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Outline

�TCP flow control
�Persistent source models

�Square root p law
�Fixed points

�Short-lived sources



Why Flow Control?

�October 1986, Internet had its first 
congestion collapse

�Link LBL to UC Berkeley 
�400 yards, 3 hops, 32 Kbps
�throughput dropped to 40 bps
�factor of ~1000 drop!

�1988, Van Jacobson proposed TCP flow 
control



Congestion Control

�TCP seeks to
�Achieve high utilization
�Avoid congestion
�Share bandwidth

�Window flow control
�Source rate =          packets/sec

�Adapt W to network (and conditions)
W = BW x RTT

RTT
W



Network Flow Control

�Source calculates cwnd from indication 
of network congestion

�Congestion indications
�Losses 
�Delay
�Marks 

�Algorithms to calculate cwnd
�Tahoe, Reno, Vegas, RED, REM …



TCP Congestion Control

�Has four main parts
�Slow Start (SS)
�Congestion Avoidance (CA)
�Fast Retransmit
�Fast Recovery

�ssthresh: slow start threshold 
determines whether to use SS or CA

�Assume packet losses are caused by 
congestion

Tahoe
Reno



Slow Start 

�Start with cwnd = 1 (slow start)
�On each successful ACK increment cwnd

cwnd ← cnwd + 1
�Exponential growth of cwnd

each RTT: cwnd ← 2 x cwnd
�Enter CA when cwnd >= ssthresh
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Congestion Avoidance

�Starts when cwnd ≥ ssthresh
�On each successful ACK:

cwnd ← cwnd + 1/cwnd
�Linear growth of cwnd

each RTT: cwnd ← cwnd + 1



Congestion Avoidance
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Packet Loss

�Assumption: loss indicates congestion
�Packet loss detected by

�Retransmission TimeOuts (RTO timer)
�Duplicate ACKs (at least 3)
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Timeout

ssthresh ← cwnd/2

cwnd = 1



Fast Retransmit

�Wait for a timeout is quite long
�Immediately retransmits after 3 dupACKs

without waiting for timeout
�Adjusts ssthresh

flightsize = min(awnd, cwnd)
ssthresh ← max(flightsize/2, 2)

�Enter Slow Start (cwnd = 1)



Successive Timeouts
� When there is a timeout, double the RTO
� Keep doing so for each lost retransmission

� Exponential back-off
� Max 64 seconds1

� Max 12 restransmits1

1 - Net/3 BSD



Fast recovery
� Motivation: prevent `pipe’ from emptying 

after fast retransmit
� Idea: each dupACK represents a packet having 

left the pipe (successfully received)
� Enter FR/FR after 3 dupACKs

�Set ssthresh ← max(flightsize/2, 2)
� Retransmit lost packet
�Set cwnd ← ssthresh + ndup (window inflation)
�Wait till W=min(awnd, cwnd) is large enough; 

transmit new packet(s)
�On non-dup ACK (1 RTT later), set cwnd ← ssthresh 

(window deflation)
� Enter CA



TCP Reno

CASS

Fast retransmission/fast recovery



RTO Calculation

�An accurate RTT measure is required to 
judge timeouts

�We can measure RTT by measuring the 
time to receive a packets ACK

�Use a smoothed RTT, SRTT and the 
smoothed mean deviation DRTT

RTO = SRTT + 4 DRTT
�Initial RTT should be > 3 seconds

�Avoid spurious retransmission



Round Trip Time Estimation
� RTT is not known

� From <1 ms up to >1 second
� Need to know RTT to calculate RTO
� The measurement of RTT 

SRTT = SRTT + g (MRTT-SRTT)
DRTT = DRTT + h ( |MRTT-SRTT| - DRTT)

� Need to minimize processing requirements
�Only 1 counter (regardless of how many packets are 

extant)
� Counter granularity is typically 500 ms

� Measurement equations have gain



Law p1

� Equilibrium window size

� Equilibrium rate

� Empirically constant a ~ 1
� Verified extensively through simulations and 

on Internet
� References

�T.J.Ott, J.H.B. Kemperman and M.Mathis (1996)
�M.Mathis, J.Semke, J.Mahdavi, T.Ott (1997)
�T.V.Lakshman and U.Mahdow (1997)
�J.Padhye, V.Firoin, D.Towsley, J.Kurose (1998)
�J.Padhye, V.Firoin, D.Towsley (1999)
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Implications
� Applicability

�Additive increase multiplicative decrease (Reno)
� Congestion avoidance dominates
�No timeouts, e.g., SACK+RH
�Small losses
� Persistent, greedy sources
� Receiver not bottleneck

� Implications
� Reno equalizes window
� Reno discriminates against long connections



Derivation (I)
window

Area = 2w2/3

t

2w/3

w = (4w/3+2w/3)/2

4w/3

2w/3

� Each cycle delivers 2w2/3 packets
� Assume: each cycle delivers 1/p packets

�Delivers 1/p packets followed by a drop
� Loss probability = p/(1+p) ~ p if p is small.

� Hence pw 2/3=



Derivation (II)

� Assume: loss occurs as Bernoulli process rate 
p

� Assume: spend most time in CA
� Assume: p is small
� wn is the window size after nth RTT
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Refinement (Padhye, Firoin, Towsley & Kurose 1998)

� Renewal model including
� FR/FR with Delayed ACKs (b packets per ACK)
�Timeouts
� Receiver awnd limitation

� Source rate

� When p is small and Wr is large, reduces to 
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Calculating Performance 

�Single link, capacity C, buffer B
�Window size: w = f(p)
�Loss rate: p = g(w; C,B)
�Find w*: w* = f(g(w*; C,B))

�Example:
�Window size: 
�Loss rate approx.
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Fixed Point Models
� Mean field theory

�Solve for a particular source given the mean field
�Use single source to approximate the mean field

� Generalize previous example
�Multiple sources
�Network

� various routes, RTTs, capacities, …
�Arbitrary functions f, and g

� Solve using
� Repeated substitution 
�Newton-Raphson



Network Formulation
� N links, R routes
� Capacity c = {cj} j=1,..,N
� Propagation time t = {tj} j=1,..,N
� Routing matrix A = {aij} j=1,..,N, i=1,..,R

aij = 1,  if link j is in route i
aij = 0,  if link j isn’t in route j

� Sources per route n = {ni} i=1,..,R
� MSS per route m = {mj} i=1,..,R
� Route send rate s = {sj} i=1,..,R
� Link loss rate q = {di} j=1,..,N
� Route loss rate p = {pi} i=1,..,R



Example Network
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Solution
� Estimate RTT delay from propagation time

d = 2At (can use queueing delays)

� Route send rates
x(w) = (w .* n .* m) ./ d

� Link rates
b(w) = Atx

� Link loss rate
q(w;c) = [b – c]+./b (can use queueing losses)

� Route loss rate
p(w;c) = 1 – eAln(1-q(w;c))

� Window size 
W2 p(w;c) – a = 0 (could use refined model, 

or a transient model)



Numerical Example

�Send rates

simulation

queueing delays
correct RTT

prop. delays



Numerical Example

�Window sizes

simulation

queueing delays
correct RTT

prop. delays



Numerical Example

�Loss rates

simulation

queueing delays
correct RTT

prop. delays



Short-lived sources

�Heavy-tailed distribution of flow sizes
�Some really big files elephants
�Many small files mice

�Persistent model only good for elephants
�Concentrates on Congestion Avoidance
�Short lived sources always in Slow Start
�M/G/1 processor sharing suggested
�Really we need a new model, e.g.

�Cardwell, Savage and Anderson, Infocom 2000
�Sikdar, Kalyanaraman and Vastola, IPCCC 2001
�Mellia, Stoica and Zhang, IEEE Communications Let. 2002



New approach

�Use the loss rate to estimate transfer 
latency (e.g. from Cardwell et al)

�Use transfer latency to compute the 
number of sessions in progress

M/G/1 processor sharing queue (for number of 
sources)

�Use the number of sessions in progress 
(and their duration) to estimate the load 
and thence the loss rate

M/G/1/K FIFO model (for packets in each buffer)



Simple example

�Poisson arrivals of single packet transfers



Results

�Processor sharing
�Doesn’t get latency right for low load (can’t 

get RTT)
�Asymptote at capacity

�Even so result is not responsive to 
congestion!

�Can get a good measure from fixed point 
approach



Conclusion

�Can use fixed point methods to estimate 
performance for TCP flow controls
�Persistant case (based on CA)
�Short-lived case (based on SS)

�Nice because they generalize to networks
�Need to understand limitations of SS 

models for TCP window flow controls
�RTT estimation used in RTO computation
�In BSD simple because of 500ms timer
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