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ABSTRACT
Network topology synthesis seeks methods to generate large
numbers of example network topologies primarily for use in
simulation. It is a topic that has received much attention
over the years, underlying which is a conflict between ran-
domness and design. Random graphs are appealing because
they are simple and avoid the messy details that plague
real networks. However real networks are messy, because
network operators design their networks in the context of
complex technological constraints, costs, and goals. When
random models have been used they often produce patently
unrealistic networks that only match a few artificial connec-
tivity statistics of real networks: the features that make the
network useful and interesting are ignored. At best a net-
work divorced from context is a purely mathematical object
with no meaning or utility. At worst it can be completely
misleading. However, design alone cannot generate an en-
semble of networks with the variability needed in simulation.
We need to balance design and randomness in a way that
generates reasonable networks with given characteristics and
predictable variability. This paper presents such a method,
Combined Optimization and Layered Design (COLD), in-
corporating randomness and design principles to create en-
sembles of PoP-level synthetic networks.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Network
Architecture and Design—Network Topology ; C.2.5 [Computer
Communication Networks]: Local and Wide-Area Net-
works

General Terms
Design,Theory
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Topology generation, Heuristically Optimal Topologies
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1. INTRODUCTION

Everything should be made as simple as it can
be — but not simpler.

– Attributed to A. Einstein

The core problem of network synthesis is: take one or
more network topologies, and produce a larger set of topolo-
gies that is similar in some fundamental way. The resul-
tant topologies have most commonly been used in network
simulation and emulation in order to test new networking
algorithms and protocols whose properties and performance
often depend on the structure of the underlying network.

The problem imposes requirements, with most attention
historically aimed at “similarity”, because it is difficult to
universally define for all types of network. It may mean
something completely different when considering virtual net-
works (e.g., the Facebook Social graph) or physical networks
(e.g., data networks). For instance, a virtual network need
not be connected, whereas a disconnected data network is
broken. This paper is concerned with data-communications
networks.

Our approach is motivated by Li et al. [1] who note that
the criteria for measuring similarity must originate with net-
work operators. Their goals, constraints and decisions result
in a network, and any method that ignores this in favor of
overly simplified abstract synthesis risks generating unrea-
sonable networks. We extend this idea from HOT router-
level synthesis described in [1] to multi-layered networks,
where it takes a different form. Large data networks are
not designed by a pure router-level optimization, they use
hierarchy and templated design to simplify the design pro-
cess [2–4]. The most common form of hierarchy being the di-
vision into PoPs (Points of Presence). Our approach, COLD
(Combined Optimized Layered Design), is aimed at mirror-
ing this design process.

In this paper we focus on the synthesis of the PoP-level,
as the first step of a layered approach to generating a more
detailed router-level network. We focus on the PoP-level
because:
• this is the level at which many of the interesting problems

lie (the generation of the router-level network from the
PoP level can be easily accomplished using either existing
probabilistic methods [5], or structural methods [6]);
• networks change less frequently at the PoP level than at

the router level [7]; and
• the PoP level is the more interesting level for many ac-

tivities [7], because it is less dependent on the details of



protocol implementations, router vendor and model, and
other technological details.

The last point is subtle but important. When using a net-
work as part of a simulation, one would like to have a net-
work that is invariant to the method being tested. If a net-
work designer might change his/her network in response to a
new protocol, say a routing or traffic engineering algorithm,
then the test will be ambiguous. PoP-level networks are
less sensitive to these details than router-level networks, be-
cause routers impose physical and technological constraints
that are almost completely dependent on the details of the
router vendor, model and even the version of software run-
ning on the router.

PoP-level optimization is substantially different from the
router-level optimization considered in [1]. At the PoP level,
we have different constraints – we are no longer limited by
technological issue such as port numbers – and the opti-
mization objectives are different, so a considerable part of
this paper is concerned with framing, and then solving, this
problem (see Sections 3-7).

There are additional challenges to be met:

1. Simulation requires us to generate a potentially large
number of network topologies that are “similar”, but var-
ied enough to perform statistical analysis of results, e.g.,
generating confidence intervals for performance estimates
[8, 9].

2. A network’s form is driven by real costs and technical
constraints. For instance, it must be able to carry a
given volume of traffic. If this is ignored, then the re-
sulting network could be unreasonably expensive, or even
impossible to construct [1].

3. Model parameters must be operationally meaningful. Pa-
rameters with only abstract meaning (e.g., nth degree
distribution) are much harder to use in practice. For
instance, it is often hard to scale abstract parameters
correctly if one wishes to consider the effect of network
growth. Parameters such as costs allow one to test net-
work protocols given different tradeoff decisions by net-
work engineers.

4. The approach should be tunable: it should be possible to
control the output to see what effect the type of network
has on a protocol or algorithm. For instance, one may
wish to see the effect of a network becoming more highly
connected or more clustered.

5. The model should generate a “network”, not just an ab-
stract graph. Simulations often need details such as link
capacity, distances, and routing. Ideally these should be
generated as part of the model. If these details are gen-
erated after the topology synthesis then that additional
process should be taken into account when considering
the complexity of the method.

6. The model should be “as simple as it can be – but not
simpler”. Simplicity has many virtues: it improves our
intuitive understanding, reduces the complexity of pa-
rameter estimation, and prevents over fitting. There is a
tension between “realism” and “simplicity” – determining
the correct tradeoff between these is perhaps the most
difficult of these challenges.

COLD satisfies these requirements. The key is choosing a
synthesis process that parallels the real network design used
by many network engineers, i.e., heuristic optimization of

economic and demographic objectives and constraints, fol-
lowed by templated design to implement physical router-
level structures within PoPs (see [6] for example), mimick-
ing the highly structured and pattern-based methods recom-
mended in basic texts on network management [2–4]. Like-
wise, simple heuristics can be used to create interdomain
connectivity between networks if such is needed. Although
this paper focusses on the PoP-level construction, our Mat-
lab code available at [10] implements both the PoP-level
algorithms described here, along with extensions to create
router-level, and inter-AS level networks, and these will be
described more fully in subsequent work.

The generation process is deterministic. For any given
context, the resulting network would be fixed. To generate
the stochastic variety necessary for simulation, we random-
ize the context in which the network is generated, most no-
tably the location of PoPs and the traffic matrix the network
must carry.

The result is a conceptually-simple intuitive method for
generating “designed” networks. The parameters are mean-
ingful – they are costs, allowing them to be tuned to control
the type of network generated. For instance, a newly formed
network servicing a burgeoning market in a developing coun-
try wishes primarily to provide connectivity as quickly and
as cheaply as possible. As the market matures there is an
incentive to increase the level of service by providing higher
bandwidth, lower latency, or more reliability. Our process
can take these differing economic incentives or planning va-
riety into account through tuning the input parameters.

We can generate a large number of different networks by
randomizing the network context. The resulting networks
come with all the details needed for simulation (e.g., link
capacities), and satisfy a range of simple standard network-
engineering constraints. The model is easily extensible where
needed.

2. BACKGROUND AND COMPARISONS
In this section we evaluate and compare previous methods

to the list of goals outlined in the Introduction. Table 1 com-
pares several different methods of network synthesis: Erdös-
Rényi graphs, Waxman graphs, Power-law random graphs
(PLRGs), Li et al.’s HOT graphs and Mahadevan et al.’s
dK-series graphs against these criteria. While in many cases
it is clear how these models perform against the criteria,
some evaluations require further explanation.

Erdös-Rényi and Waxman graphs have a very simple model
with few parameters. They are both simple and succeed in
generating statistically varied graphs when given the same
input. They also partially succeed in providing a mechanism
to tune the output, though it is limited to controlling node
degree for Erdös-Rényi graphs, and an additional notion
of geographical distance dependence for Waxman graphs.
Unfortunately, the parameters are of questionable physical
meaning, and without modification these graphs don’t even
meet simple technical constraints like connectivity. Further,
these graphs do not come with any additional details such
as link capacities.

Power-Law Random Graphs (PLRGs) [11] address the ob-
served power-law node degree distribution of networks in
measurement studies (at router- or AS-level). The method
is simple, involves few parameters, and the general class
of such methods allows tuning of the average degree and
the degree-distribution, but has limited control of properties
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1. statistical variation X X X X × X
2. meets constraints × × × X P X

3. meaningful parameters × × × P × X
4. tunable P P P P × X

5. generates network × × × X × X
6. simple model X X X X × X

Table 1: Table of comparisons between six synthesis methods
against the criteria outlined in the introduction (in order). P
refers to partially satisfying the requirement, for instance the dK-
series can satisfy some constraints (e.g., port numbers), but not
others such as capacity constraints. Most of the models are only
partially tunable because they can control one particular aspect
of the network, e.g., node degree, but not others.

such as assortativity. Furthermore, these models have come
under criticism [1,12,13] at the router level for violating tech-
nical constraints. At a deeper level, the model (preferential
attachment) used to generate these networks has parameters
that are, perhaps, meaningful for certain graph generation
problems, but which certainly aren’t meaningful for gener-
ating the types of networks considered here. PoPs do not
“attach” to other PoPs according to a probability based on
degree!

Li et al. [1] provide an outline of problems in previous
topology synthesis techniques. They articulate engineering
constraints that a real network must satisfy to function ef-
ficiently, and use these constraints to suggest a heuristic
structure for real router-level networks. To aid their demon-
stration they introduce the entropy function for a graph (re-
lated to the assortativity) to clearly demonstrate the flaws
of PLRG techniques. Their method has many appealing
features, but the parameters and constraints of the model
only represent a partial set of those that network engineers
care about, and the design framework used does not mirror
that used for the design of larger networks, though it may
be reasonable for small networks.

Degree-series-based methods tackle the problem by at-
tempting to extend the random graph methods to address
the problems noted in places such as [1]. In the foremost
examples of this approach, Mahadevan et al. [14,15] provide
a general and extremely powerful framework for characteriz-
ing graphs, dK-series. When defining a dK-series, each node
of a connected graph G is labeled with its node degree. The
dK-distribution of G is the number of occurrences of each
possible labeled connected subgraph of G of size d, where
subgraphs are considered isomorphic if their labels and edges
match.

The 0K distribution for a graph is simply its average node
degree, and the 1K distribution is the node-degree distribu-
tion, both commonly studied when synthesising topologies.
The 2K-distribution is used to replicate the commonly seen
assortativity statistic, as well as the entropy statistic used
in [1]. The 3K-distribution determines the clustering of a
graph. A dK-series for a graph G with n nodes is this se-
quence of dK-distributions for d = 0, ..., n. As d increases,
the dK-distribution becomes more and more specific, in-
creasingly restricting the graphs that match it; the set of
graphs matching G in 1K-distribution is a subset of those
that match the 0K-distribution, the set of graphs matching
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Figure 1: An example of how the number of parameters for
dK-series grows rapidly both with the size of the graph and
with d.

the 2K-distribution is in turn a subset of those that match
the 1K-distribution, etc.

The dK-series are an elegant generalisation of the concepts
of degree distribution to allow for increased fidelity with
respect to an observed graph. It becomes very difficult to
synthesize random dK graphs for d > 3, but a much more
serious problem is that the dK-series hides an incredibly
detailed characterisation of a graph G. A dK distribution
isn’t just a single statistic, it is a huge list of the number
of occurrences of each labeled subgraph. Thus, although
conceptually simple, the dK-series is very far from simple in
practical terms, such as measurement of the large number of
parameters involved. Figure 1 illustrates the rapid growth
in the number of parameters with both d and the number
of nodes n. Note that even for d = 3, we quickly approach
the point where there are more parameters than nodes n, or
possible edges in the graph. That is, the dK sequence is a
longer specification than just listing the edges of the graph.

Moreover, though some of the parameters have meaning
to graph theorists, they have little meaning to network en-
gineers. Others have little meaning to anyone.

Finally, there is a more subtle problem. The dK-series
can so overconstrain the problem that there is only one pos-
sible graph that can be generated. This problem is hidden
by the graph isomorphism problem – it is difficult to deter-
mine if two graphs are isomorphic (i.e., effectively identical).
Design-based approaches avoid this problem by providing
nodes with meaningful labels (ex post facto addition of la-
bels doesn’t solve the problem because such labels are not
associated with network properties such as capacities, and if
these are added as well, the resulting generation techniques
lose any shred of simplicity).

The issue is illustrated in Figure 2, which shows a sim-
ple input graph, along with some Erdös-Rényi graphs with
the same number of links, and 3K-series graphs generated
to match it. Upon careful consideration it should be clear
that the only possible 3K graph that can match the input is
isomorphic to the input itself, though this might not be so
obvious if the outputs were not aligned as in the figure.

This problem is far from a trivial issue. There are many
examples where a given input graph completely determines



Figure 2: (a) A small example network. (b) Erdös-Rényi
graphs based on that network - they all have the same num-
ber of links but in random places. One graph is not even
connected and the others have very long shortest paths be-
tween some pairs of nodes. (c) graphs with the same 3K-
distribution as in (a).

the output, e.g., both cliques and rings. Moreover, it is not
just a question of the outputs all being isomorphic – even if
this is not strictly true, it is possible to have outputs that
have a large isomorphic subnetwork and hence only trivial
differences. These are even harder to test for.

COLD satisfies the criteria listed above:

1. The networks are distinct by construction. We also present
results showing the degree of variation through confi-
dence intervals on observed statistics.

2. COLD uses techniques motivated directly by operator
practice. While it may not be exactly what one spe-
cific operator does, there is always a tradeoff between
verisimilitude and simplicity.

3. The parameters are costs, which are intrinsically mean-
ingful.

4. It is tunable, at least within the observed PoP-level net-
works of [16].

5. COLD generates more than just a series of connected
nodes. It generates link capacities and distances along
with routing.

6. The PoP-level model has only four parameters, and we
show why at least this many are needed. In particu-
lar, the hub cost is needed to create networks that could
match observed instances.

The last point raises one additional feature: extensibility.
The optimization algorithm facilitates extension because it
is generally easy to add additional costs or constraints to the
model. For example, COLD could naturally be extended to
multiple ASes. Imagine the PoPs are in fact cities, in which
different networks may have presence. PoP interconnects in
same cities could then be assigned a cost, and we could run
the optimization with respect to this additional cost.

Obviously, there are many other network synthesis ap-
proaches available, and we don’t attempt to survey them
all here. However, the examples above provide a sufficient
cross-section to understand the limitations of the vast ma-
jority of synthesis techniques.

3. POP-LEVEL SYNTHESIS
We focus here on synthesizing a single network, such as

a network run by a single Internet Service Provider (ISP).
In an individual network a single set of design rules have

the most influence, because the network is under the control
of a small group of designers all following a common pro-
cess. Inter-AS design is impacted by decisions of multiple
organizations and has aspects of game theory.

Most of the optimization steps in network design concern
the PoP-level. The internal design of PoPs is almost com-
pletely determined by simple templates [2–4], since the cost
of internal links is much lower than inter-PoP links. Here
we focus on the PoP-level.

We use optimization to create our networks, but it is im-
portant to realize that few network designers are mathe-
maticians or trained to use formal optimization tools. More-
over, the actual design problem for a large network is very
complex, and costs depend on long-term business relation-
ships with vendors. And networks are rarely designed from
scratch – they evolve. Operators and managers try to op-
timize (by reducing costs, or improving performance) but
usually do so heuristically, and we cannot hope to mimic
all of the details of every type of heuristic used through the
history of networking.

Hence, the guiding principles of the optimization are:

1. We must mirror the real-life process of designing a net-
work, though acknowledging that it is mirrored in goals
and constraints, not the exact detail.

2. The process needs to be tunable. As previously men-
tioned, real networks come in a wide variety [16], de-
termined by different underlying cost/benefit tradeoffs.
We aim to be able to tune the input parameters of our
process to replicate this wide range.

3. The optimization cost function and constraints must be
as simple as possible; most notably they should have few
parameters. The more detailed and complicated a cost
function is, the less general and adaptable it is. If it
becomes too complicated, it is hard to develop an under-
standing of the relationship between the input parame-
ters and output networks, and hard to estimate param-
eters when needed.

4. The optimization cost function should be meaningful,
and related to the criteria that are important to network
engineers. Fabrikant et al. [17] show that it is possible
to generate a wide variety of topologies by tuning an op-
timization process, but their cost function did not have
a strong analogue to real-life costs. The meaning of the
cost function also makes several tasks easier, such as ex-
trapolating a network to examine what it might look like
as it grows [9, 15].

There are several parts to an optimization scheme:

1. The input or context of the optimization problem: the
PoP locations and the traffic matrix. The generation of
these is described in §3.1.

2. The optimization problem itself. This includes the vari-
ables, the constraints and the optimization objective func-
tion. We minimize the cost of the network with the con-
straint that it can carry all of the expected traffic. We
discuss this in detail in §3.2.

3. The algorithm for choosing an optimal network topology,
which we describe in §3.3.

3.1 Context
It is not strictly correct to divide the area of network syn-

thesis into random and designed graphs as all the interesting



models synthesize a random ensemble of graphs. The dis-
tinction lies in the way randomness is introduced: random
graphs are typically constructed by repeated application of
simple random rules, but designed approaches can introduce
randomness through the inputs to the design process, i.e.,
the context. In our problem the context consists of:
• the spatial locations of the nodes or PoPs; and
• the traffic matrix, giving traffic demands between each

pair of PoPs.
We generate these randomly, so that each time we synthe-
size a new network we generate different PoP locations and
traffic matrices. Thus, the generated networks are guaran-
teed to be different. It would certainly be possible to choose
PoPs according to real-life city locations, but providing the
desired variety in context would then further thought.

PoP-locations are chosen according to a 2D point process
on some region. We started by testing a number of alterna-
tives:
• different region shapes, for instance rectangles with dif-

ferent aspect ratios; and
• different distributions of PoP locations, for instance, we

experimented with making the locations of PoPs corre-
lated so as to make them more or less bursty.

Our experiments found, suprisingly, that these details had
comparitively small affects on the resulting networks (see §7
for details). A region had to be quite long and thin before
it changed the resulting networks significantly, and likewise,
even highly bursty PoP locations only changed the statistics
of the resulting networks slightly.

In keeping with the underlying philosophy of this work –
keep the model as simple as possible – the model presented
here selects n PoP locations independently, and uniformly
at random on the unit square. The result is a 2D Poisson
process conditional on the number of PoPs. The behavior
of such a process is mathematically tractable and very well
understood. However, our code is designed to be modular,
so that users can use our bursty model for PoP locations,
or other region shapes. In fact, it is easy to write your
own module for this component, or use real PoP locations if
required.

Our traffic matrix is created using a gravity model, pro-
posed in [18–20], and tested [21] as a model for synthesizing
traffic matrices. It suffers from identifiable flaws [20], but
matches the distribution of real traffic matrices well [21].
Moreover, it is the maximum entropy model for traffic matri-
ces under the circumstances described here [22]. The grav-
ity model is created by choosing a random population for
each PoP. We tested two types of population model, the ex-
ponential model (populations were independent, identically
distributed exponentials with mean 30), and the Pareto with
shape parameters 10/9 and 1.5 (and the same mean), in or-
der to test the impact of varying degrees of heavy tail on
the results. Surprisingly, the effect on the inter-PoP topol-
ogy was small (see §7 for details).

By default we choose the simpler exponential model in
most of the subsequent work, though once again it is trivial
to alter this, and our tool provides this option.

It may seem counter-intuitive that the selection of con-
text provides the randomness in our synthesis model, but
that the results are not sensitive to the actual model cho-
sen. However, note that we are not saying that the PoP
locations, and the traffic don’t matter. We are saying that
the ensemble of networks generated is statistically similar

for different context models. The individual networks gen-
erated by different instantiations of contexts are still quite
different.

The statistical insensitivity of the resulting networks to
the context model is interesting, but note that it only applies
at the PoP-level. When we consider, for instance, the router-
level network, then it is far more dependent on the traffic
matrix model. A Pareto model will generate a wider spread
of traffic volumes per PoP, and as a result PoPs will have a
wider spread in the numbers of routers needed than in the
exponential model. This insensitivity is another example of
the advantage of starting synthesis at the PoP level.

3.2 Formulation of the optimization problem
Each candidate PoP-level topology is represented by an

undirected graph G(N,E) with nodes N (the PoPs) and
edges, E (the links between PoPs). The variables in our
optimization are thus the locations of the links and their ca-
pacities wi. The main constraint in the problem is that the
capacities of the network are sufficient to carry the inter-PoP
traffic which implicitly requires the network to be connected.
We do not include redundancy, port numbers or other com-
plex constraints at this level.

Our cost function represents the cost of building the net-
work and was chosen to be as simple as possible yet still able
to approximate real-life objectives and produce a wide range
of behavior. Its two components are link- and node-based
costs, each described below.

3.2.1 Link cost
The cost for a link depends on many factors including the

economic and geographical environment, existing infrastruc-
ture and networks, and other technical limitations. If these
are modeled in too much detail we risk overfitting the model
to one particular setting, reducing its generality, and making
it less applicable to, for instance, future networks.

As a result, we use a linear cost model, which is as simple
and general as possible, while allowing it to be tuned to
produce a wide variety of networks. The cost for link i ∈ E
is given by Ci = k0 + k1`i + k2`iwi, where `i is the length of
link i and wi is the bandwidth required on link i to carry the
traffic routed across this link, and k0, k1 and k2 are constants
giving

0. k0: The cost for existence of the link.

1. k1`i: The cost for the physical length of a link; for in-
stance, the cost of digging a trench for cabling or renting
space in a conduit.

2. k2`iwi: The bandwidth cost, representing the cost of a
given capacity over the length of the link. This term in-
cludes operating expenses, as well as initial expenditure
on fiber/copper, repeaters, etc. [23].

Real costs have discontinuities and non-linearities (e.g., a
discount on the per-unit-length cost when buying longer
links), but these make the model more complex, and the
resulting optimization harder.

The linear cost model also has the advantage that we can
rewrite the bandwidth component of costX

i∈E

k2`iwi = Ok2

X
r∈R

trLr, (1)

where R denotes the set of routes, Lr is the length of route
r ∈ R, and tr is the traffic along the route. The constant O



is the factor by which the capacity will exceed the required
bandwidth, constant across all links for the sake of simplic-
ity. This does not feature in the optimization formulation
(2) since the same factor will be used regardless of which
topology is chosen.

As a result, we will make the natural choice of shortest-
path routing in the model, which will minimize the length of
routes, and hence the bandwidth dependent component of
cost. This speeds up the calculation of the required capacity,
wi, for each link, which is the dominant computational cost
in the optimization process. It also means that the synthesis
process provides routes as well as link locations and band-
widths. Shortest path routing is also at the core of what
ISPs actually do, with tweaks to length values or to allow
load balancing, etc.

3.2.2 Node Cost
The number of nodes n is fixed, so typically in optimiza-

tion this would result in a constant node cost. However, we
found that we needed a cost to differentiate types of PoPs.

Real networks show tremendous variability [16]. Some
are meshy, and others resemble a hub-and-spoke network.
Optimization of link costs alone tends to produce meshy
networks – for instance, when the k2 cost is dominant, it
results in cliques. We found we could not get hub-and-spoke
networks purely through optimizing against link costs (see
Section 7).

Further examination of the networks in [16] also shows
that they often have two classes of PoPs: leaf and core.
Typically leaf PoPs had only one link1 connecting them to
the network (i.e., they had node degree 1), and core PoPs
had two or more links. Obviously, hub-and-spoke networks
have more leaves than meshy networks.

The simplest and cleanest way of inducing leaf nodes in
our optimization-based networks was to add a cost for non-
leaf nodes. So each node j with degree(j) > 1 incurs a cost
of k3. This represents a complexity cost ; a PoP with mul-
tiple connections to the outside world is more complicated
to implement and maintain than one with only one connec-
tion. Complexity has a cost in real networks [24]. Managing
a small PoP with only a single router, and/or single link is
much simpler than a multi-router, multi-link PoP.

3.2.3 Optimization Problem
The optimization problem is therefore:

min
G(N,E)

X
i∈E

(k0 + k1`i + k2`iwi) +
X

j∈NC

k3, (2)

where G is the set of graphs on n nodes that have sufficient
capacity to carry the traffic, and NC = {j ∈ N | degree(j) >
1} is the set of core nodes.

The costs k0, k1, k2 and k3 allow the process to be tuned
to produce different types of topologies, by changing the
relative importance of each part of the cost. To understand
how this trade-off works, we consider the impact of each
component of the cost separately.
• k0-cost : This cost depends on the number of links. Net-

works must be connected, so if this cost dominates, the
spanning trees are optimal solutions.

1Note that a link in a PoP-level network may actually cor-
respond to multiple links between multiple routers. Hence,
a degree 1 node in the PoP-level graph is not necessarily an
indication of lack of redundancy.

• k1-cost : This is a cost for the total length of all links.
If this cost dominates, then the optimum solution is a
minimum spanning tree.
• k2-cost : The k2 cost can be interpreted as a cost for the

length of the routes, see (1). Hence, when k2 dominates
the routes will be as short as possible, i.e., the result will
be a clique.
• k3-cost : If this cost is dominant, the optimal network

will have only one node with degree greater than one,
i.e., it will be hub-and-spoke network.

Typically more than one cost will contribute, and so we will
get a network that is a mixture of these.

Note that costs are all relative, and so there are really
only three degrees of freedom in the above model. Hence,
in the following we fix k1 = 1, and only need set the other
three costs.

3.3 Optimization Algorithm
The components of the objective functions are simple in

themselves, and optimizing against any one is not difficult.
However, the mixed optimization is not so simple. There are
too many potential solutions for a complete enumeration for
even moderate values of n. Moreover, the problem does not
decompose into smaller problems, and the relaxation of the
integer problem to the reals is not useful. Hence we solve it
heuristically.

Guarantees that our solution is truly optimal are not nec-
essary. This paper is not about perfect optimization, per
se, but rather about an attempt to replicate the process of
network engineering. Given the uncertainties in inputs such
as the traffic matrix and cost model, network engineers are
typically looking for a good solution, not the optimal, and
they do so using their own heuristics. So we have no need
to find the very best possible network; only a set of good
networks.

Hence we use a heuristic search algorithm, in this case a
Genetic Algorithm (GA). It works by evaluating the objec-
tive function on a population of candidate topologies. The
topologies with lower costs are more likely to be chosen to
pass on their genes to subsequent generations of candidate
topologies through crossover, mutation and direct selection.
The process is repeated for many generations, with fitter
topologies more likely to survive as the overall population
improves until the topologies are well-adapted to the envi-
ronment and the population reaches an almost-stable state.

The trick is to describe a topology in a form suitable for
genetic transcription, and to create mutation and cross-over
procedures that, for instance, preserve connectivity. Details
of our solutions to these problems are given in §4 and Matlab
code implementing the algorithm is available at [10].

However, it is worth noting that the choice of a GA over
the alternative heuristics was motivated by the fact that
they are:

1. Flexibile: GAs only require small adaptations to cope
with changes to the objective function.

2. Competitive: We do not need to find the true optimal
solution, but we do need to find a good solution. One
way to ensure this is to require that the GA’s solution
is at least as good as competitors. A key advantage of
GAs is that we can include alternative solutions in the
initial population, and thereby guarantee the result will
be at least as good as these.



3. Non-exclusive: For a given optimization problem, one
run of a GA generates a population of solutions. The
variation between these solutions can give a better idea of
which characteristics are important in optimizing these
topologies, and which are irrelevant. It also allows us to
create multiple networks with the same context, poten-
tially providing additional support for simulation where
one wants a fixed context, but multiple topologies.

Of these, the first property has been most important here as
it has allowed us to test multiple possible objectives in our
search for a simple but realistic set (the results of which are
given in §3.2.3).

4. DETAILS OF THE GENETIC ALGORITHM
In this section we provide some of the details of the Ge-

netic Algorithm.
Inputs

• Matrix containing the coordinates and population of
each Point of Presence (PoP).

• The optimization parameters: k0, . . . , k3.

• The genetic algorithm settings, including the number
of chromosomes in a generation and the number of
generations. More settings appear below, in italics.

Outputs

• Adjacency matrix of the best topology found by the
Genetic Algorithm.

• The routing matrix for the best topology found by the
Genetic Algorithm.

• Link capacities for the best topology found by the Ge-
netic Algorithm

• (Optionally) Adjacency matrices, routing matrices and
link capacities of the whole population in the final gen-
eration.

• Costs of the candidate topologies in the final genera-
tion.

State

• Each candidate topology in the current generation is
stored as an n by n adjacency matrix.

• The costs for each topology are also stored.

4.1 Algorithm

1. Determine the first generation of topologies

• One starting topology is the minimum spanning
tree (using the physical distances determined by
the PoP-positions in the input).

• One starting topology is the fully connected topol-
ogy (every PoP is linked directly to every other
PoP).

• Topologies can be provided directly as input, typ-
ically from other optimization methods.

• The remaining topologies are generated randomly
using Erdos-Renyi graphs with a chosen probabil-
ity for each link. This probability p can be fixed
over all these topologies, or be different for each
topology as desired. We use a value of p such
that p

`
n
2

´
is approximately equal to the expected

number of links in the optimal topology; approx-
imations to the optimal number of links can be
obtained through previous runs of the algorithm.
This aids convergence speed of the genetic algo-
rithm but is otherwise unnecessary.

2. Evaluate the cost of each of the topologies in the cur-
rent generation.

3. Create the next generation of topologies. These consist
of:

• The best num saved topologies topologies from the
previous generation.

• num crossover topologies topologies resulting from
crossover (breeding).

• num mutation topologies topologies resulting from
mutation.

4. Repeat from Step 2 until there have been T genera-
tions.

5. Output the topology with the lowest cost.

For a Genetic Algorithm to be effective, it must be possi-
ble to efficiently generate“better”topologies by breeding and
mutating“good”topologies. Consequently, the key challenge
in designing a Genetic Algorithm is designing the crossover
and mutation steps so that they work quickly and have a
reasonable likelihood of producing good topologies.

4.1.1 Crossover
Crossover involves choosing several topologies (“parents”)

from the current generation to combine and create a new
topology of the next generation. COLD picks b topolo-
gies uniformly at random as candidates to become parents,
then chooses the best a of them as parents for a crossover.
This process occurs once for each new topology created by
crossover. We typically chose a = 2 and b = 10. Choosing
parents this way ensures that the worst topologies will not
become parents, and it induces a strong bias towards the
better topologies as parents. We chose a = 2 and b = 10 to
produce a good tradeoff between convergence speed (num-
ber of generations until the best cost was not changing very
often) and reliability (that is, finding similarly costed topolo-
gies over several runs of the GA). If smaller values of b and
larger values of a were used, this would allow more variety
to be kept at each generation, at the expense of the average
cost of topologies across that generation.

Once the parents of the new topology are chosen, it sim-
ply remains to generate the new topology from them. Since
each topology is a graph with n nodes, there are

`
n
2

´
possible

links in the new topology. For each of these possible links, we
choose one of the a parents at random and copy whether the
link exists or not from that parent. When choosing the par-
ents at random, they are chosen with probability inversely
proportional to their cost. This crossover step occurs once
for each of the new chromosomes created by crossover. We



also tested other methods of crossover, but more compli-
cated versions proved no more effective in efficiently finding
low-cost topologies.

4.1.2 Mutation
To create a mutated topology, one of the topologies from

the previous generation is selected at random, with proba-
bilities inversely proportional to cost. Then one of two types
of mutation occurs:

• Link mutation: A pair (m+,m−) is determined using
a random function mutate fn(). m+ links that exist
in the chromosome are removed, and m− of the links
that do not exist are added to the chromosome. We
choose mutate fn() so that m+ and m− are both ge-
ometric random variables with parameter 0.5, giving
an average of two link changes each time a mutation
occurs.

• Node mutation: One of the non-leaf nodes is chosen
uniformly at random and made into a leaf node, with
its only link now running to the closest non-leaf node.

4.1.3 Connectedness
The mutation and crossover steps can produce a network

that is disconnected. If this occurs, COLD finds all the
connected components and the shortest link between each
pair of connected components. COLD then finds a mini-
mum spanning tree (minimum in terms of physical link dis-
tance) to connect these components. This ensures that the
resulting networks are always connected. It is used rarely.
However, when the costs induce topologies with low num-
bers of links, this step becomes more frequent, although it
is still rare to be forced to add more than one or two links
to ensure connectedness.

5. PERFORMANCE OF THE GA
The first issue to resolve is the choice of settings for the

GA to produce near-optimal topologies while managing its
run-time. These settings include the number of generations
T , the number of networks in each generation M , and the
extent of mutation and crossover.

We choose the settings by running many examples with
a fixed input (context), and testing a wide range of values.
The goal is to choose values that produce topologies that
are near optimal with minimal run-time. However, testing
optimality is non-trivial, for the same reasons we are using
a heuristic in the first place.

We start by comparing our results to the results of brute-
force enumeration. This is infeasable for even moderately
sized networks as the number of possible graphs is super-
exponential in the number of nodes, but we at least ensure
that for networks of up to 8 PoPs that the GA always finds
the real optimal solution. This allowed us to obtain lower-
bounds on settings such as the population size, and number
of generations.

The other approach we use to test the GA is to compare
its results to various heuristics. The heuristics were chosen
so that they would work well for particular cost structures.
For instance, we know that when the cost k1 dominates, the
optimal networks are minimum spanning trees, and so we
use this to ensure that the GA can perform well for these
parameter values.

We use a number of more complicated heuristics, primar-
ily based on greedy approaches, described below. Each test
algorithm starts with one hub node, and every other node a
leaf node connected to it. Leaf nodes are converted to hub
nodes one at a time, in such a way that the cost of the net-
work reduces with each new hub (the way in which the hubs
connect to each other varies). At every step the remaining
leaf nodes are reconnected to the new closest hub node. If
a hub can not be added without increasing the cost of the
network, the algorithm terminates. The alternate methods
for adding hubs are as follows:
• Random Greedy : A random permutation of all the nodes

is chosen. The algorithm then iterates over the PoPs in
this order. For each PoP it decides whether changing it
to a hub reduces the cost of the network, and if so, the
node made a hub. New hubs are linked to the existing
hubs greedily: picking the lowest cost connecting link,
etc., until there are no more cost reductions. Once all
the PoPs in the permutation have been evaluated, the
process repeats for many different random permutations
of the PoPs.
• Complete: All the PoPs are tested as a possible hub and

the best one is taken. This repeats until none of the
remaining nodes will reduce the cost when added as a
hub. Each new hub is connected to all the existing hubs,
thus making a network where the hubs form a completely
connected graph or clique.
• MST : Just like complete, but the hubs are connected in

a minimum spanning tree.
• Greedy attachment : Like complete and MST, but inter-

hub connections are chosen greedily for each new hub (as
in Random Greedy).

We compared the GA to each of the greedy algorithms
by generating a set of contexts and running each algorithm
on each context. We then compared the costs of the best
solutions found by each algorithm. The relative cost of the
optimal solution found by each algorithm is plotted against
k2 in Figure 3, and we have similar plots against the other
cost parameters. It is clear from the figure that different
algorithms perform better in different circumstances (with
different values of k2, k3).

Though specific greedy algorithms outperform the GA for
some parameter values, the GA performs well over a range of
parameters when k3 = 0 (left), but is not as effective when
k3 (the hub cost) is larger. However, a significant advantage
of the GA is that it can take, as part of its initial population,
the output of other algorithms. When we include the output
of our heuristics as inputs to the GA – the initialized GA
results – we see that the approach outperforms all of its
competitors over all parameter ranges tested. The greedy
algorithms are relatively fast in many cases, thus running
them before the GA is not a significant cost.

As a result of these comparisons, we determined reason-
able settings for the GA, most notably we chose to fix T and
M at 100 each. These values provide a reasonable tradeoff
between performance and speed. The GA was tested for sen-
sitivity to increases in M and T , and despite quadrupling
the number of topologies and the number of generations, the
GA showed at most 10% decrease in costs for all values of
(k0, k1, k2, k3) tested. We could also choose to stop the GA
once the relative rate of change of best cost was sufficiently
low, but a choice of T = 100 proved to function similarly.
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Figure 3: Cost of best solution versus k2, normalized by initialised GA result, n = 30. Error bars denote 95% bootstrap
confidence intervals for the mean of the results, 20 trials for each set of parameters. k3 = 0 (left) and k3 = 10 (right). In both
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Figure 4: The run time of the genetic algorithm grows
cubically in the number of nodes, with T = M = 100.

Figure 4 shows the runtime of the GA, which grows as
O(n3MT ), where n is the number of PoPs, T is the number
of generations and M is the number of topologies in each
generation. Linearity of the GA with respect to M and T
is obvious, and the n3 term arises in evaluating the all-pairs
shortest paths routing calculation for each topology.

O(n3) might seem less than ideal as an order of scaling
for the run time of the GA, but given current hardware it
was quite feasible to generate networks with hundreds of
PoPs. This is another advantage of generating a PoP-level
network: a large ISP can have thousands of routers, but it
is rare to see a network with more than a 100 PoPs [7, 16].
It would be much more difficult to implement this type of
optimization across all of the routers in a network.

6. TUNABILITY
One of our goals is that the output of the optimization pro-

cess be tunable, as expressed in the introduction. Knight et
al. [16] present a large set of PoP-level network maps cre-
ated from data presented by network operators themselves.
As a base-line, we are able to tune the output of our syn-
thesis to produce a range of networks like those seen in this
dataset. Note that we are not asserting that our networks
are the same as the networks in this dataset. That is a much
stronger claim that is, in point of fact, not possible to justify
based on any small set of statistics (despite many claims oth-
erwise). Rather we aim to show we can control the output
of our generated networks so as to allow experimenters to
test the impact of particular features of topologies on their
experiments. As such, our goal is to show that for commonly
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Figure 5: The average node degree versus the cost k2, for
various values of k3, with k0 = 10, k1 = 1, and n = 30. 95%
confidence intervals based on 200 simulations per data point
are shown by horizontal bars.

studied features, we can reproduce a representative range of
these features.

We illustrate here tunability with respect to average node
degree, network diameter, clustering coefficient and the co-
efficient of variation of node degree. These encompass many
of the features that have drawn research interest in the past,
but we make no assertion that it is a complete set, and we
have examined other features: for instance assortivity, av-
erage shortest-path lengths, and average node and link be-
tweenness. However, the results are all of a similar nature,
and the additional graphs add little additional insight.

COLD has four control parameters k0, k1, k2 and k3, but
they are only unique up to a constant factor, so we can
fix one (say k1). Additionally, we found that costs k0 and
k1 have a similar impact on the resultant networks, and so
in these experiments we fix the ratio between these two by
setting k0 = 10 and k1 = 1.

The average node degree is an important and frequently
examined statistic. The higher the node degree, the more
“meshy” the graph is. Intuitively, the number of links should
increase as k2 increases since it becomes more cost-efficient
to have direct links between PoPs. Consequently, we expect
average degree to increase with k2. Likewise, as the cost
k3 increases, there should be fewer core PoPs, and hence
fewer links, and so average degree should decrease. Figure
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Figure 6: Network diameters for differing values of k2 and
k3, with the same parameters as Figure 5.
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Figure 7: Global clustering coefficient for differing values of
k2 and k3, with the same parameters as Figure 5.

5 shows exactly this behaviour. Moreover, the achievable
degrees range from the minimum possible (for a tree the
average degree is 2 − 2

n
), up to the maximum (the curves

continue to increase for larger values of k2, and when k2

dominates the optimal network is a clique).
Also of importance is the fact that the curves are smooth

and monotonic, and the confidence intervals are tight around
each curve, which makes it easier to generate a set of net-
works with well-controlled features.

The diameter of a graph is another frequently used statis-
tic [9]. It denotes the maximum number of hops between
pairs of nodes in the graph, and is important for network
properties such as latency. Graphs with small diameter rel-
ative to their size and node degree demonstrate the “small-
world” property, which has been of some interest in the re-
search literature. Figure 6 shows the diameter of generated
graphs with respect to k2 and k3. A high hub cost k3 re-
sults in centralized networks that have low diameter. A
high bandwidth cost k2 results in meshy networks that also
have low diameter. When neither cost dominates, we see
higher diameters – for instance, networks with a few hubs,
or networks that have too few links (especially long links)
to have low diameters. Once again we can see a smooth,

well-controlled progression of values, with a range that en-
compasses those seen in networks of comparable size in [16].

Clustering coefficients are a way of measuring locality,
a principle commonly referred to in network design. The
global clustering coefficient (GCC) measures the number of
triangles present in the graph compared to the maximum
number of triangles possible. In [16] 90% of the GCCs are
below 0.25, and all of the higher GCCs belong to networks
with very few nodes. Varying the value of k2 causes the GA
to move from producing trees (with a GCC of 0) to produc-
ing fully connected graphs (with a GCC of 1), importantly
the GCC is controlled finely and reliably by k2 and k3, al-
lowing the degree of locality present in the synthetic graphs
to be finely tuned across all reasonable values as shown in
Figure 7. However, note also that while GCC increases with
k2, the diameter can decrease with k2, resulting in “small-
world” networks.

We have examined a much larger set of network features,
and different values of the ratio of k0 and k1, and different
network sizes (n = 50 and n = 80), and uniformly we ob-
serve the same controlled variation in the statistics of the
resulting networks over the observed range in real networks,
or wider.

However, in our original experiments there was one statis-
tic where the range of values observed in [16] was difficult
to match, and it was this that lead us to include k3, the
hub cost, and we discuss this in more detail in the following
section.

7. NODE-BASED COST
In this section we show that while it is possible to gen-

erate reasonable networks just using link costs
P

i∈E(k0 +
k1`i + k2`iwi), a node-based cost

P
j∈NC

k3 is required to

encompass all the variety we see in networks [16].
Without a node-based cost, we can vary k2 to control

the statistics mentioned above over the range seen in [16].
However, some networks in [16] have mainly PoPs of degree 1
(leaf PoPs), and few higher degree PoPs (core or hub PoPs).
This “hubbiness” was measured in [16] using the coefficient
of variation of node degree (CVND), which is the standard
deviation of the node degree divided by the mean. Some
networks in [16] have a CVND of nearly 2 (Figure 8a).

Figure 8b shows that for small k3 (i.e., the case where
we don’t include a hub-based cost) the synthetic networks
have a CVND significantly less than one. Likewise, Figure 9
shows that the number of hub nodes is large when the hub
cost is insignificant.

We need a means to induce some PoPs to be leafs. It may
seem that this could be accomplished through changes in
the context, e.g., by making the traffic mode heavy-tailed.
As noted earlier, we tried several models for PoP location
generation with varying degrees of correlation, and we also
considered Pareto-distributed, heavy tailed traffic models.
In the later case, we trialled Pareto distributions with shape
parameter α = 1.5 and 1.1, corresponding to the infinite
variance case.

All of these approaches had an effect on the generated
networks. They did induce additional leaf nodes, but the
effect was small. Even in the most extreme cases (bursty
PoP location, and Pareto distributed traffic with α = 1.1)
the CVND was not sufficiently increased to represent the
full gamut from [16].
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Figure 8: Measured and simulated CVND, using the same parameters as Figure 5.
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Figure 9: Number of core PoPs, for networks with 30 nodes.
Again note that for small k3 the number is always large.

The only method we found that did increase the CVND
sufficiently was to include an explicit cost for non-leaf nodes.
Once a hub cost is incorporated, it is possible to control both
the CVND and the number of hubs, as is shown in Figures 8b
and 9.

8. CONCLUSION
This paper presents COLD, an algorithm for generating

synthetic data-network topologies motivated by real-world
design approaches. It is as simple as possible, yet tuning
the input parameters allows a wide variety of topologies to
be produced mirroring those of real-world networks.

The benefits of this type of approach include that it allows
for intuitive and sensible scaling. If small networks can be
generated, so can larger networks, including networks with
more nodes, spanning a larger area, carrying more traffic or
some combination of these.

COLD is a conceptually simple model for synthesizing
networks. It relies on a complex algorithm (optimization
and graph products); but we provide an open implementa-
tion written in Matlab [10]. This paper has focussed on the
PoP-level component of this approach, we explore the other
components in later work.

In the future we aim to explain in more detail how the
PoP-level design rules can be exploited to perform router-
level network generation and AS-level network generation.
The former requires a structured approach mimicking the
design rules used by network engineers, which can be ex-
pressed through graph products [25]. The latter requires
elements of geography and traffic optimisation as expressed
in COLD, but routing policy is also more complicated than
the shortest-path routing used here.

We also plan to use statistical estimation techniques, most
notably ABC (Approximate Bayesian Computation) to map
real networks to parameters ki, to assist experimenters in de-
termining appropriate values for these parameters in specific
contexts.
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