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Abstract—Traffic modelling is a core component of network
planning and engineering. Although good models are approx-
imations of reality, they are very useful in various network
applications. However, traffic modelling is often done in an ad
hoc manner, guided only by the experience of the model designer.
In this paper, we propose the use of information criteria, such
as the Akaike Information Criterion (AIC), to systematically
choose models. We study these criteria on Frequency, Frequency
+ Spike, and Wavelet models of the network traffic to select the
best of these. However, there are many alternative information
criteria, which give different results. We found that the Bayesian
Information Criterion (BIC), and Minimum Description Length
(MDL) provided better models than the (perhaps) more com-
monly used AIC and corrected AIC for network traffic modelling.
Interestingly, we found that fancier models, such as Wavelet
models, may reduce prediction accuracy, so simple frequency-
based models are preferable.

I. INTRODUCTION

Many network planning tasks require the traffic predictions

as an input. There are various approaches one might apply

to obtain such a prediction, but within each there is a model

(albeit the model is sometimes implicit). There are a wealth of

models for traffic (far too many to list here), so the question

of which model is best arises. Typically, the question has

been answered without clear scientific reasoning. For instance,

models are often proposed as superior because they fit a dataset

more accurately. This is a bad sole criteria.

Modelling requires a fine balance between simplicity and

accuracy. It is obvious why the latter criteria is important, but

the former requires some explanation. Simple models have

many advantages:

• Simple models are often more tractable, i.e., analysis of

the model is easier;

• The parameters of simpler models may be measured from

data more easily, and accurately; and

• Simple models are more generalisable, i.e., the model

estimated from one set of data is more likely to be helpful

when applied to a new set of data.

The last property is critical for prediction.

We can always improve the fit of a model by increasing

the size of the space of models. However, complex models

often overfit a dataset. Even if such a model fits the current

data more accurately, it likely provides poorer predictions. For

instance, one could construct a model for a dataset that was

just the data points themselves, but this would not typically

provide better predictions than a model based on the “physics”

of the problem, i.e., the known rules that constrain the data.

Hence the need to balance simplicity with the quality of fit to

the data: the so-called model selection problem.

Information criteria (IC) were developed to address the

model selection problem. IC have strong theoretical backing

and guarantees, which can help model designers in their

task to understand and systematically build suitable models

of observed traffic data. IC do so by providing the optimal

theoretical tradeoff between simplicity and accuracy of fit.

In this paper we apply IC to temporal modelling of net-

work traffic by assessing three classes of models: Frequency

(Fourier), Frequency + Spikes, and Wavelet models. To the

best of our knowledge, this is the first work to apply IC to

network traffic modelling. The main contribution of this paper

is the methodology, which we advocate being applied to future

modelling questions to balance “fit” and simplicity.

There is more than one information criterion. They differ in

approach and assumptions about the data being studied. For

instance, the Akaike information criterion (AIC) is based on

asymptotic results, so it may not be optimal for finite datasets.

We examine here five of the most commonly used criteria:

the Akaike Information Criterion (AIC), the corrected AIC

(AICc), the Bayesian Information Criterion (BIC), the two-

stage Minimum Description Length (MDL) and normalised

Minimum Description Length (nMDL). They produced a wide

variety of models, and so the questions arise “how useful are

these approaches if they are not consistent, and which should

we prefer for traffic modelling?”

To answer these questions we applied the five IC to our real-

world datasets, Abilene [24], GÉANT [31], and link traffic

data from IIJ, an Internet Service Provider (ISP) in Japan (see

§III), to obtain models of the traffic. These IC-derived models

are then tested on their predictive ability: in particular, we

use the IC to build predictive models of the traffic and then

evaluate their predictions.

The results are clear: AIC and AICc tend to overfit the data.

At best they provide results on par with the other approaches



(with the cost of many more parameters), but typically they

are worse. The performance of BIC and (n)MDL are roughly

the same, though there are differences in some settings.

The results, in general, suggest that the traffic should be

modelled with the Frequency + Spike model as it provides a

good tradeoff between modelling error and model complexity.

In comparison, fancier models based on wavelets actually

reduce forecast accuracy.

II. INFORMATION CRITERIA

Given a dataset, the first obvious decision by a model

designer is the choice of the class of model. There are many

different models to choose from.

Another important consideration, often overlooked, is the

choice of the number of parameters of the model, or the

model order. Often equated with complexity, the number of

parameters is a crucial choice. If we allow more, we allow a

larger space of models, and so must fit our data better. This

may seem preferable, but too many parameters may result

in over-fitting, as well as other problems. However, too few

parameters and we may miss out on legitimate features of the

data.

The first breakthrough in a systematic method for model

selection was an information criterion proposed by Akaike [3].

Known as the Akaike Information Criterion (AIC), it is

AIC = 2p− 2 logL(θ∗), (1)

where p is the number of parameters and L(θ∗) is the

maximised value of likelihood of the model using the optimal

choice of parameter θ∗. If the parameter θ∗ is unknown, it

is often substituted by the maximum likelihood estimate of

θ∗. We can see the trade-off between the complexity of the

model, measured by the first term in (1) and the error of the

fit, measured by the second term. To select the best model, one

selects the candidate model with the minimum AIC value.

The beauty of the AIC is its simplicity, but despite this,

it comes with a strong theoretical justification. The AIC is

grounded in information theory. It quantifies the information

loss when the true model of the data is not selected.

The information loss is measured by the Kullback-Leibler

(KL) divergence DKL(f || g) between the observed process f
and model g [8]. If an unknown process f can be represented

by models g1 or g2, the criterion computes DKL(f || gi) and

chooses the model with the lower value, since this model

minimised information loss.

Of course, if we already knew f , we can choose the

correct model. Akaike’s contribution was to show how the

quantity DKL(f || g) can be estimated for any candidate model

g without prior knowledge of f . When applied to a set of

models M, the AIC guarantees the selection of the model

g∗ ∈ M closest to f in KL divergence [3]. Additionally, it is

an asymptotically efficient criterion for model selection [16].

There is a notable drawback. The AIC was derived under the

assumption that n, the number of data points, is very large.

This results in the AIC consistently overfitting for small n.

Examples of AIC selecting higher model orders than necessary

can be found in [7, Section 8.3]. The corrected AIC (AICc)

[16] was developed to address this problem

AICc = AIC +
2p(2p+ 1)

n− p− 1
. (2)

This criterion converges to the AIC as n increases, but

outperforms the AIC on finite data.

The Bayesian Information Criterion (BIC) was developed

by Schwarz [29] from the perspective of Bayesian statistics. It

is also an asymptotic result assuming that the observed data’s

distribution belongs to the exponential family,

BIC = 2p log n− 2 logL(θ∗). (3)

The BIC is not necessarily asymptotically efficient (unlike AIC

and AICc [16]), but it is a consistent criterion. If the observed

process is an observation of a model g, then as n → ∞ BIC

will select the model g with probability 1. Observe that the

BIC has a larger penalty on the number of parameters chosen

– BIC will tend to choose models with fewer parameters than

AIC or AICc.

Finally, a different take on information criteria based on

coding theory was introduced by Risannen [27]. The approach,

known as the Minimum Description Length (MDL) criterion,

can be summed up as exploiting the regularity of the data to

compress it, or equivalently, to describe it in the minimum

number of symbols (typically in bits) [14]. MDL is not

concerned with the actual encoding of the data, but only the

length of the encoding.

The original formulation of MDL involved a two-stage

coding scheme: the overall description length of a model is the

sum of the number of bits to describe the model (including the

number of parameters) and the description of the data when

encoded by the chosen model. Formally,

MDL = L(g) + L(f | g), (4)

where g is the candidate model, f is set of data and L(·)
computes the length of the encoding. The two-stage MDL is

closely related to the BIC; in a number of instances, both

criteria select exactly the same model.

The two-stage MDL employs a particular universal code to

encode the model and data. An alternative universal code is the

normalised maximum likelihood code, leading to a different

criterion called the normalised MDL (nMDL). Unlike two-

stage coding, the parameters and model are jointly coded,

based on maximum likelihood coding by Shtarkov [15]. This

has the effect of reducing the number of codewords considered

to encode the model g, thereby producing a more compact

description length [14], [15] compared to two-stage MDL.

There is no closed form for nMDL in general, but useful

asymptotic expressions can be derived (see §III-A).

There are other approaches to model selection [7], but in

this paper we focus on these, the most common approaches.

We aim to use them on the problem of traffic modelling, but

the differences between them that we shall see in the following

section lead to a question about which is most useful, which

we shall address in the subsequent section.



III. MODEL SELECTION IN ACTION

In this section, we formulate our traffic model. We discuss

the three dictionary functions used here, namely the Frequency,

Frequency + Spike and Wavelet dictionaries. We also apply

five IC to real-world datasets to test their performance.

A. Traffic Model

Here we primarily consider temporal models of traffic

volume (though the concept of IC is much more general).

It is well-known that network traffic has a strong diurnal and

weekly component, giving rise to an almost periodic structure,

with some (normal) stochastic variations, and spurious (spiky)

traffic [13], [17], [19], [28].

There are many approaches to modelling the temporal

nature of the traffic [33]. Examples include the Holt-Winters

smoothing approach [4], stochastic modelling techniques such

as the Norros model [28] and cyclo-stationary models [30].

Since we aim to predict traffic, we explore three classes of tem-

poral models: one based on Fourier (Frequency) coefficients,

one on Frequency + Spikes, and one on Wavelets. There are

many other possibilities, but we a priori know that there is

a strong diurnal periodic component to the signal [13], [19],

[28], and the approaches above match this well.

Let θ be a set of the model parameters of a model class

M, for instance the amplitude and phase of each frequency

component in a simple Fourier model. Naı̈vely, with this model

of a signal we would have as many parameters (the amplitudes

and phases) as in the original signal. However, while many of

these frequencies are needed to reconstruct the original data,

many do not describe general properties of the signal so much

as specific local variations that are not useful for predicting

future traffic. So not all the parameters in θ are needed when

a model from the class M is selected. The number we do

need is the order of the model within that class. IC are used

to choose the order of the model.

In order to apply the IC, we need to choose the class of

models. We take the class described by a linear combination

of m dictionary functions di, plus some noise,

y = Dx+ z, (5)

where D = [d1|d2| · · · |dm], and z denotes the independent

and identically distributed (IID) Gaussian noise vector with

mean 0 and variance σ2. The reason we used a simple noise

process is that we want the structured content of the signal to

appear in the model, not the noise.

The x are called predictors, and combined with the noise

variance, they form the model parameters θ = {x, σ2}, so the

total number of parameters is p = m+ 1.

The problem might seem almost trivial – surely we can

just determine x by linear regression on y? The difficulty is

that we must also determine the matrix D, i.e., we must also

select the particular dictionary functions we will use from a

larger set. If the set of dictionary functions forms a basis, then

there are simple algorithms for obtaining (5) for any particular

m < n. However, in some cases we start with an overcomplete

set in the hope of obtaining a sparser representation of data

compared to a decomposition into basis vectors [6].

B. Choice of Dictionary

We start with the Fourier-frequency model, motivated by the

strong diurnal pattern in traffic [28]. Here the vectors di are

sinusoidal functions. These form a basis, and the algorithm

for efficiently transforming a discrete signal into this basis is

commonly called the Fast Fourier Transform (FFT). The FFT

will transform a real-numbered dataset of length n into n/2
complex numbers (since the signals are real).

Since we are dealing with finite length segments of a

(periodic) signal, the FFT sees discontinuities at the edges

and unwanted frequencies are introduced i.e., suppress spectral

leakage. A windowing function is first applied to the data to

minimise this effect. We have tested several windows, such as

the Hanning and Blackman windows. Ultimately, we settled

on the Hamming window since the performance with the other

windows are similar, but unlike the other two windows, we can

invert the Hamming window to obtain an accurate computation

of the model error (see below).

We determine a representation (5) for m < n simply by

forward selection based on the magnitude of these complex

coefficients. Coefficients are selected in descending order.

The Fourier transform of the data, however, loses all time-

based activity in favour of the frequency-based view. Traffic

also has “spikes” [19], for instance, as a result of anomalies.

A spike (in time) is wideband in the Fourier domain, which

means it is not well-represented by a small number of Fourier

coefficients. It therefore stands to reason that a simple Fourier

analysis of the data will have to compensate for these spikes

with additional frequency coefficients.

It might be more efficient to consider a dictionary that

includes both Fourier components, and spikes (formally a

spike is just a δ-function in time). We call the dictionary the

Frequency + Spike model. The set of dictionary functions is

overcomplete, and so decomposing the signal into this basis

requires a more sophisticated algorithm. Luckily, there is a

now well-developed area of signal processing referred to as

compressive sensing [5], [12] whose strength lies in finding

sparse sets of dictionary functions to represent datasets.

Coefficients are selected by using the IC combined with

Orthogonal Matching Pursuit (OMP) [11], [25], a popular

greedy algorithm used for selecting di from overcomplete

dictionaries. The selection procedure, however, is suboptimal

in that not all subsets are searched. OMP selects a subset of

dis with the highest correlation to the signal. While computa-

tionally tractable, the selected coefficients are not guaranteed

to be optimal. Despite this, we have obtained useful results.

The third set of dictionary functions we consider is based

on the wavelet transform, which like the Fourier transform,

is a transform from a time-based representation of the data,

into the dictionary space, but the wavelet basis is a time-

frequency representation. Each wavelet is like taking a partic-

ular frequency band, and localising it in time [22]. The traffic,

while smooth, is only partially periodic with many transient



Dataset
Duration Start Measurement n n̄

(weeks) Date interval

Abilene 2 1 Mar 2004 5 minutes 4032 4258

GÉANT 6 1 Jan 2005 15 minutes 4032 4258
Japan 1 19 3 Apr 2014 1 hour 3192 3254
Japan 2 4 3 Apr 2014 1 hour 672 735

TABLE I
SUMMARY OF THE DATASETS. n AND n̄ DENOTES THE NUMBER OF DATA

POINTS AND THE PADDED LENGTH FOR WAVELET TRANSFORMS

RESPECTIVELY.

frequency components. Wavelets should excel in situations like

this, as the right choice of wavelet can localise frequencies

well enough to provide a succinct representation of the traffic.

Here, we limit ourselves to orthogonal wavelet representations,

so the dictionary set is a basis, and the transform is invertible.

The number of potential parameters may, however, be a little

longer than n due to padding for computational efficiency

purposes. In the results for wavelets below, we list this

augmented length as n̄.

The discrete wavelet transform is computed via filter banks

[32]. In particular we used the function wavedec from the

Wavelet Toolkit in Matlab to decompose the signal into

wavelets, and waverec to reconstruct the model.

Wavelet coefficients are selected in the same manner as the

Frequency dictionary i.e., via forward selection.

We tested the Haar wavelet [22, p. 248], Daubechies wavelet

with 6 vanishing moments, denoted by db6 [22, p. 249], and

the symlet with 8 vanishing moments, denoted by sym8 [22,

p. 253]. We only present the results for the db6 wavelet due

to space constraints, however, the Haar wavelet performed the

worst, since it is non-smooth and applying it to a relatively

smooth dataset produced a suboptimal representation, while

the sym8 wavelet performs as well as the db6 wavelet.

C. Information Criteria

Let p denote the total number of parameters of the model.

Let K, L and M the total number of frequency, spike and

wavelet coefficients respectively. For a real signal, frequency

components come in pairs, so we count this as specifying

2K parameters. Furthermore, a spike component requires

specification of the location and magnitude, so this counts as

2L. For wavelets, the number of coefficients are equal to the

total number of predictors. Thus, the number of parameters

for each dictionary is computed as:

• Frequency: p = m+ 1 = 2K + 1,

• Frequency + Spike: p = m+ 1 = 2K + 2L+ 1,

• Wavelet: p = m+ 1 = M + 1.

Let the Residual Sum of Squares be denoted by

RSS = ‖y −Dx‖2
2
, (6)

which is the squared difference between the model’s predic-

tion, and the actual data. The RSS is a measure of the accuracy

of the model’s fit to the dataset.

In the context of the model class described above, there are

tractable formulae for each of the IC:

AIC = 2p+ n(logRSS − log n+ 1),

AICc = AIC +
2p(p+ 1)

n− p− 1
,

BIC = p log n+ n(logRSS − log n+ 1),

MDL =
p

2
log n+

n

2
logRSS,

nMDL ≈
p

2
log(‖y‖2

2
− RSS)−

n− p− 1

2
log(n− p)

−
p+ 3

2
log p+

n− p

2
logRSS.

Here, n is fixed, and so the terms involving only n could

effectively be dropped in calculations of the optimal p. That

means that the two-stage MDL is equivalent to the BIC so

we omit the results for MDL. There is no closed form for the

nMDL. The form presented above is asymptotic approximation

given in [15], which we use in our experiments.

Each case has a term proportional to logRSS, which mea-

sures the model’s fit quality, with a penalty term that increases

with the number of parameters p. The goal is to balance these

two factors, but each IC does so differently.

The IC themselves are general: as long as there are potential

models of the traffic, then the IC can be used in conjunction

with the models to select the appropriate model. They are

general enough to be applied to mixture models i.e., a convex

combination of models (see [1] for the application of BIC to

mixture models for modelling endhost traffic).

In practice, we can widen the class M to include models

beyond the linear model used here, then apply IC to select the

model most appropriate for describing the data. This does not

apply only to parametric models; IC can be used with non-

parametric models as well. The best model could conceivably

be a convex combination of parametric and non-parametric

models, but is guaranteed to have the best tradeoff between fit

and complexity under the particular IC.

D. Results

Our experiments used 4 datasets summarised in Table I.

The Abilene [24] and GÉANT [31] datasets come from the

Abilene and GÉANT network based in North America and

Europe respectively. The Japan 1 and 2 datasets come from

IIJ, a Japanese ISP.

Preprocessing of the raw data was required. Traffic data

may contain very large abrupt changes, so there are intervals

in the datasets where our model cannot be applied to. For

instance, in the Japan 1 and 2 datasets, we have observed

large stepwise shifts in traffic due to traffic rerouting. In order

to select contiguous measurement intervals in the dataset that

are “stable” enough, i.e., the time average has no abrupt shifts,

we apply a step detection method to our datasets. We tried

several step detection methods, but settled on a jump penalty

detection algorithm [21], based on the Potts model, because

fast implementations are available [23]. Using this on the

raw datasets, we extracted our 4 datasets. The limitation of
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Fig. 1. Comparison of AIC, BIC and nMDL on the Frequency model on 5 minute intervals of Abilene data for a single week starting 1st March 2004. AIC,
BIC and nMDL selected models with 837, 32 and 11 frequencies respectively. The light grey curve is the actual traffic, while the dark curves are the models.
We can see that AIC tries to fit all the datapoints, while nMDL tries to find the underlying pattern.

IC
Frequency Frequency + Spike Wavelet db6

Components p

√

RSS Frequency Spikes p

√

RSS Components p

√

RSS

AIC 837 1675 296.2 20 12 52 570.4 2077 2078 0.0
AICc 107 215 736.2 20 12 52 570.4 870 871 165.9
BIC 32 65 883.3 18 8 44 608.5 210 211 415.0
nMDL 11 23 970.2 20 12 52 570.4 247 248 388.0

TABLE II
ABILENE DATA MODEL COMPARISON (5 MINUTE INTERVALS, 1 WEEK).

IC
Frequency Frequency + Spike Wavelet db6

Components p

√

RSS Frequency Spikes p

√

RSS Components p

√

RSS

AIC 11 23 501.3 13 3 32 327.0 733 734 0.0
AICc 11 23 501.3 13 3 32 327.0 327 328 90.7
BIC 11 23 501.3 12 2 28 353.6 113 114 220.1
nMDL 11 23 501.3 13 3 32 327.0 129 130 203.1

TABLE III
ABILENE AGGREGATED DATA MODEL COMPARISON (15 MINUTE INTERVALS, 1 WEEK).

IC
Frequency Frequency + Spike Wavelet db6

Components p

√

RSS Frequency Spikes p

√

RSS Components p

√

RSS

AIC 798 1597 142.2 55 13 137 496.8 3254 3255 0.0
AICc 527 1055 208.0 55 13 137 496.8 3191 3192 1.1
BIC 133 267 399.8 28 0 57 600.2 3191 3192 1.1
nMDL 96 193 442.8 44 3 92 535.8 1115 1116 374.0

TABLE IV
JAPAN 1 DATA MODEL COMPARISON (HOURLY INTERVALS, 19 WEEKS).

IC
Frequency Frequency + Spike Wavelet db6

Components p

√

RSS Frequency Spikes p

√

RSS Components p

√

RSS

AIC 246 493 5.6 20 14 55 29.2 566 567 0.0
AICc 41 83 32.7 14 5 34 34.5 503 504 1.2
BIC 21 43 41.5 10 3 27 37.7 503 504 1.2
nMDL 21 43 41.5 13 5 37 34.6 188 189 443.0

TABLE V
JAPAN 2 DATA MODEL COMPARISON (HOURLY INTERVALS, 3 WEEKS).

this method is that our model is less descriptive than one

that incorporates an abrupt shift component into the model.

However, our motivation is to study the IC themselves, using

a simple model with tractable expressions of the IC is the main

focus here.

It is important that the prediction tests be performed on data

that is not used in calculating the model, so we will fit our

model only to a segment of the data, and preserve the rest for

use in testing. The testing periods are the last single week of

the datasets.



IC
Frequency Frequency + Spike Wavelet db6

Components p

√

RSS Frequency Spikes p

√

RSS Components p

√

RSS

AIC 2015 4031 1.0 100 34 269 13.4 4030 4031 0.0
AICc 87 175 36.6 100 34 269 13.4 1743 1744 3.0
BIC 85 171 36.7 74 24 197 16.6 649 650 7.3
nMDL 85 171 36.7 74 24 197 16.6 675 676 7.1

TABLE VI
GÉANT DATA MODEL COMPARISON (15 MINUTE INTERVALS, 6 WEEKS).

Our objective is to fit a sparse linear model per equation (5)

based on a particular dictionary to an observed sequence of

traffic data. We take the common step in all cases to remove

the mean of the traffic which is a standard preliminary.

Tables II to VI list the number of components chosen

by each IC on the datasets, and the resulting number of

parameters in the model. They also list the square root of

the RSS, which shows the inverse relationship between the

number of parameters and model accuracy clearly. The more

parameters the smaller the RSS, though the exact relationship

varies by model. Note that the RSS can only be compared

within, but not between, datasets because of the different units

of traffic involved.

Naı̈vely, we would prefer models with a good fit i.e., low

RSS, but the various IC attempt to perform a tradeoff between

the number of parameters p and the RSS. We see that AIC con-

sistently chooses a tradeoff with a large number of parameters.

The literature [7, Section 8.3] suggested that this would be a

result of using a finite dataset, but although AICc attempts to

correct this, the number of parameters included is still large.

Both BIC and nMDL chooses substantially fewer parameters

(as earlier noted MDL returns the same results as BIC). The

obvious question then is which is most useful. We shall aim

to answer that in the next section.

Figure 1 shows three examples of the models chosen by the

IC for the Frequency dictionary. Comparing the figures, BIC

and nMDL chose a model with far less frequencies compared

to AIC’s, so their models are smoother, though this is less

apparent for BIC. However, in all cases, a small number of

components chosen leads to a model that can’t recreate the

(wide-band) spikes. Hence the Frequency + Spike model.

The other main comparison is between models – which of

these is actually better. If, for instance, we were to choose

BIC or nMDL as our preferred criteria (we shall see why this

might be the case in the following section), then we might

compare the IC values between models. For our datasets, the

Frequency + Spike model is the most preferable (with the

exception of nMDL). This seems to be the model that provides

the best tradeoff between representing the data with the fewest

parameters and fit error.

There is a codicil on the Frequency + Spike model. We

aim to use it in prediction, but we also know that spikes

potentially originate from anomalous traffic – so they may not

generalise. We shall consider two approaches, the Frequency +

Spike model itself, and a modified model where the spikes are

used in modelling the traffic, but excluded in prediction. That

way they can still be used to diffuse some of the wide-band

energy, without compromising predictions.

We repeated these experiments for a range of cases, and

present here in Table III the results when the data is further

aggregated into time intervals of 15 minutes. The base number

of data points is n = 672, so naturally the models have fewer

parameters as a result of the smoothing of the data resulting

from aggregation.

We immediately see a reduction in coefficients for all crite-

ria. Moreover, for the Frequency model, all criteria are picking

the same coefficients. The aggregation of traffic in longer

measurement intervals has smoothed out spurious frequencies,

acting as a low pass filter. Interestingly, nMDL’s selection

remains unchanged, demonstrating its robustness.

The number of coefficients selected, however, does not

proportionally decrease for each criterion. The reduction in

parameters for AIC and AICc are large, as would be expected

given the large number of parameters these approaches se-

lect. The reduction in BIC and nMDL parameters are much

smaller. Intuitively, these IC are already producing “smooth”

models, and the models therefore don’t change much when

we aggregate/smooth the input data. This is an indication

of generalisability of the models, but we shall see clearer

evidence in the following section.

Finally, we clearly see that the Wavelet models perform

poorly on the datasets. In particular, for the Japan datasets

where the periodicity is more pronounced, almost all coef-

ficients are selected by most of the IC, including BIC. The

nMDL criterion here still outperforms the other criteria by

selecting far less coefficients than the competition.

E. Frequency analysis

By the strong cyclical behaviour of the network traffic we

have seen, in this section, we study the Fourier transforms of

the datasets (via FFT) to find the prominent frequencies and

their harmonics. Most traffic models, as far as we know, do not

account for harmonics in the traffic data. Exploiting knowledge

of the harmonics can lead to a more compact model, since the

number Fourier basis vectors, for instance, is reduced.

In our data, we expect to find hourly, daily and weekly

cycles. These correspond to 1, 1/24 and 1/168 cycles per hour

respectively. There may be, perhaps, other frequencies too.

Note that the daily cycle’s harmonics may coincide with the

hourly cycle’s harmonics, and similarly with the weekly and

daily cycles. We therefore only count the harmonics belonging

to the larger cycle, e.g., a weekly cycle’s harmonic that aligns

with a daily cycle’s is counted as the daily cycle’s harmonic.



Criterion Hourly Daily Weekly Other

Abilene 2 4 3 0
AIC 0 1 2 0
AICc 0 1 2 0
BIC 0 1 2 0
nMDL 0 1 2 0

TABLE VII
COMPARISON OF PROMINENT FREQUENCIES AND THEIR HARMONICS

FROM ACTUAL DATA AGAINST THE MODELS SELECTED BY THE IC ON

ABILENE DATA (15 MINUTE INTERVALS, 1 WEEK).

Criterion Daily Weekly Other

Japan 1 7 11 65
AIC 7 11 65
AICc 7 11 65
BIC 5 8 56
nMDL 3 8 53

TABLE VIII
COMPARISON OF PROMINENT FREQUENCIES AND THEIR HARMONICS

FROM ACTUAL DATA AGAINST THE MODELS SELECTED BY THE IC ON

JAPAN 1 DATA (HOURLY INTERVALS, 19 WEEKS). NOTE THAT HOURLY

FREQUENCY CYCLES ARE UNOBSERVABLE AS THE MEASUREMENT

INTERVALS ARE HOURLY.

We then compare against the Frequency models selected

by the IC to see if the prominent frequencies were selected.

The dataset is preprocessed by applying a Hamming window

on it. We then set (by thresholding) all frequencies below

the smallest magnitude weekly harmonic we could find to

0. For Abilene, this would be 25th harmonic, and in the 19

week Japan 1 data, the 84th harmonic. The same threshold is

also applied to the models selected by the IC, so the results

presented here may have a total number of frequencies less

than the results in previous section.

In the results below, the number of weekly harmonics

present is larger than the number of daily (or hourly) har-

monics. Intuitively, the weekly cycle has far more complex

structure than the hourly and daily cycles.

Table VII presents the results for the Abilene data with

15 minute measurement intervals for a week. Since the mea-

surement intervals are less than an hour, we expect to find

prominent hourly, daily and weekly frequencies. We find that

none of the selected models picked out the hourly frequencies,

instead picking just the daily and weekly frequencies. It turns

out that the latter two frequencies are also the largest.

Compared to Table III, it seems like the selected models

have included a lot more frequency components than nec-

essary. On closer inspection, many of these components are

additional frequencies that appear due to the quantisation

effect of FFT. Since FFT is effectively a discrete Fourier

transform (DFT), the additional frequencies arise because the

data’s prominent frequencies do not perfectly align with the

quantised bins of the DFT. Though we have performed most

suppression of these frequencies via preprocessing with the

Hamming window, another way to get around this effect is to

include the traffic sampling effects into the model (5). The new

model, however, would be more complicated (and changes the

form of the IC themselves). We leave this for future work.

We then examined the Japan 1 data with the results in

Table VIII. Here, due to the hourly measurement intervals,

hourly cycles cannot be observed, because its frequency is

higher than the measurement (sampling) rate. We find that

there are more harmonics present compared to the Abilene

data. Compared to the actual data, the selected Frequency

models by the IC are picking most of the daily and weekly

harmonics. AIC and AICcare selecting all the harmonics, while

BIC and nMDL are more conservative in their selection.

While some of the Other frequencies are due to FFT

quantisation effects, the majority of the Other frequencies in

the Japan dataset are mostly due to the harmonics arising from

a finite length sample. These are multiples of 1/3192 cycles

per hour, since our data length is 19 weeks. BIC and nMDL

demonstrate their robustness by selecting less of these Other

frequencies, unlike AIC and AICc.

IV. PREDICTIVE POWER EVALUATION

Here, we evaluate the predictive power of the IC with the

three dictionaries. When comparing the IC selected models, it

is not enough to compare them on their fit; the complexity of

the model must also be included. The fit is computed by the

RSS and the complexity of the model is determined by p in

the previous section.

We apply the IC under the models from the last section to

historical data and then obtain a prediction for a single week.

Note that the week-long traffic to test the models’ predictive

power is not part of the historical data used to train the models.

Figure 2 shows the predictions made by the Frequency,

Frequency + Spike and Wavelets models, via nMDL for a

single week from the Japan 1 data, with 48 hours plotted. All

models generally fit the diurnal cycles of the weekly traffic

quite closely, as all IC select the most important frequencies of

the diurnal cycle. What differs is their complexity; the Wavelet

models are the most complex as they contain the most number

of coefficients. The Frequency + Spike model (with no Spikes)

suffices in this case, since it has a low number of coefficients

with RSS competitive to the Frequency model.

For a clearer comparison, Tables IX to XII presents the RSS

error of the predictions made by the models for the four IC.

In all cases, the Frequency + Spike model has the best

predictive power to the number of coefficients, but predictions

with spikes do not necessarily give better performance. Spikes

are often due to anomalies, for instance, denial of service

attacks, and flash crowds [28]. When these anomalies will

occur is difficult to determine. Error is reduced in some cases

with spikes (e.g., Table IX) but this is not always the clear

winner. So spikes do not really aid in prediction, and should be

omitted. For instance, Figure 3 shows an example on Abliene

data where spikes were predicted, but the actual traffic do not

contain these spikes, resulting in significant prediction error.

There is little difference between predictions under vari-

ous IC because only one model class is used as per (5).

For example, in [10], several model classes were used and

evaluated together with various IC. The chosen models has a

more significant difference in performance as there is more
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Fig. 2. Predictions via the nMDL using the Frequency, Frequency + Spike (with no spikes) and Wavelet models on hourly intervals of Japan 1 data on a
single week starting 25th April 2014. For clarity, an interval of 48 hours is plotted. The light grey curve is the actual traffic, while the dashed curves are
the predictions. The close fit for all models is due to the models selecting the main frequencies that captures the diurnal cycles of weekly traffic. Here, the
Frequency model has the lowest RSS error.

IC Frequency
Frequency + Spike

Wavelet db6
No Spikes With Spikes

AIC 1437.9 1375.4 1254.4 1405.0
AICc 1431.3 1375.4 1254.4 1407.7
BIC 1395.1 1357.9 1256.1 1390.6
nMDL 1436.9 1375.4 1254.4 1394.2

TABLE IX
RSS FOR ABILENE AGGREGATED DATA MODEL COMPARISON.

PREDICTIONS WERE MADE USING DATA A WEEK PRIOR WITH 15 MINUTE

INTERVALS.

IC Frequency
Frequency + Spike

Wavelet db6
No Spikes With Spikes

AIC 196.6 195.7 202.4 196.1
AICc 191.3 195.7 202.4 196.2
BIC 175.5 195.7 202.4 196.2
nMDL 174.1 195.7 202.4 202.9

TABLE X
RSS FOR JAPAN 1 DATA MODEL COMPARISON. PREDICTIONS WERE MADE

USING DATA 19 WEEKS PRIOR WITH HOURLY INTERVALS.

IC Frequency
Frequency + Spike

Wavelet db6
No Spikes With Spikes

AIC 244.6 240.9 242.8 244.6
AICc 244.2 240.7 243.0 244.6
BIC 244.4 241.4 243.2 244.6
nMDL 244.4 240.8 243.1 244.3

TABLE XI
RSS FOR JAPAN 2 DATA MODEL COMPARISON. PREDICTIONS WERE MADE

USING DATA 3 WEEKS PRIOR WITH HOURLY INTERVALS.

flexibility in choice. Significant differences are likely if the

model class is widened from just (5), for instance, allowing a

trending and jump component to better fit increases in traffic

and level shifts in traffic due to route changes.

Wavelet models perform only as well, or slightly even worse

than Frequency models. In most cases, the models selected are

the same under different IC, so the resulting RSS is the same.

This shows that complex, fancier models do not necessarily

perform better, but may be detrimental to prediction.

Between all IC, nMDL often performs better, with BIC

IC Frequency
Frequency + Spike

Wavelet db6
No Spikes With Spikes

AIC 37.9 37.1 37.0 37.9
AICc 38.8 37.1 37.0 37.9
BIC 38.4 36.7 36.5 37.8
nMDL 38.4 36.7 36.5 37.8

TABLE XII
RSS FOR THE GÉANT DATA MODEL COMPARISON. PREDICTIONS WERE

MADE USING DATA 6 WEEKS PRIOR WITH 15 MINUTE INTERVALS.
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Fig. 3. Prediction via the nMDL for the Frequency + Spike (with spikes)
on 5 minute intervals of Abilene data on a single week starting 8th March
2004. For clarity, an interval of 48 hours is plotted. The light grey curve is
the actual traffic, while the black curve is the prediction. We see here that
the predicted spikes are not present in the actual traffic, causing significant
prediction error.

coming in at a close second. The results show that the models

with lower complexity are better predictors of future traffic

than their competitors.



V. RELATED WORK

There are many traffic models, most focusing on modelling

the heavy tails of network traffic [9], [20], [26]. Due to limited

space, we cover the most relevant ones here. Roughan et

al. [28] described a temporal model of traffic flows on the

backbone network that accounts for seasonal traffic variations

and long term growth. Lakhina et al. [19] showed how

principal component analysis (PCA) can be used to extract

features about the traffic. In particular, they showed three

distinct types of Origin-Destination network flows: diurnal,

spurious and noisy flows. These insights can be used to detect

anomalies [18].

Although IC are a standard practice of stochastic modelling,

to the best of our knowledge, few works have applied IC

to Internet traffic modelling. Agosta et al. [1], for instance,

used the BIC to approximate the Bayes factor when selecting

mixture models to model endhost traffic. Tenório et al. [10]

studied the performance of various IC on a model used for

blind detection of malicious traffic and concluded that the

Efficient Determination Criterion and the Exponential Fitting

Test performed the best for their application.

In terms of applying overcomplete dictionaries to network

traffic, Aiello et al. [2] tested three overcomplete dictionaries

for compression: the Fourier + Haar wavelets, Fourier + Spike

and Fourier + Spike + Haar wavelets, with selection performed

by a greedy pursuit algorithm. They noted that compression

is better with a larger overcomplete dictionary but at the cost

of higher computational complexity.

Their focus, however, was on data compression, so there was

an emphasis on high reconstruction fidelity, whereas here we

care about modelling and prediction. Their insights, however,

suggest the Fourier + Spike dictionary will outperform the

other two, which is indeed the case here as well.

Our work aims to systematise Internet traffic modelling by

introducing IC as a formal procedure that supplements mod-

elling and provides theoretical grounding to model selection.

For instance, IC can be used together with PCA [19] to select

a model about the network traffic flows.

VI. CONCLUSION

In this paper, we studied the application of information

criteria for selecting appropriate models for network traffic.

We compared five information criteria: AIC, AICc, BIC, two-

stage MDL and nMDL. The crucial insight of these criteria

is that complex models can over-fit a dataset, limiting their

utility for prediction. However, some criteria performed worse

than others, in particular, we found AIC and AICc to generally

perform poorly in our applications. We recommend the use of

BIC and nMDL due to their consistent performance in our

experiments (BIC and two-stage MDL were similar).
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