (1) a relatively high cost of
building a PoP with several links, and (2) hierarchical structure

of traffic in the TM, i.e., higher intra-zone traffic than inter-
zone traffic. However, though here we see a direct effect from
HTMs on the topology, we stress that this relationship goes
both ways: traffic is affected by topology, and in turn, when
traffic demand grows, the network topology has to change to
cope with a changing traffic load.

Our work can be applied to GÉANT, where its topology is
found in the Internet Topology Zoo [15]. Code for the HTM
models can be obtained from [31].

VI. CONCLUSION

In this paper, we proposed a set of axioms for TM synthesis
models, with the goal of defining a useful class of TM models.
Our contributions are two new model consistency axioms. We
also propose the HTM, which incorporates the hierarchical
structure of the network into the TM. We show that the HTM is
the model that arises naturally from our simple set of axioms,
and when combined with the principle of maximum entropy,
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Fig. 5: The clustering metric for each zone for the 100
topologies generated with varying γ from 0.1 to 1.0, for
λ = 10. The vertical lines represent the 95% confidence
interval. As γ increases, we see that the clustering metric for
the HTMs decreases. In comparison, the average clustering
ratio for the random gravity model is {1.62, 1.28, 1.68, 2.04}
for the 4 zones, showing a marked decrease in the clustering
metric once γ ≥ 0.5.

results in a class of models that are useful in practice. The
HTM was used as input into an application on PoP-level
topology design to demonstrate that hierarchical structure in
the TM can affect the network design by generating clusters
or zones. Future work will focus on advancing the axiomatic
framework of TM models, with the eventual goal of laying a
strong foundation for future TM models.
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