
TCP
Matthew Roughan

AT&T Labs - Research
roughan@research.att.com

Ashok Erramilli
Qnetworx

Erramilli@qnetworx.com

Darryl Veitch
EMUlab – Ericsson and the University of Melbourne

d.veitch@ee.mu.oz.au

Copyright, 1996 © Dale Carnegie & Associates,
I

Outline

�TCP flow control
�Persistent source models

�Square root p law
�Fixed points

�Short-lived sources

Why Flow Control?

�October 1986, Internet had its first
congestion collapse

�Link LBL to UC Berkeley
�400 yards, 3 hops, 32 Kbps
�throughput dropped to 40 bps
�factor of ~1000 drop!

�1988, Van Jacobson proposed TCP flow
control

Congestion Control

�TCP seeks to
�Achieve high utilization
�Avoid congestion
�Share bandwidth

�Window flow control
�Source rate = packets/sec

�Adapt W to network (and conditions)
W = BW x RTT

RTT
W

Network Flow Control

�Source calculates cwnd from indication
of network congestion

�Congestion indications
�Losses
�Delay
�Marks

�Algorithms to calculate cwnd
�Tahoe, Reno, Vegas, RED, REM …

TCP Congestion Control

�Has four main parts
�Slow Start (SS)
�Congestion Avoidance (CA)
�Fast Retransmit
�Fast Recovery

�ssthresh: slow start threshold
determines whether to use SS or CA

�Assume packet losses are caused by
congestion

Tahoe
Reno

Slow Start

�Start with cwnd = 1 (slow start)
�On each successful ACK increment cwnd

cwnd ← cnwd + 1
�Exponential growth of cwnd

each RTT: cwnd ← 2 x cwnd
�Enter CA when cwnd >= ssthresh

Slow Start

data
packet
ACK

receiversender

1 RTT

cwnd
1

2

3
4

5
6
7
8

cwnd ← cwnd + 1 (for each ACK)

Congestion Avoidance

�Starts when cwnd ≥ ssthresh
�On each successful ACK:

cwnd ← cwnd + 1/cwnd
�Linear growth of cwnd

each RTT: cwnd ← cwnd + 1

Congestion Avoidance

cwnd
1

2

2.5

3.8

data
packet
ACK

2.9

3.2
3.6

cwnd ← cwnd + 1/cwnd (for each ACK)

receiversender

1 RTT

Packet Loss

�Assumption: loss indicates congestion
�Packet loss detected by

�Retransmission TimeOuts (RTO timer)
�Duplicate ACKs (at least 3)

1 2 3 4 5 6

1 2 3

Packets

Acknowledgements

3 3

7

3

Timeout

ssthresh ← cwnd/2

cwnd = 1

Fast Retransmit

�Wait for a timeout is quite long
�Immediately retransmits after 3 dupACKs

without waiting for timeout
�Adjusts ssthresh

flightsize = min(awnd, cwnd)
ssthresh ← max(flightsize/2, 2)

�Enter Slow Start (cwnd = 1)

Successive Timeouts
� When there is a timeout, double the RTO
� Keep doing so for each lost retransmission

� Exponential back-off
� Max 64 seconds1

� Max 12 restransmits1

1 - Net/3 BSD

Fast recovery
� Motivation: prevent `pipe’ from emptying

after fast retransmit
� Idea: each dupACK represents a packet having

left the pipe (successfully received)
� Enter FR/FR after 3 dupACKs

�Set ssthresh ← max(flightsize/2, 2)
� Retransmit lost packet
�Set cwnd ← ssthresh + ndup (window inflation)
�Wait till W=min(awnd, cwnd) is large enough;

transmit new packet(s)
�On non-dup ACK (1 RTT later), set cwnd ← ssthresh

(window deflation)
� Enter CA

TCP Reno

CASS

Fast retransmission/fast recovery

RTO Calculation

�An accurate RTT measure is required to
judge timeouts

�We can measure RTT by measuring the
time to receive a packets ACK

�Use a smoothed RTT, SRTT and the
smoothed mean deviation DRTT

RTO = SRTT + 4 DRTT
�Initial RTT should be > 3 seconds

�Avoid spurious retransmission

Round Trip Time Estimation
� RTT is not known

� From <1 ms up to >1 second
� Need to know RTT to calculate RTO
� The measurement of RTT

SRTT = SRTT + g (MRTT-SRTT)
DRTT = DRTT + h (|MRTT-SRTT| - DRTT)

� Need to minimize processing requirements
�Only 1 counter (regardless of how many packets are

extant)
� Counter granularity is typically 500 ms

� Measurement equations have gain

Law p1

� Equilibrium window size

� Equilibrium rate

� Empirically constant a ~ 1
� Verified extensively through simulations and

on Internet
� References

�T.J.Ott, J.H.B. Kemperman and M.Mathis (1996)
�M.Mathis, J.Semke, J.Mahdavi, T.Ott (1997)
�T.V.Lakshman and U.Mahdow (1997)
�J.Padhye, V.Firoin, D.Towsley, J.Kurose (1998)
�J.Padhye, V.Firoin, D.Towsley (1999)

x
p

aws =

pD
a

s

s =

Implications
� Applicability

�Additive increase multiplicative decrease (Reno)
� Congestion avoidance dominates
�No timeouts, e.g., SACK+RH
�Small losses
� Persistent, greedy sources
� Receiver not bottleneck

� Implications
� Reno equalizes window
� Reno discriminates against long connections

Derivation (I)
window

Area = 2w2/3

t

2w/3

w = (4w/3+2w/3)/2

4w/3

2w/3

� Each cycle delivers 2w2/3 packets
� Assume: each cycle delivers 1/p packets

�Delivers 1/p packets followed by a drop
� Loss probability = p/(1+p) ~ p if p is small.

� Hence pw 2/3=

Derivation (II)

� Assume: loss occurs as Bernoulli process rate
p

� Assume: spend most time in CA
� Assume: p is small
� wn is the window size after nth RTT

−+
=+))1((prob.lost ispacket no if,1

) (prob.lost ispacket a if,2/
1

nn

nn
n pww

pww
w

pw
pw

wpwwpww

2
2

)1)(1(
2

2

≈
≈

−++=

Refinement (Padhye, Firoin, Towsley & Kurose 1998)

� Renewal model including
� FR/FR with Delayed ACKs (b packets per ACK)
�Timeouts
� Receiver awnd limitation

� Source rate

� When p is small and Wr is large, reduces to

pD
ax

s

s =

+

+

=
)321(

8
33,1min

3
2

1 ,min
2ppbpTbpD

D
Wx

os
s

r
s

Calculating Performance

�Single link, capacity C, buffer B
�Window size: w = f(p)
�Loss rate: p = g(w; C,B)
�Find w*: w* = f(g(w*; C,B))

�Example:
�Window size:
�Loss rate approx.

pw 1=

2
42

* ++= CCw

[]
w
Cwp

+−=

Fixed Point Models
� Mean field theory

�Solve for a particular source given the mean field
�Use single source to approximate the mean field

� Generalize previous example
�Multiple sources
�Network

� various routes, RTTs, capacities, …
�Arbitrary functions f, and g

� Solve using
� Repeated substitution
�Newton-Raphson

Network Formulation
� N links, R routes
� Capacity c = {cj} j=1,..,N
� Propagation time t = {tj} j=1,..,N
� Routing matrix A = {aij} j=1,..,N, i=1,..,R

aij = 1, if link j is in route i
aij = 0, if link j isn’t in route j

� Sources per route n = {ni} i=1,..,R
� MSS per route m = {mj} i=1,..,R
� Route send rate s = {sj} i=1,..,R
� Link loss rate q = {di} j=1,..,N
� Route loss rate p = {pi} i=1,..,R

Example Network

=
110001000
001100010
000011111

A

route 1

route 2 route 3
10 1.5

10 10 10 10
101.5 1.5

c = (10, 1.5, 1.5, 1.5, 10, 10, 10, 10, 10)t

�N congested bottlenecks (e.g. 2)
1 2 3 4 5

6 7 8 9

ε δ
ε ε ε ε

εδ δ

t = (ε, δ, δ, δ, ε, ε, ε, ε, ε)t

Solution
� Estimate RTT delay from propagation time

d = 2At (can use queueing delays)

� Route send rates
x(w) = (w .* n .* m) ./ d

� Link rates
b(w) = Atx

� Link loss rate
q(w;c) = [b – c]+./b (can use queueing losses)

� Route loss rate
p(w;c) = 1 – eAln(1-q(w;c))

� Window size
W2 p(w;c) – a = 0 (could use refined model,

or a transient model)

Numerical Example

�Send rates

simulation

queueing delays
correct RTT

prop. delays

Numerical Example

�Window sizes

simulation

queueing delays
correct RTT

prop. delays

Numerical Example

�Loss rates

simulation

queueing delays
correct RTT

prop. delays

Short-lived sources

�Heavy-tailed distribution of flow sizes
�Some really big files elephants
�Many small files mice

�Persistent model only good for elephants
�Concentrates on Congestion Avoidance
�Short lived sources always in Slow Start
�M/G/1 processor sharing suggested
�Really we need a new model, e.g.

�Cardwell, Savage and Anderson, Infocom 2000
�Sikdar, Kalyanaraman and Vastola, IPCCC 2001
�Mellia, Stoica and Zhang, IEEE Communications Let. 2002

New approach

�Use the loss rate to estimate transfer
latency (e.g. from Cardwell et al)

�Use transfer latency to compute the
number of sessions in progress

M/G/1 processor sharing queue (for number of
sources)

�Use the number of sessions in progress
(and their duration) to estimate the load
and thence the loss rate

M/G/1/K FIFO model (for packets in each buffer)

Simple example

�Poisson arrivals of single packet transfers

Results

�Processor sharing
�Doesn’t get latency right for low load (can’t

get RTT)
�Asymptote at capacity

�Even so result is not responsive to
congestion!

�Can get a good measure from fixed point
approach

Conclusion

�Can use fixed point methods to estimate
performance for TCP flow controls
�Persistant case (based on CA)
�Short-lived case (based on SS)

�Nice because they generalize to networks
�Need to understand limitations of SS

models for TCP window flow controls
�RTT estimation used in RTO computation
�In BSD simple because of 500ms timer

	TCP
	Outline
	Why Flow Control?
	Congestion Control
	Network Flow Control
	TCP Congestion Control
	Slow Start
	Slow Start
	Congestion Avoidance
	Congestion Avoidance
	Packet Loss
	Timeout
	Fast Retransmit
	Successive Timeouts
	Fast recovery
	TCP Reno
	RTO Calculation
	Round Trip Time Estimation
	Law
	Implications
	Derivation (I)
	Derivation (II)
	Refinement (Padhye, Firoin, Towsley & Kurose 1998)
	Calculating Performance
	Fixed Point Models
	Network Formulation
	Example Network
	Solution
	Numerical Example
	Numerical Example
	Numerical Example
	Short-lived sources
	New approach
	Simple example
	Results
	Conclusion

