
Secure Distributed Data-Mining and Its Application to
Large-Scale Network Measurements

Matthew Roughan
School of Mathematical Science

University of Adelaide
SA 5005, Australia

matthew.roughan@adelaide.edu.au

Yin Zhang
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712, USA

yzhang@cs.utexas.edu

ABSTRACT
The rapid growth of the Internet over the last decade has been
startling. However, efforts to track its growth have often fallen
afoul of bad data — for instance, how much traffic does the In-
ternet now carry? The problem is not that the data is technically
hard to obtain, or that it does not exist, but rather that the data is
not shared. Obtaining an overall picture requires data from mul-
tiple sources, few of whom are open to sharing such data, either
because it violates privacy legislation, or exposes business secrets.
Likewise, detection of global Internet health problems is hampered
by a lack of data sharing. The approaches used so far in the In-
ternet,e.g.trusted third parties, or data anonymization, have been
only partially successful, and are not widely adopted.

The paper presents a method for performing computations on
shared datawithout any participants revealing their secret data.
For example, one can compute the sum of traffic over a set of ser-
vice providers without any service provider learning the traffic of
another. The method is simple, scalable, and flexible enough to
perform a wide range of valuable operations on Internet data.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring, network management; H.2.8 [Database
Management]: Database Applications—data mining

General Terms
Management, Measurement, Security, Algorithms

Keywords
Secure Distributed Data-mining, Secure Distributed Summation,
Network Measurement, Network Management

1. INTRODUCTION
There is a common problem in many areas of science: obtaining
adequate data. A particular frustration applies in some areas where
the data exists, but is held in such a way that the data may not be
accessed. Common examples arise in health science, where data
may be held by multiple parties: commercial organizations (such
as drug companies, or hospitals), government bodies (such as the
Food and Drug Administration) and non-government organizations
(such as charities). Each organization is bound by regulatory re-
strictions (for instance privacy legislation,e.g. [1]), and corporate
requirements (for instance on distributing proprietary information
that may provide commercial advantage to competitors). In such
a case, an independent researcher may not receive access to data

at all, while even members of one of these organizations sees an
incomplete view of the data. However, data from multiple sources
may be needed to answer some important questions. A classical ex-
ample occurs for an organization like the CDC (Center for Disease
Control and Prevention), who are mandated with detecting poten-
tial health threats, and to do so they require data from a range of
sources (insurance companies, hospitals and so on), each of whom
may be reluctant to share data.

The same problem has arisen in analysis of the Internet. The data
of interest concerns Internet properties of global interest: for in-
stance, traffic, network performance, routing, and topology. These
data are of obvious interest to Internet researchers, and there are
also commercial applications that require collection of data from
disparate sources. For example:

• The Internet’s growth has been often documented, but rarely
with any accuracy [23], and this is a real problem. Odlyzko
[23] provides convincing arguments that the lack of accuracy
in reporting of Internet growth contributed substantially to
the Internet bubble, which eventually lead to a major down-
turn in the telecommunications economic sector. It would be
of advantage to companies and their investors to have accu-
rate information about true traffic volumes. However, this
requires summation of traffic volumes from many individual
Internet Service Providers (ISPs), each of whom is typically
reluctant to reveal this data.

• Regulators often require access to data to make informed de-
cisions when writing or interpreting legislation. For example,
in adjudicating anti-trust cases (for example seehttp://
www.usdoj.gov/atr/cases/f7100/7183.htm),
one needs to assess whether a company has a monopoly over
some business, and therefore data is needed (in our case of
Internet traffic volumes).

• Threats to Internet health, such as viruses, worms, and Dis-
tributed Denial of Service (DDoS) attacks are a serious prob-
lem. The detection of these is directly analogous to the prob-
lem the CDC faces. The CDC must determine threats to hu-
man health, based on collection of data from various sources.
Problems in Internet health would be most easily detected
and analyzed if data from many ISPs could be combined.
Once again, however, ISPs are reluctant, or unable.

One approach to solving the above problem is to have an inde-
pendent third party that acts to combine the data of interest. Such
a party has to have the trust of all concerned parties, and legislative
power to side-step privacy controls. A trusted third party has not

emerged in the context of Internet measurements1. We argue that it
is not likely to appear any time soon. The highly competitive nature
of current ISPs, and the conservative nature of many network man-
agers means that they would be unlikely to trust a third party with
such data, unless mandated by further legislation. Furthermore,
such a third party creates the need for processes for collecting data
that are unlikely to be flexible or rapid, in order that a clear trust re-
lationship is maintained at all times2. While this may be sufficient
for some applications, it is clearly not useful for rapid detection of
Internet health problems.

The problem comes under the heading of distributed data-mining,
i.e.data-mining where the data of interest is distributed across sev-
eral databases, and one cannot combine it centrally to perform op-
erations on the data. More specifically, the problem under consid-
eration is a problem sometimes called “secure multiparty compu-
tation”, or “privacy preserving data-mining”. Both terms carry the
implication that the exchanges of information between databases
cannot reveal the contents of the databases. Obviously, this is a
challenging problem, but in the context of health sciences, there
are a number of solutions [9, 21]. That is, there are techniques,
whereby a distributed computation is made that reveals the answer
to a question of interest, without any of the parties involved becom-
ing aware of the specific information held in each other’s databases.
The methods are presented in the context of “honest but curious”
participants,i.e.participants who are willing to honestly contribute
their information, but who will try to find out whatever they can
about other participants. In addition, given business relationships
between companies are highly varied, some may choose to collude
to determine additional information, and the methods presented can
be made resistant to such collusion.

Given such a technique, we may then ask “How could we ap-
ply it to obtain useful information about the Internet?” This paper,
does not solve all the problems of privacy and distributed data in
the context of the Internet. However, we have found a few fruitful
applications: calculating the sum of traffic across a set of networks,
and detecting distributed Internet health problems. We believe that
these could be implemented immediately, given support of network
operators. This paper presents a roadmap to implementation of
these applications, describing the details needed for the particular
application to Internet data, given its peculiar requirements. In par-
ticular, we contribute a method for computing sketches in a secure
distributed fashion in order to reduce the size of data transfers.

The paper is organized as follows. Section 2 presents related
work on Internet data sharing. It is followed by Section 3, which
describes the algorithms we plan to utilize, in the context of the
applications of Internet traffic and performance measurement. We
make a number of new points in this section, which we have not
seen in the secure distributed computation literature, in particular,
we note the extensions to time-series analysis, and to sketch based
methods. Section 4 provides a description of the mechanisms and
motivations need to get such a system working. This section con-
centrates on practical problems of implementation, and diverges
once again from the existing secure distributed computation liter-
ature in considering a system with many more participants than
typical. Section 5 concludes the paper, and describes some future
directions for work on this topic.

1Except in some particular cases, for instance, the Australian Bureau of
Statistics (ABS) has fulfilled this role in regard to traffic measurements in
Australia [2].
2The ABS collected data on a quarterly basis, but is now reducing this to
yearly collection.

2. RELATED WORK
One approach to allow sharing of Internet traffic data isanonymiza-
tion [25, 26, 30]. In anonymization, some details of the traffic are
obscured in order to maintain privacy of the data. This allows the
data to be analyzed for a pertinent feature, without the features re-
quiring privacy being available to a researcher.

However, anonymization in most of its forms is limited when
one wants to compare data from multiple distributed datasets. In
particular, the keys into the data are often the thing requiring the
anonymization (for instance, IP addresses). When the keys are
anonymized, one loses the ability to join data from more than one
database, unless the anonymization is identical between different
databases, in which case, any party to the anonymization may have
enough information to reverse the process, and obtain some of the
original data. Privacy-preserving data-mining can avoid this prob-
lem.

Furthermore, few providers are willing to release traffic data un-
der under existing anonymization schemes. The particular reasons
for this reticence are sometimes hard to tie down, but they lie in the
fact that the exact data that a provider wishes to obscure is some-
times not known at the time of data capture. The important data
may only become relevant after the fact, at which point the data is
already public, and one cannot take it back. This is a conservative,
but valid strategy. Network managers’ goals are largely network
reliability, and efficiency, not research.

There is now a substantial literature on secure distributed com-
putation and data mining (e.g.see [3, 6, 7, 9, 21, 29, 31, 32] and
the references therein). It is not the intention of this paper to re-
view this literature, and so we restrict consideration to a few papers
directly related to the methods of use here (see the following sec-
tion), though note this is an active area of research. Of importance
is the fact that it was shown early on [31] that any polynomial time
function could be computed in a secure distributed manner, and so
a great deal of this literature considers how to do so efficiently. This
paper contributes in particular to this area by presenting a technique
for using sketches (an efficient representation of high dimensional
data) in secure distributed computation.

There is also a substantial literature on network security. While
one of our applications is in anomaly detection, the methods pre-
sented here should be seen as a toolbox for constructing (global)
data sets, to which we can apply arbitrary anomaly detection al-
gorithms (for examples see [4, 8, 19, 20, 27]). We therefore will
not focus on the anomaly detection component, except where its
requirements might influence our algorithm design.

3. APPLICATIONS AND ALGORITHMS
In this paper we concentrate on two applications: calculating the
sum of traffic across a set of networks, and detecting distributed
Internet health problems.

3.1 Secure summation of Internet traffic
As noted above, the total Internet traffic is unknown (though it is
estimated in [23]). Highly optimistic traffic-growth estimates un-
derlay the hype at the peak of the Internet boom. Given claims that
traffic would double every three months (a common claim) it was
not hard to justify almost any business on the grounds of getting
in early. However, the growth claims were largely unsubstantiated,
and turned out to be highly optimistic, with more realistic growth
being of the order of doubling every year.

How can one value Internet assets, or evaluate company perfor-
mance, in an environment where an error on the order of a factor
of 10 in growth every year is possible? As it turned out, one could

not, and this led (in part) to the burst of the Internet bubble [23],
and the collapse of many Internet companies.

Hence we wish to provide accurate, up-to-date estimates of total
Internet traffic. In principle the calculation of such totals is triv-
ially simple: assume ISPi carries total trafficvi, then we wish to
compute

V =

NX
i=1

vi.

There are of course practical considerations: for instance, what
time interval are the data collected over? Time intervals for mea-
surements must clearly be agreed in order to allow commensurate
summations to proceed. In addition there is the problem of what is
the total of interest?

1. total traffic carried by all providers?

2. total traffic accessing the Internet?

Sum (1) includes some double-counting, as traffic crossing the In-
ternet would typically cross several providers. Sum (2) specifies
that traffic should only be counted at the “edge” of the Internet, so
that traffic is not double counted. However a major transit network
might carry little or no edge traffic. The metric (2) might make such
a backbone appear to be a very small network, despite large transit
traffic, and there are other problems in defining the edge of the In-
ternet in any case. Clearly both views provide information, and we
suggest that one may wish to create several different summations:

• total access traffic:total traffic coming into and out of a net-
work via access links such as DSL, cable modem, or dial-up
links;

• total backbone traffic:total traffic crossing a network;

Together the two sets of data provide additional information about
the efficiency of inter-domain routing. In many cases, a clear divi-
sion between access links, and downstream providers may not be
easy to obtain, and so it might be more practical to divide traffic
entering a network by BGP-customers, non-BGP-customers, and
peers (a classification that is relatively easy to make in most large
networks [17]). We can then employ the method described here to
find sums across all BGP speaking networks

Given agreement on exactly which quantity one wishes to sum,
there is a well-understood process for performing secure distributed
summation [9]. Assume the valueV to be calculated is known to
lie in the interval[0, n], start from a particular ISP (we will de-
note this ISP 1), and list the other ISPs in some order with labels
2, 3, . . . , N . ISP 1 generates a random numberR uniformly on the
interval[0, n], i.e.R ∼ U(0, n). Then ISP 1 addsR to its traffic to-
tal v1 mod n, and sends this to the next ISP, which adds its traffic,
and repeats, until we get to the end of the sequence. The last ISP
returns the total to ISP 1, who can then subtract the original random
numberR, and compute the total (and then provide this number to
the other ISPs). Formally we specify the algorithm by

ISP 1: randomly generate R ∼ U(0, n)
ISP 1: compute s1 = v1 + R mod n
ISP 1: pass s1 to ISP 2
for i=2 to N

ISP i: compute si = si−1 + vi mod n
ISP i: pass si to ISP i + 1 mod N

endfor
ISP 1: compute vN = sN −R mod n

Each ISPi = 2, . . . , N has only the informationvi andsi−1,
which can be written in full as

si = R +

iX
i=1

vi mod n.

Since this value is uniformly distributed across the interval[0, n],
ISP i learns nothing about the other trafficsvj , j 6= i. At the last
step, ISP 1 hassN , and when it subtractsR away it gets the total
traffic.

Note that where we wish to allow computation of quantities that
may be negative, the condition thatV ∈ [0, n] can be easily re-
placed byV ∈ [−n/2, n/2]. The algorithm above requires only
that we adjust the range of the initial sum (i.e. in the second step
ISP 1 takess1 = n/2 + v1 + R mod n), and that in the last step
ISP 1 reverses this addition (i.e.vN = sN − n/2−R mod n).

Any ISP, givenV can computeV − vi =
P

j 6=i vi, and so this
approach only works forN > 2, and in reality, where one could
make meaningful guesses about some values, it is only really secure
for reasonable values ofN3.

This incredibly simple process can, unfortunately, be corrupted
if ISPs collude. If ISPl − 1 and ISPl + 1 share information, they
can computevl by takingsl−sl−1 (sl is received by ISPl+1, and
sl−1 is sent by ISPl− 1). A simple fix to this problem is provided
in [9]: each ISP randomly partitions its total traffic intoM shares
vim such that

vi =

MX
m=1

vim.

Note we explicitly allow negative sharesvim. Secure summation
is then performedM times to calculate the sum for each share in-
dividually. However, the summation order of the ISPs is permuted
for each share so that no ISP has the same neighbor twice. Standard
cryptographic methods can be used to enforce the summation order
for each share. To computevi, the neighbors of ISPi from ev-
ery iteration would have to collude. WithM shares,2M colluding
parties are therefore required to violate security.

There is an appealing alternative based on ideas originally ex-
pressed in [6] and extended in [3]. It has the advantage that no
cryptography is needed.

1. As before each ISPi randomly partitions its total traffic into
M sharesvim, and each partition is shared with a random
participant. ISPi choosesM − 1 ISPs{j1, j2, . . . , jM−1}
randomly from the list ofN . The random partition is chosen
by takingvijk for k = 1, . . . , M − 1 as random variables
(some negative and some positive), and choosingvi0 = vi−PM−1

k=1 vijk .

2. ISPi distributes sharevijk to ISPjk (k = 1, . . . , M − 1).

3. After share distribution, each ISP privately adds up all the
shares it has received,i.e. it computeszj = vj0 +

PM
i 6=j vij ,

where we setvij = 0 when ISPi did not send a share toj.

4. TheN ISPs sum the individual totals,i.e. V =
P

i zi. A
secure summation is not needed here [6].

The above approach is guaranteed secure [3] against collusion for
less thanM − 1 colluding parties. It has an advantage in that it
can also be formally shown to provide bounds on the probability

3Any multiparty computation (secure or otherwise) gives out the result, and
hence cannot be secure against revealing whatever can be deduced from the
input of a party and the ultimate output.

of successful collusion for more thanM − 1 colluding parties [3]
that decay exponentially withM . In addition, the parties involved
will not know whether collusion has been successful, reducing the
value of any data gained this way.

An appealing alternative to dividing the traffic into simple shares
(as above) is to use Shamir’s Secret Sharing Scheme [28]. Shamir’s
Scheme breaks a secret intoN shares such that from anyM the se-
cret can be reconstructed. The method works by choosing a random
degreeM − 1 polynomial

y(x) = a0 + a1x + · · ·+ aM−1x
M−1,

such that the value of interest isa0. The shares consist of pairs
(xi, yi) lying on the polynomial (forN different values ofxi 6= 0).
It is simple to show that forM−1 such pairs we cannot recover the
polynomial (and hencea0). However, givenM such data points,
we can uniquely identify the polynomial.

Benaloh [6] shows that the approach of summation of the shares
can be applied to the shares generated using Shamir’s Scheme, and
so we can break the secret (the ISPs traffic), into such shares, dis-
tribute these, and then perform the algorithm as above. Hence
the communications complexity can be made linear in the num-
ber of nodes on the network using either approach. Using Shamir’s
Scheme combined with Beneloh has the advantage that it can pro-
vide robustness to missing data — the secret shares are such that at
leastM are needed to reconstruct the total (rather than exactlyM
in the previous approach). If one node becomes unavailable during
the computation then we might loose the information it contains,
however, if the secret was partitioned intoN components, andM
are still available, then we can still reconstruct the original secret.
One can then tune between the required redundancy and the com-
munications overheads of the protocol. Furthermore, the order of
computation is not important in this method, and it requires only
two rounds of communication, instead ofN , reducing its latency.
Thus this approach has some advantages, despite being somewhat
more complex to implement.

There is still one limitation of the algorithm in that it assumes
that the ISPs are semi-honest to the extent of inputing correct data
into the algorithm. No method can avoid this limitation without
detailed scrutiny of the ISP’s networks, and the semi-honest as-
sumption is common to many such secure computation problems.

In terms of practicality, nearly all providers collect Simple Net-
work Management Protocol (SNMP) data sufficient to compute
their total traffic (precisely because such figures are useful in the
context of forward planning). SNMP data limits the time granu-
larity of the traffic totals collected, but for forward planning, and
economic analysis a granularity of one day should be amply suffi-
cient, and is easily obtained using SNMP.

The above approach could be used in a highly flexible manner, by
collecting traffic data at different time scales (minutes, hours, days,
or months), or looking at different aspects of the traffic (packets,
bytes, or number of flows). We could also consider creating net-
work metrics such as

• number of routers,

• number of links, or number of links of each type (e.g.OC48,
Gig-Ethernet)

• kilometres of fiber,

• bandwidth-miles of network capacity,

• traffic-miles for carried traffic,

computing each using distributed summation. The method could
also be focussed on particular groups of traffic, for instance, traffic

on specific TCP ports, or to a particular destination prefix, or per-
formance measurements. That brings us to our second application
for privacy preserving data-mining: finding Internet problems.

3.2 Detecting distributed network problems
The previous application was motivated by economic concerns (as
well as research interest). Such concerns typically act over long
time scales (weeks, to months, to years). In some cases such data
has been collected and analyzed by a trusted third party, and one
might wish this to be the case everywhere (though it seems to us
unlikely).

On the other hand, security threats act on the short term (sec-
onds to hours). It seems unlikely that a centralized organization
can build the type of trust required to have almost instantaneous
access to traffic or performance data that they might need to ana-
lyze an arbitrary security threat. On the other hand, the flexibility,
and ease of the above approach makes possible some quite power-
ful analyses without any third party being needed.

Data of interest in detecting Internet health problems include:

• traffic data at various granularities (e.g.per prefix, or port);

• performance data (such as collected from active probes).

Note that the data would now be a set of time series, so that various
anomaly detection algorithms can be applied (e.g.see [4, 8, 19, 20,
27]). Initially, let us consider detecting anomalies in a few com-
monly used statistics, such as average volumes of packets, bytes,
and flows, or average network performance. These would allow
detection of larger events. In addition, a mechanism could be pro-
vided to allow queries to be created on the fly for more specific
traffic data to be collected. For instance, suppose a DDoS attack
is suspected to be targeting a particular customer, one might create
a query to find a time series of the traffic that has been directed
towards that customer’s prefix from all participating ISPs.

SNMP measurements are not detailed enough for a prefix based
query. Flow-level aggregation might be, and although not all providers
collect such data it is not as important that all providers participate
for such an application. A sample of providers may well provide
enough data to answer a particular question. At the very least this
is better than the view a single ISP has currently.

These applications are more demanding in their data require-
ments, and also in the algorithms one might apply. For instance,
while the method for computing distributed sums is directly appli-
cable when we wish to compute traffic data for anomaly detection,
performance data is somewhat different. In the first analysis, one
is often interested in the average (the arithmetic mean) of the per-
formance measurements, which we could compute easily using a
distributed sum as above (dividing byN after the last step). How-
ever, such a simple average may give unwanted weight to smaller
ISPs whose performance measurements have little impact on the
wider Internet. In such a case, it may make more sense to report a
traffic weighted average, i.e.we wish to know

V =

PN
i=1 tidiPN
i=1 ti

,

where, for instance,ti is the total traffic for ISP i, anddi is the
average delay across their network. The above weighted average
can be easily computed by taking two steps, in the first we computer
the total traffic

PN
i=1 ti by takingvi = ti, and in the second we

compute
PN

i=1 tidi by takingvi = tidi.
The arithmetic mean suffers from a second problem in that it

loses a large part of the detail of the distribution of delays. For
instance, in many cases we might be more interested in the higher

percentiles of the distribution of delays. We can compute an ap-
proximation to a distribution by simply partitioning the distribution
into K bins, and then computing

Vk =
1

N

NX
i=1

pik,

wherepik is the probability that the delay distribution of ISPi falls
into thekth bin. TheVk then form average probabilities for the
distribution of delays. Such a distribution may prove more useful
than a simple mean.

3.3 Time-series algorithms
The approaches above are based on the idea that one would per-

form summation over the ISPs to first obtain a time series, on which
one might perform an arbitrary anomaly detection algorithm (for
examples see [5, 8, 27]). However, it is worth noting that one might
prefer to perform the algorithm on individual time series, and then
aggregate the results, the assumption being that averaging prior to
anomaly detection may “wash out” the anomalies.

However, note that many anomaly detection algorithms are based
on a linear transformation of the time series, for example the ARIMA,
Fourier and Wavelet methods [33]. Given the anomaly detection is
based on a linear transformL(·) of the data, then given each ISP
observes time seriesx(i) we note that by linearity

L
ÃX

i

x(i)

!
=

X
i

L
ş
x(i)

ť
,

and so it makes no difference whether we perform the transform on
the individual data sets or the summation.

Most anomaly detection transforms are followed by a threshold
operation: anomalies are signaled to an operator when|L(x)| > T .
This is a decidedly non-linear operation, and so this is where the
washing out of anomalies might occur, though note that in many
cases the aggregation actually should have the effect of washing
out thenoise, and making the anomalies stand out more clearly (by
improving the signal-to-noise ratio).

If the order of thresholding is of concern, then we may apply
the following approach to the problem. Each ISP creates a bitmap
time-series, where each bit indicates the presence or absence of an
anomaly at each time interval. Formally, we define

y(i)(t) =

(
1, if

ŕŕŕL
ş
x(i); t

ťŕŕŕ > T

0, otherwise

whereL
ş
x(i); t

ť
is a linear transformation of the time seriesx(i)

at time pointt (we leave choice of thresholds to future work). We
then perform a distributed summation of the bitmaps,i.e. we cal-
culatey =

P
i y

(i). Finally, we threshold the distributed sum to
find time points where it is greater than0. Thus we perform a dis-
tributedORon the individual ISPs’ anomalies. We can generalize
this approach to other logical operators by obvious extensions.

Note that the operations above are not strictly privacy preserving
as one gains access to some intermediate results. For example, in
the case of theORoperation above, one also gains access to the
number of providers for which the threshold is exceeded. While the
secrecy of these intermediate results are not necessarily important,
it is noteworthy that considerable effort has gone into developing
approaches that allow strict privacy. For example, Atallahet al. [3]
show that time-series algorithms (such as detecting a linear trend)
can be performed, without revealing intermediate values. In the
case of detecting a trend, the algorithm will reveal the slope to all
parties, without revealing the absolute values.

3.4 Generalization to sketches
Now, it is perhaps too much to hope to have all possible views of

the data (by port, or prefix, etc.) being global distributed. The vol-
ume of data would become tremendous. There are several methods
for building more compressed views of this type of data (in order to
find anomalies),e.g.[14, 19], but it is unclear how one could apply
these methods in a distributed setting (such as above), though this
may be a productive avenue for future research.

However, one more sophisticated anomaly detection mechanism
that can be easily generalized is that of sketch-based change detec-
tion [18]. Instead of performing anomaly detection on the original
data, we first build compact summaries of the traffic data using
a sketch, a small-space data structure that allows one to approxi-
mately reconstruct the value associated with any given key. We can
then implement a variety of time-series forecast models (ARIMA,
Holt-Winters, etc.) on top of such summaries and detect signifi-
cant anomalies by looking for flows with large forecast errors. Be-
ing able to compute significant differences in the list of top flows
quickly can point towardspotentialanomalies. Depending on the
length of the time period for which we compute forecasts and the
duration of significant changes, we can accurately identify the pres-
ence of an anomaly.

Besides change detection, sketches are the basis for answering
a number of fundamental queries on massive data streams, such
as range queries, heavy hitters, and quantiles [22]. More recently,
sketches have also been used for tracking distributed queries [10]
and mining multigraph streams [12]. Sketches have many variants,
such as counting Bloom filters [16], multi-stage filters [15], and the
Count-Min sketch [11]. Below we introduce one such variant, the
Count-Min sketch, and show how we can generalize it in a privacy
preserving manner.

Data. We wish to study a data stream consisting of updates(a, u),
wherea ∈ {1, . . . , n} is a key, andu ∈ IR a value. The signal
that results from these updates is a high-dimensional vectorv ∈
IRn, which records the total value for each key,i.e. for each update
(a, u), we performva+= u.

Sketch. A Count-Min sketch consists of ad × w array of counts:
c[1, 1] . . . c[d, w]. Each entry of the array is initialized to zero. In
addition,d hash functionsh1 · · ·hd : {1 · · ·n} → {1 · · ·w} are
chosen uniformly at random from a pairwise independent family.

Update. When an update(a, u) arrives, each rowi of the sketch is
updated by adding quantityu to the counter corresponding to index
hi(a). That is, for all1 ≤ i ≤ d, updatec[i, hi(a)]+= u.

Query. When a point queryQ(a) arrives, an approximation ofva

is given byv̂a = mini c[i, hi(a)].

From the above specification, it is clear that the sketch data struc-
ture is linear in that we can add or subtract two sketches by adding
or subtracting them on a per-entry basis. As a result, in order to
generalize to provide privacy preserving summaries of the global
data, we just require that each party uses the same hash functions,
and then we can directly apply the secure summation protocol on
each individual entryc[i, j] of the local sketches.

There are other approaches to privacy preserving distributed data
mining that might also be useful in this context (for instance, one
may use set intersection methods to compute medians of distribu-
tions), but we believe that the simple summation approach provides
significant value with maximal simplicity, and should be the first
approach tested.

4. HOW TO MAKE IT WORK
There are three parts to this section, the first, on motivation, or
“why should I participate”, the second on mechanisms for build-
ing a real instantiation of the above, and the third considers some
practical issues.

4.1 Motivation
To make such an approach work in practice, ISPs must be moti-
vated to participate. Legislative approaches to enforce participation
should be seen as a last resort, primarily because we wish com-
panies to provide reliable data into the system, which we believe
would be easier if the companies are positively motivated, rather
than coerced.

Motivations for researchers in this context are obvious: the data
would have a high intrinsic appeal for many such researchers. How-
ever, the motivation to join such a system cannot be research based.
The motivation should be primarily company self-interest. It does
not appear hard to provide such motivations,e.g.

• better planning for all ISPs;

• less internal rhetoric about company success: companies can
objectively measure success, which should be appealing to
senior management;

• better security Internet wide;

and the method would do this all without leaking any competitively
sensitive information to other ISPs.

Making the cost to join such a system negligible would be a big
plus for participation (especially for small ISPs). In order to make
the method as cheap as possible for an ISP to implement, we intend
it to be all open-source code, using common standards and tools, for
instance RRDtool [24] is very commonly used by ISPs to record
their SNMP traffic data, and building our system around the use
of such a tool would be a good starting point. The computational
requirements should also be such that it could be run on just about
any server someone has lying around available for this service (note
the algorithms described above are generally light on computation
requirements). Relying (in the first instance) on SNMP data is also
a good start, as such data is nearly universally available, and col-
lected by most ISPs.

4.2 Mechanisms
There are several parts to an implementation:

• initialization: setting up communication between all partici-
pants;

• request a query: this includes the standard types of queries
used to form, for example, the total traffic on the Internet.

• distributed calculation: performance of the privacy preserv-
ing distributed calculation for a particular query;

We discuss details of each in turn below.

4.2.1 Initialization
Setting up communications between an arbitraryN participants

is non-trivial. Luckily, it has been much studied. In particular,
Peer-2-Peer (P2P) systems appear to have many appealing features.
They allow arbitrary joining and leaving of participants, and build
mechanism for sharing data efficiently between these participants.

We suggest that such a P2P system should be used (reducing
our need to design specialized protocols) for all communication
between participants.

Additional authentication may be required, in order that arbitrary
(non-ISP) participants do not join, and attempt to damage the sys-
tem. Authentication is again non-trivial, but frequently studied, and
we consider it to be a solved problem (within our context).

The P2P system is responsible for allowing properly authenti-
cated participants to join or leave (and keeping track of those who
might unintentionally leave the system); for allowing file transfers
between the participants, and for maintaining a visible list of par-
ticipants. We shall remain agnostic about which P2P system should
be used, conditional on these features being available.

4.2.2 Queries
A second component of the system would be a mechanism to

request a query. A general query might be of the form

sum all traffic over time [t,t+dt]

Obviously, query specifications are important here, but again this
is an area much studied in Internet measurement, for instance see
[13] and the references therein. Note that we do not require real-
time responses to queries — the approach we propose works asyn-
chronously, and so, there is no need for all participants to be “on
schedule”. We simply wish the calculation to proceed as quickly as
possible.

We envisage that initially only standard queries (such as total
traffic) would run, and so a special node might be given responsi-
bility for requesting this query. Note that one could easily create
redundancy by delegating multiple alternate nodes to request the
standard queries, should the originally nominated node disappear
from the system.

4.2.3 Distributed calculation
Given each participate has access to a list of participants, and the

desired value to sum, it is simply a matter of implementing the algo-
rithms from Section 3. We describe here the most complicated al-
gorithm (i.e., the one based on Shamir’s Secrete Sharing Scheme),
as implementation of the other schemes is somewhat obvious. First
each ISP creates its own random polynomial

yi(x) = vi + a
(i)
1 x + a

(i)
2 x2 + · · ·+ a

(i)
M−1x

M−1,

Note that all arithmetic is performed modulop, wherep is a prime
number greater thanN andV , and the random coefficientsa(i)

k are
chosen uniformly on[0, p). The ISPs must agree on a set of distinct
pointsxj 6= 0 for j = 1, . . . N , at which each ISPi generates the
valuesy(j)

i = yi(xj)

Initially, let us consider the case where ISPi then distributesy(j)
i

to ISPj. ISPj sums the terms it receives to get

y(j) =

NX
i=1

y
(j)
i ,

which are then distributed to all ISPs. From anyM of these we
may determine the polynomialy(x) =

P
i yi(x), from which we

obtainV = y(0), though note that only ISPi has access toyi(x).
This approach is simple, highly robust to missing data (ISPs that

drop out), and immune to collusion by up toM − 1 parties. It
takes only two rounds of computation. However, its communica-
tions overhead isO(N2). To reduce this the first step of distribut-
ing they

(j)
i should be performed for a limited set ofK ≥ M of

the pointsxj . Obviously, this concentrates computation and com-
munications overheads on a limited subset of the ISPs, however,
this set can be changed for each calculation (as can the polyno-
mials in case coefficients are leaked via other insecure pathways).

Alternative approaches may be possible where the partitioning of
computation in a single computation is more evenly shared, but this
seems to be a topic for future research.

The second step of sharing they(j) can be reduced toO(N) by
designating one (or a few) ISPs to perform the final computation
(these ISPs must then share the results with the other ISPs). Using
these approaches the communications overheads can be reduced to
O(KN), with resistance to collusion by up toM − 1 parties, and
redundancy to (at least)K − M ISPs dropping out after the first
stage of the computation (dropping out before this simply removes
their traffic from the results).

4.3 Practical issues
Being wildly optimistic we naturally assume all ASes (some

20,000) might join this system. Most examples of distributed data-
mining in the literature are not this distributed (they typically use at
most a dozen databases). Is it possible to make distributed cal-
culations on such a scale? In fact the Internet already involves
a distributed calculation on this scale, namely, BGP (the Border
Gateway Protocol), which already uses a distributed computation
between all of these ASes to compute global routes. It does so
continuously. So the scale of the problem is feasible. However,
in reality, it is likely that many fewer will join. In practical terms
this is not a problem — the vast majority of traffic traverses a few
large networks. Getting the majority of these involved would pro-
vide a substantial, and nearly authoritative data set. For instance,
according to the ABS, in March 2005 there were 689 ISPs in Aus-
tralia, however only 25 were classified as large, and only 10 as very
large. The top ten ISPs carried 63% of the traffic, and the top 35
carried 87% of the traffic, thus, a relatively small number of ISPs
could provide large amount of value (obviously the numbers will be
larger in the United States and Europe, but it is likely that similar
ratios hold).

A second practical issue is that participants may come and go
from the system (hopefully more of the former), either through
choice, or because of failures of their node, or network. Hence the
system must live with changing numbers of participants. As noted
the approach proposed can be made robust to ISPs leaving during a
computation, but what about longer term growth estimation where
the number of participants is changing as fast as the total traffic?
This is a more thorny problem — how can we compare sums from
different time intervals if the sum are based on data from a differ-
ent set of participants. Given this possibility the number of ISPs
included in each step of the computation should be recorded, so
that at least one can look back across data, and test whether the
number of participants was a significant factor in the results. Addi-
tionally, the use of RRD files (described below) can alleviate some
of the issues regarding changing numbers of participants.

An important aspect of the problem is how to efficiently store
and transfer data. RRDtool [24], formally the Multi-Resolution
Traffic Grapher (MRTG), is one of the most common tools used
by ISPs to collect and manage their SNMP data. It is popular for
several reasons: it is essentially free, it is easy to use and configure,
and it uses a clever method to maintain its database at constant
size. This is what interests us here: the method used is a Round-
Robin Database (RRD). A RRD stores data on fine times scales for
a limited amount of time removing older values for newer ones,
but values that are removed are not lost. When data is removed, it
is in fact aggregated over a longer time interval, and stored in this
form (again in a RRD). So, for instance, we might keep 5 minute
granularity traffic data for 1 day, 1 hour averages, and maxima of
this data for 1 week, and 1 day averages and maxima for one year.
In this form, the database does not grow over time (as more data

is collected) but we can see a view of the data over multiple time
scales. This is ideal for network operations, because the fine data
is typically only needed for recent data, and the longer term data is
used to find trends, which one can see with the courser granularity
data just as well.

This is directly applicable here. Instead of computing single
sums for a time interval[t, t + dt] for each query we propose that
the queries use data as a RRD. That is, data to be transfered, and
summed is held in a RRD, both in initial form, intermediate form,
and final form. The result is (1) a finite, fixed file size to be trans-
fered at each step, and (2) we can compute an entire time series for
all current participants, for each query. Even if participants change
over time, the current calculation will be with respect to all cur-
rently participating ISPs, and will go back as far in time as the set
of ISPs have been collecting data.

The RRD files being transferred4 can be chosen with parameters
suitable to the calculation of interest. For example, for traffic sums
(which are likely to be used in long term economic analysis) we
need longer term data, but at a courser resolution, so perhaps 1
day averages over several years would be appropriate (making the
calculation onO(1000) terms each time). For another example,
anomaly detection, we might wish to have several weeks of data at
a 5 minute time scale (the smallest interval typically collected by
ISPs), resulting inO(4000) data elements. So we are not talking
about very large volumes of data. Given reasonable compression,
we might achieve something better than 5 bytes per data point, so
we are talking of the order of 5-20kB transfers. GivenN = 1000,
andK = 20, this would result in traffic of400MB for one query.
Clearly we do not wish to run too many such queries (though note
that this traffic distributed over the ISPs).

As a result, we additionally suggest that a throttling mechanism
is needed, to prevent the system being used to launch a DoS attack
via a malicious user. Such a throttling mechanism would avoid
one ISP trying to trawl through the data of the others to obtain
some commercial advantage. We suggest a simple leaky bucket
mechanism to reduce the rate at which a single node can originate
queries.

5. CONCLUSIONS AND FUTURE WORK
This paper has presented a road map towards implementing a

method of collecting meaningful Internet wide statistics of great
use to providers and researchers alike. The method is needed, and
the components required to make it work all exist. We plan in the
future to implement the approach to demonstrate its main features:
security, flexibility, and scalability.

There are many avenues for future research on this topic. Apart
from obvious possibilities such as collecting statistics for each geo-
graphic region, or performance metrics between regions, one might
like to consider some more sophisticated algorithms and how they
might be used in this context. For instance, measuring traffic matri-
ces is non-trivial, and so much effort has gone into their inference
from other data (for example see [34] and the references therein). It
would be interesting if such inverse problems can be solved using
distributed summation methods.

6. ACKNOWLEDGEMENTS
We would like to thank one of the anonymous reviewers for

many valuable comments.

4We need to use RRDtool’s export format to avoid big/little-endian data
representation problems. This format is XML, so it would also be beneficial
to apply some compression to the database files before transfer.

7. REFERENCES
[1] Data-mining moratorium act of 2003. Introduced in Senate

of the United States in January 2003.http://thomas.
loc.gov/cgi-bin/query/z?c108:S.188: .

[2] Internet Activity, Australia.
http://www.abs.gov.au/Ausstats/abs@.nsf/
0/6445f12663006b83ca256a150079564d?
OpenDocument , 2005.

[3] M. Atallah, M. Bykova, J. Li, K. Frikken, and M. Topkara.
Private collaborative forecasting and benchmarking. In
Proceedings of the ACM Workshop on Privacy in the
Electronic Society (WPES’04), Washington, DC, USA,
October 2004.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis
of network traffic anomalies. InProceedings of ACM
SIGCOMM Internet Measurement Workshop, Nov 2002.

[5] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal analysis
of network traffic anomalies. InACM SIGCOMM Internet
Measurement Workshop, Marseilles, France, November
2002.

[6] J. Benaloh. Secret sharing homomorphisms: Keeping shares
of a secret secret. InProc. Advances in Cryptology (CRYPTO
’86), pages 251–260, 1987.

[7] J. Brickell and V. Shmatikov. Privacy-preserving graph
algorithms in the semi-honest model. InASIACRYPT, LNCS,
pages 236–252, 2005.

[8] J. D. Brutag. Aberrant behavior detection and control in time
series for network monitoring. InProceedings of the 14th
Systems Administration Conference (LISA 2000), New
Orleans, LA, USA, December 2000. USENIX.

[9] C. Clifton, M. Kantarcioglu, J. Vaidya, X. Lin, and M. Zhu.
Tools for privacy preserving data mining.SIGKDD
Explorations, 4(2), December 2002.

[10] G. Cormode and M. arofalakis. Sketching streams through
the net: Distributed approximate query tracking. In
Proceedings of the International Conference on Very Large
Data Bases, 2005.

[11] G. Cormode and S. Muthukrishnan. An improved data
stream summary: The count-min sketch and its applications.
Proceedings of Latin American Theoretical Informatics
(LATIN), pages 29–38, 2004.

[12] G. Cormode and S. Muthukrishnan. Space efficient mining
of multigraph streams. InProceedings of ACM Principles of
Database Systems, 2005.

[13] C. Cranor, T. Johnson, and O. Spatscheck. Gigascope: a
stream database for network applications. InSIGMOD, June
2003.

[14] C. Estan, S. Savage, and G. Varghese. Automatically
inferring patterns of resource consumption in network traffic.
In Proc. ACM SIGCOMM, Karlsruhe, Germany, August
2003.

[15] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. InProc. ACM
SIGCOMM ’2002, Pittsburgh, PA, August 2002.

[16] L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache:
A scalable wide-area Web cache sharing protocol. InProc.
ACM SIGCOMM ’98, Vancouver, British Columbia,
CANADA, 1998.

[17] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford. Netscope: Traffic engineering for IP networks.
IEEE Network Magazine, pages 11–19, March/April 2000.

[18] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen.

Sketch-based change detection: Methods, evaluation, and
applications. InACM SIGCOMM Internet Measurement
Conference, Miami, Florida, USA, October 2003.

[19] A. Lakhina, M. Crovella, and C. Diot. Characterization of
network-wide anomalies in traffic flows. InACM SIGCOMM
Internet Measurement Conference, Taormina, Sicily, Italy,
October 2004.

[20] A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. InACM SIGCOMM, 2004.

[21] Y. Lindell and B. Pinkas. Privacy preserving data mining.
Journal of Cryptology, 15(3), 2002.

[22] S. Muthukrishnan. Data streams: Algorithms and
applications, 2003. Manuscript based on invited talk from
14th SODA. Available fromhttp://www.cs.rutgers.
edu/˜muthu/stream-1-1.ps .

[23] A. M. Odlyzko. Internet traffic growth: Sources and
implications. In B. B. Dingel, W. Weiershausen, A. K. Dutta,
and K.-I. Sato, editors,Optical Transmission Systems and
Equipment for WDM Networking II, volume 5247, pages
1–15. Proc. SPIE, 2003.

[24] T. Oetiker. RRDtool.http://people.ee.ethz.ch/
˜oetiker/webtools/rrdtool/ .

[25] R. Pang and V. Paxson. A high-level programming
environment for packet trace. InProc. ACM SIGCOMM,
August 2003.

[26] M. Peuhkuri. A method to compress and anonymize packet
traces. InACM SIGCOMM Internet Measurement Workshop,
San Francisco, USA, November 2001.

[27] M. Roughan, T. Griffin, M. Mao, A. Greenberg, and
B. Freeman. IP forwarding anomalies and improving their
detection using multiple data sources. InACM SIGCOMM
Workshop on Network Troubleshooting, pages 307–312,
Portland, OR, September 2004.

[28] A. Shamir. How to share a secret.Communications of the
ACM, 22(11):612–613, 1979.

[29] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza,
Y. Saygin, and Y. Theodoridis. State-of-the-art in privacy
preserving data mining.SIGMOD Record, 33(1):50–57,
2004.

[30] J. Xu, J. Fan, M. Ammar, and S. Moon. Prefix-preserving IP
address anonymization: Measurement-based security
evaluation and a new cryptography-based scheme. InICNP,
Paris, November 2002.

[31] A. Yao. How to generate and exchange secrets. InProc. of
the 27th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 162–167, 1986.

[32] A. Yao. Protocols for secure computations. InProc. of the
23th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 160–164, 1986.

[33] Y. Zhang, Z. Ge, M. Roughan, and A. Greenberg. Network
anomography. InProceedings of the Internet Measurement
Conference (IMC ’05), Berkeley, CA, USA, October 2005.

[34] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fast
accurate computation of large-scale IP traffic matrices from
link loads. InACM SIGMETRICS, pages 206–217, San
Diego, California, June 2003.

