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Internet Traffic and
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Roughan,4 Vinay Vaishampayan,2 Walter Willinger,2 and Yin Zhang5

Abstract: Traditional Internet traffic studies have primarily focused on the
temporal characteristics of packet traces as observed on a single link within an
ISP’s network. They have contributed to advances in the areas of self-similar
stochastic processes, long-range dependence, and heavy-tailed distributions
and have demonstrated the benefits of applying a wavelet-based multireso-
lution analysis (MRA) approach when analyzing these traces. However, an
ISP’s physical infrastructure typically consists of 100s or 1000s of such links
which are connected by routers or switches, and the Internet as a whole is
made up of about 20,000 such ISPs. When viewed within this bigger context,
the importance of the traffic’s spatial characteristics becomes evident, and
traffic matrices—compact and succinct descriptions of the traffic exchanges
between nodes in a given network structure—are used in practice to capture
and explore critical aspects of this spatial component of Internet traffic. In this
paper, we first review some of the known results about the observed multi-
faceted scaling behavior of Internet traffic as seen on a single link. Next, we
give a detailed account of how the architectural design of the Internet gives
rise to natural representation of traffic matrices at different scales or levels of
resolution. Moreover, we discuss the development of a MRA-like framework of
traffic matrices that respects the different physically or logically meaningful
Internet connectivity structures and provides new insights into Internet traffic
as a spatio-temporal object.

1. Introduction

Internet traffic is a multi-faceted object, and depending on one’s vantage point, can
either be viewed as a purely temporal, a purely spatial, or a combined temporal-
spatial process. Traditional Internet traffic studies have focused mainly on the traffic
that traverses a given link between two routers in the network. Their primary ob-
jective has been to describe the pertinent statistical characteristics of the temporal
behavior of the measured traffic rate process (i.e., the number of bytes or pack-
ets seen on the given link in successive time intervals). However, Internet traffic
arises in a very structured manner that reflects the architectural design of the In-
ternet, with the vertical separation into layers and the horizontal decentralization
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across network components representing two of its most prominent and influential
features. As a result, the focus of subsequent Internet traffic studies has turned
from being largely descriptive to being fully explanatory in the sense that observed
characteristics of traffic rate processes are traced to particular aspects or mecha-
nisms that determine how traffic is generated and handled within the confines of
the architectural framework provided by today’s Internet.

As an example, one of the most visible manifestations of the Internet’s vertical
decomposition is the 5-layer TCP/IP protocol stack, consisting of (from the bottom
up) the physical layer (e.g., optical fiber, copper), the data link or network access
layer (e.g., Ethernet, frame relay), network or internet layer (e.g., Internet Protocol,
or IP), the host-to-host or transport layer (e.g., Transmission Control Protocol, or
TCP), and the application layer (e.g., HyperText Transfer Protocol, or HTTP, for
the World Wide Web, or WWW). In turn, on a given link, every bit recorded at the
physical layer can in general be uniquely associated with higher-layer entities such as
IP packets, IP flows, TCP connections, or application-layer sessions. As discussed
in Section 2, the challenge of explanatory Internet traffic modeling has been to
relate observed features of measured traffic rate processes to and explain them in
terms of properties of these higher-layer traffic entities. Key to these efforts has
been Kurtz’s construction [31], a flexible framework for exploring Internet traffic
that (i) is mathematically rigorous, (ii) accounts for the different layers in the
TCP/IP protocol stack, (iii) is consistent with measured Internet traffic across the
different layers, and (iv) highlights the intimate connection between the observed
temporal scaling properties of various traffic rate processes and the ubiquitous high-
variability or heavy-tailed properties of the different higher-layer entities (e.g., IP
flows, TCP connections, sessions). These efforts have been aided by the development
and application of a 1D wavelet-based multi-resolution analysis (MRA) that has
enabled an in-depth examination of the temporal dynamics of measured Internet
traffic across a wide range of time scales of interest [2]. We summarize the main
findings and implications from these efforts in Section 2.

The main objective of this paper is to outline a similar wavelet-based MRA (in
2D instead of 1D) for studying the spatial features of a network’s measured traffic
matrices rather than the temporal aspects of the measured traffic rate processes
on a link. Here, a traffic matrix describes the amount of traffic (in bytes or pack-
ets) that is sent from one point or node in a network to another during some time
interval (e.g., 5–30 minutes). The networks of interest are manifestations of the
Internet’s horizontal decentralization and reflect physically, logically, or manageri-
ally meaningful ways of organizing the Internet-wide physical infrastructure into
smaller entities or subnets. In turn, nodes can represent physical links, routers,
Points-of-Presence (PoPs), autonomous systems (ASs) or domains, or entire ISPs,
and the resulting traffic matrices provide compact descriptions of network-wide In-
ternet traffic across a wide range of spatial scales of interest. In Section 3, we discuss
traffic matrices at different levels of scale or resolution, outline a rudimentary 2D
wavelet-based MRA of traffic matrices, and illustrate it with some examples of ac-
tual traffic matrices. In particular, we use the Abilene network [1] since Abilene
makes all of the information about its network publicly available. However, we has-
ten to point out that the development of a MRA of traffic matrices will benefit from
future studies that examine a wider range of networks, especially from commercial
ISPs. In addition, many technical and practical problems remain, and we conclude
in Section 4 with a list of the most pressing open problems and a discussion of
promising applications of the envisioned MRA of traffic matrices.
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2. Single-link traffic: Self-similarity and Kurtz’s construction

When focusing on a single link within an ISP’s network, Internet traffic data typi-
cally consists of high time-resolution measurements recorded on that physical link
over which the bits are sent. Each transmitted bit seen on this link can in general be
associated with higher-layer entities such as an IP packet. Along with every packet
header that is captured and stored, additional information is usually saved, notably
an accurate time stamp (packet arrival time), packet size (number of bits or bytes),
and other status and possibly even some payload information. Empirical studies
of these high-quality and high-volume data sets have generally focused on identi-
fying and describing pertinent statistical characteristics of the temporal dynamics
of the measured packet or bit rate processes (i.e., the time series representing the
number of packets or bits per time unit, over a certain time interval). They have
provided ample evidence that measured Internet traffic exhibits extended tempo-
ral correlations (i.e., long-range dependence), and that when viewed within some
range of moderately small to moderately large time scales, the traffic appears to
be fractal-like or self-similar, in the sense that a segment of the traffic measured
at some time scale looks or behaves just like an appropriately scaled version of the
traffic measured over a different time scale.

The original finding of self-similar scaling behavior in measured network traf-
fic was reported in [24, 32] and was based on an extensive statistical analysis of
traffic measurements from Ethernet local-area networks over a four-year period
from 1989-1993 [32, 33]. A number of key follow-up studies have provided further
evidence of the prevalence of self-similar traffic patterns in measured pre-Web In-
ternet traffic [42, 43] and post-1995, Web-dominated Internet traffic [11, 12] (see
also [54, 41, 15] and references therein) and have contributed to a general acceptance
of self-similarity as an invariant [23] of Internet traffic—a traffic characteristic that
has been largely insensitive to the sometimes drastic changes the network and its
traffic have undergone during the past 10 or so years. Subsequent empirical studies
have refined this picture by focusing on measured network traffic over very large
as well as over very small time scales. Over large time scales (e.g., hours or days),
traffic has been found to be largely dominated by pronounced time-of-day and day-
of-week effects (e.g., see [46, 48]), and traffic models used for network engineering
purposes such as link dimensioning and capacity planning need to account for this
property of network traffic. With respect to the dynamic nature of network traffic
over small time scales (i.e., below the typical round-trip time (RTT) of a packet),
recent work has demonstrated that it also deviates from the self-similar scaling
behavior that has been observed over larger than RTT time scales. However, in
contrast to incorrect claims about an apparent Poisson-like dynamics of Internet
traffic on sub-RTT time scales (e.g., see [9, 30]), there generally exists significant
burstiness even on very small time scales, mainly due to the closed-loop feedback
dynamics inherent in TCP-dominated Internet traffic (e.g., [19, 21, 22, 17]) and the
intricate traffic interactions that can occur within a router and across the network.
On the one hand, this understanding has provided new insight into when the use of
self-similar traffic models such as fractional Brownian motion (or equivalently, its
increment process, fractional Gaussian noise) is justified and can be exploited for
network engineering purposes [18]. On the other hand, it has also highlighted the
need for a paradigm shift in network traffic modeling, whereby the currently em-
ployed strictly open-loop traffic models need to be replaced by constructs that can
account for the critical features of TCP-type feedback regulation. The importance
of considering relevant closed-loop traffic models becomes apparent when studying
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networking problems such as adequate sizing of router buffers in today’s networks
(e.g., see [27, 7, 17] or helping a service provider to offer and guarantee competitive
service-level agreements (SLAs) to its customers [50].

In effect, these empirically-based efforts toward describing actual Internet traffic
have demonstrated that self-similar processes, despite their limitations on both sides
of the spectrum of relevant time scales, define an elegant family of compact math-
ematical models for capturing the essence behind the wide range of “burstiness” or
scale-invariance encountered in measured traffic traces. In turn, the self-similarity
discovery has invigorated research in the area of statistics for long-range dependent
and self-similar stochastic processes (e.g., see [8, 49]). More importantly, however, it
has motivated the construction of new mathematical models that provide a physical
(i.e., networking-based) explanation of the observed self-similar scaling behavior of
Internet traffic that is intuitively appealing, conceptually simple, mathematically
rigorous, and verifiable. Recognizing that it is difficult to think of many other ar-
eas in the sciences where the available data provides such detailed information
about so many different facets of the system under study, these models have by and
large succeeded in demystifying self-similarity as an Internet traffic characteristic
by explicitly accounting for key aspects of the design and architectural principles of
today’s Internet and enabling direct model validation that relies on and exploits the
high semantic context contained in the measured data. They are in stark contrast
to the traditional traffic models that are “black boxes” in the sense that they ignore
nearly all of this rich semantic context (they tend to use only packet arrival time
and packet size information), describe the traffic traces at hand well in a statisti-
cal sense, but typically contribute little or nothing to our understanding of data
networks and the traffic they carry.

To illustrate, given accurate packet header information, measured Internet traffic
can be sliced and diced in many different ways, resulting in a number of different
representations of network traffic as seen on a single link. For example, by extract-
ing packet header-specific information such as source- and/or destination IP ad-
dress or prefix, source- and/or destination port numbers, protocol-, or application-
specific attributes, it is possible to uniquely associate each packet with the IP flow,
TCP connection, and sometimes even application-layer entity that it belongs to.
Such mappings decompose traffic naturally into individual constituents that have
network-specific meaning and explicitly reflect the layered design of the Internet
architecture—IP flows allow for an IP layer view of traffic, TCP connections for
a TCP layer perspective, and higher-layer entities provide a glimpse into network
traffic at the application layer. In turn, such decompositions support model formu-
lations that treat traffic on a link as an aggregate of many such constituents and
invite model constructions that don’t view packets as black boxes but are given
in terms of these constituents. An elegant mathematical framework for generating
and analyzing such physical or “structural” models is due to Kurtz [31]. Kurtz’s
construction considers traffic models that are integral representations with respect
to certain Poisson random measures, and in it‘s general form, includes well-known
earlier approaches such as Cox’s construction [10] (also known as immigration death
process or M/G/∞ queuing model) and Mandelbrot’s construction [37] (also known
as renewal-reward process).

In its basic form, Kurtz’s construction accounts for the layering architecture of
the Internet by assuming for example that at the application layer, sources or ses-
sions (e.g., ftp, http, telnet) arrive at random (i.e., according to some stochastic
process) on the link and have a “lifetime” or session length during which they ex-
change information. At the IP layer, this information exchange manifests itself as
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a flow of IP packets that are transmitted at, say, some constant rate from the
start until the end of a session. Thus, at the IP layer, the aggregate link traffic
measured over some time period is made up of the contributions of all the sources
that—during the period of interest—actively transmitted packets. More formally,
one representation of this aggregate link traffic or workload process is as follows.
Let the source activation process be N = (N(t) : t ≥ 0), denoting the number of
source activations up to time t; for the i-th activation, let Xi(s) denote the total
traffic generated by source i during the first s units of time. We model the length of
time τi that source i remains active separately from Xi and assume that the pairs
(Xi, τi) are i.i.d. The total link traffic or workload generated up to time t can then
be written as

(2.1) U(t) =
∫ t

0

XN(s)(τN(s) ∧ (t − s))dN(s),

and if L = L(t) : t ≥ 0) denotes the number of sources that are active at time t, we
have

(2.2) L(t) =
∫ t

0

I[0,τN(s))(t − s))dN(s).

Assuming that N is a counting process with intensity λ(N,U,L, ·), that is,

(2.3) N(t) −
∫ t

0

λ(N,U,L, s)ds

is a martingale with respect to the filtration generated by the random variable
{N(s), U(s), L(s); s ≤ t}, the process (N,U,L) can be represented as the solution
of a system of stochastic equations involving a Poisson random measure (see [31]
for details).

This representation provides a convenient mathematical framework for study-
ing scaling limits of the process (N,U,L) that yield deterministic “fluid approxi-
mations” or corresponding central limit theorems. For example, by appropriately
scaling session intensity and time, the workload process U can be shown to con-
verge to a self-similar limiting process, namely fractional Brownian motion (or its
increment process, fractional Gaussian noise), provided the session arrivals follow a
Poisson process, the sessions share the bandwidth in a “fair” (i.e., TCP-like) man-
ner, and, more importantly, the session durations or lifetimes are i.i.d. and have a
distribution that is heavy-tailed with infinite variance [5, 45]. Intuitively, the latter
condition implies that there is no “typical” session size but instead, the session
sizes are “highly variable” (i.e., exhibit infinite variance) and fluctuate over a wide
range of scales, from Kilobytes to Megabytes and Gigabytes and beyond. It is this
basic characteristic at the higher layers in the TCP/IP protocol stack that causes
the aggregate traffic at the IP layer to exhibit self-similar scaling. By relaxing the
fair bandwidth sharing assumption, allowing for more realistic within-session traffic
rates, or manipulating the relative speed with which the number of sessions and the
time scale increase, other types of (self-similar and not self-similar) limiting work-
load processes are possible, including Lévy-stable motion or its increment processes,
fractional Lévy-stable noise (for more details, see [31, 34, 52, 39, 44, 28]).

The beauty of structural models such as Kurtz’s construction is that in stark
contrast to the conventional black box models, they not only explain the self-
similarity phenomenon in simple terms (i.e., heavy-tailed connections), but they
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also clearly identify the data sets that need to be either obtained from new mea-
surements or extracted from the available IP packet-header traces to validate the
proposed explanation. This “closes the loop” between the empirical discovery of
the self-similar scaling behavior of aggregate Internet traffic on the one hand, and
its mathematical explanation in terms of infinite variance phenomena associated
with meaningful quantities at the higher layers in the TCP/IP protocol stack on
the other. For example, because of the way many applications are structured, de-
termining session-related entities such as arrival times and sizes or durations from
packet-level measurements is straightforward. For ftp and telnet, these entities
have been shown to be consistent with Kurtz’s construction in [43]. For http (i.e.,
Web sessions), obtaining session information is generally more involved [29], but
the empirical evidence for the heavy-tailed characteristic of Web-related entities
(e.g., http request sizes and durations) has been well-established to date (see for
example [56, 12, 14, 57]). In fact, heavy-tailed characteristics of higher-layer entities
such as IP flows, TCP connections, or sessions constitute yet another set of Internet
traffic invariants.

While the self-similar scaling behavior across a range of intermediate time scales
of Internet traffic at the IP layer (i.e., the time series representing the number of
packets or bytes per time unit) is well documented, an equally intriguing scaling
property of Internet traffic across the higher layers in the TCP/IP protocol stack
has received comparatively little attention. For example, instead of viewing Inter-
net traffic at the IP layer in terms of a time series representing the number of IP
packets per time unit, we can consider physically meaningful “coarsened” versions
by, for example, defining Internet traffic at the IP layer as given by the time series
representing the number of IP flow arrivals per time unit or, for that case, Internet
traffic at the TCP layer as given by the time series representing the number of
TCP connection arrivals per time unit. As originally pointed out in [20], the latter
also exhibit self-similar scaling characteristics which have in fact become more pro-
nounced as the traffic mix at the application layer has changed from mostly telnet
and simple use of email and ftp during the pre-Web period to predominantly Web-
based after about 1995 [20, 21]. Note that Kurtz’s construction applies equally well
for explaining the self-similar scaling behavior of these coarsened versions of Inter-
net traffic as observed at the IP and TCP layers, respectively, and simply requires
the distribution of the number of IP flows (or TCP connections) per session to be
heavy-tailed with infinite variance [21].

Together, these observations suggest that the different self-similar scaling phe-
nomena observed in measured Internet traffic are mainly caused by user/application
characteristics, have little to do with the network (except that it imposes some fair
sharing of bandwidth), and are likely to remain with us in the foreseeable future.
Note that to arrive at this basic understanding of the temporal dynamics of Internet
traffic as seen on a single link within the network, the development and applica-
tion of a 1D wavelet-based MRA in support of a detailed examination of measured
Internet traffic over a wide range of time scales of interest has been of critical im-
portance [2, 3, 4]. Acting as an analytic telescope, this wavelet-based MRA has been
ideal for the study of scaling properties and as such, has enabled a data analysis
that matches well with the properties encountered in measured Internet traffic.
Moreover, this technique has been instrumental in demonstrating that alternative
models that are capable of reproducing long-range dependencies or self-similar scal-
ing behavior (e.g., conventional stochastic processes with built-in non-stationarities
such as deterministic monotonic trends or level shifts of the mean) are by and
large inconsistent with measured network traffic (e.g., see for example [55, 2]). This



Multiresolution Analysis and Internet Traffic 221

development has been accompanied by equally important advances in the area of
inference for heavy-tailed phenomena (e.g., [45, 5]). In particular, the high-volume
of the available data sets has motivated a pragmatic approach to dealing with
high-variability in network measurements that has its roots in Mandelbrot’s early
work [36]. This approach is described in [58] and clarifies in which sense higher layer
traffic quantities such as sizes or durations of IP flows, TCP connections, or sessions
are fully consistent with proper infinite variance distributions, but are by and large
inconsistent with conventional, finite variance distributions such as Lognormal or
Weibull distributions. Thus, as far as the self-similar scaling behavior of Internet
traffic is concerned, the explanation in terms of high-variability phenomena (i.e.,
infinite variance distributions) at the higher layers in the protocol stack remains to
date the only model that is mathematically rigorous and consistent with measured
network traffic as it manifests itself (in different incarnations) across the different
layers of the protocol stack.

3. Network-wide traffic: Traffic matrices

The traffic observed on a single link within an ISP’s network arrives at that link
coming from possibly many different sources and leaves the link destined to possibly
many different destinations. While our main focus in Section 2 was on the temporal
dynamics of Internet traffic as observed on a single link, here we are less concerned
with its temporal aspects, but are mainly interested in its spatial properties. To
this end, the objects of interest are traffic matrices [38, 6], and to simplify the
presentation, we discuss traffic matrices in the context of a single network or domain
(i.e., a single network that connects end-systems, but does not connect to other
networks).

3.1. Traffic matrices at different levels of resolution

Traffic matrices describe the amount of traffic from one point in a network to
another during some time interval, and are thus naturally represented by a three-
dimensional data structure Tt(i, j) which represents the traffic volume (in bytes or
packets) from i to j during a time interval [t, t + Δt). The locations i and j are
generally considered to be discrete in nature, i.e., they are drawn from some set
of possible locations. We may consider these locations to be physical geographic
locations, thereby making i and j spatial variables. However, in the Internet, it is
common to associate i and j with logical structures related to the address structure
of the Internet, i.e., IP addresses, or natural groupings of such by a common prefix
corresponding to a subnet.

In the case that locations are modeled spatially, we call the set of possible loca-
tions L, while the set of address-based locations will be denoted I. In general, there
is some correspondence between the two, but the mapping is not one-to-one, and
so we cannot in general map a location to an IP address, or vice versa.

Given some set of locations I, we can easily aggregate a traffic matrix across sets
S, D ⊂ I to obtain

Tt(S, D) =
∑
i∈S

∑
j∈D

Tt(i, j).

As with any time series, we can also perform standard aggregation operations in
time, making it relatively straightforward to create multiple approximate represen-
tations of the original traffic matrix at different levels of resolution.
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Fig 1. Example network.

However, such an approach, while potentially useful, might provide only limited
additional insight into the nature of traffic matrices. The key to interesting ap-
proximation lies in the choice of sets S, D used at each step in the aggregation of
the matrices. The reason for this lies in the designed structure of a network. For
instance, consider the network in Figure 1. The figure shows a toy network compris-
ing two regional networks, where each subnet contains several Points-of-Presences
(PoPs), each of which in turn contains a number of routers, which connect to multi-
ple end-systems. It seems obvious that this purposefully engineered hierarchy should
be related to the manner in which we perform the “coarsening” of traffic matrices.

For instance, in Figure 1, we might naturally consider the end systems to be the
locations of interest, i.e., A = {a, b, c, d, e, f, g, h, i, j, k, l,m}, and then aggregate
first by router, so that we take sets

S
(1)
1 = {l, k}, S

(1)
2 = {m,n}, S

(1)
3 = {},

S
(1)
4 = {i, j}, S

(1)
5 = {}, S

(1)
6 = {},

S
(1)
7 = {}, S

(1)
8 = {a, b}, S

(1)
9 = {c, d},

S
(1)
10 = {}, S

(1)
11 = {e, f}, S

(1)
12 = {g, h}.

Note that, in reality there would likely be many more end-systems, and hence the
sets would be rather larger. We could then aggregate into PoPs, such that

S
(2)
X = S

(1)
1 ∪ S

(1)
2 ∪ S

(1)
3 ,

and regions such that
S

(3)
A = S

(2)
X ∪ S

(2)
Y ,

and so on for other regions and PoPs.
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Note that the superscript in the sets above is used to denote the level (scale) of
resolution (approximation) that would be involved in calculating Tt(S

(i)
a , S

(i)
b ). We

will typically denote a traffic matrix aggregated across sets S
(i)
a by T (i), but we will

also retain this notation for any approximation at level i.
In the network above, the topological hierarchy is defined by the administrator

and has some meaning, either geographically, or managerially. However, it may not
be obvious in some networks what the natural groupings are. For instance, regions
may not be well defined in many networks. In this case, it may make sense to
group the end hosts using a clustering algorithm based on network distances: many
networks use shortest-path routing where the link weights (distances) are adminis-
tratively defined, and these distances between end-points define a natural cluster-
ing, or hierarchy on the network. Similarly, there may be circumstances where the
logical hierarchy is more important than the physical topology when creating ap-
proximate representations of the network. For example, IP addresses have a natural
hierarchy, which does not necessarily mesh with geography. Another example oc-
curs when end-points connect to multiple points in the network (for redundancy),
and it might make sense to aggregate over these logically related end-points. In
particular cases, we may be able to define a natural logical hierarchy suitable for
generating appropriate approximations. However, in many cases, there may be no
obvious logical hierarchy, in which case, part of our goal may be to search for the
“best” hierarchical decomposition.

3.2. Towards a MRA of traffic matrices

Multi-Resolution Analysis (MRA) (or alternatively Multi-Resolution Approxima-
tion) refers to the process of creating multiple approximate representations of an
object (e.g., traffic matrix), such that these have different resolution. In the well-
known context of wavelets, fast algorithms exist to calculate these approximations
at a countable number of resolutions (for a different approach using wavelets for
spatial traffic analysis, see [13]). MRA can be useful for a number of problems,
including denoising, compression, and anomaly detection. Here we wish to extend
these ideas to Internet traffic matrices so that we may be able to use these types
of applications in practice, but more importantly, to gain fundamental insight into
the nature of actual Internet traffic matrices.

However, there is more to MRA than simple aggregation/approximation, and
one of the main objectives is to be able to decompose a given traffic matrix in
such a way that when we form our successive approximate representations (using a
“decomposition algorithm”), we can also retain enough information to reverse the
approximation process—in wavelet parlance, we wish to retain the details necessary
for obtaining high-fidelity reconstructions (using a “reconstruction algorithm”) [16,
53]. In essence, the approach is intended to find sparse representations of traffic
matrices such that one can represent their important features with a small set of
numbers. Our objective is to understand traffic matrices at a level which will aid in
synthesis (artificial generation of traffic matrices for the purpose of simulations [47])
or inference (statistical estimation of a traffic matrix from link load data [59]). In
this context, sparse representations of traffic matrices are of special interest. For
example, for synthesis, they reduce the number of parameters that must be tuned
or estimated. For inference, the key problem is the massively under-constrained
nature of the linear-inverse problem that must be solved—if we can reduce the
problem to inference of a smaller number of parameters, then it will no longer be
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under-constrained.
To illustrate some of the features of the envisioned MRA of traffic matrices, we

are motivated by existing work in image compression. To this end, consider a n×n
traffic matrix T and let G represent the analysis matrix of a wavelet transform. For
example, when using the Haar transform, the analysis matrix is given by

(3.1) G =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0
0 0 1 1 0 . . . . . . 0
...

...
...

0 0 0 1 1
1 −1 0 . . . 0
0 0 1 −1 0 . . . . . . 0
... 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

While generalizations of the wavelet transform to multiple dimensions are known,
one of the simplest methods for applying such a transform in higher dimensions is in
a separable fashion. That is, given a traffic matrix T , a separable wavelet transform
matrix is computed by applying the analysis matrix G to the rows and columns of
T separately. This results in the matrix A given by

(3.2) A = GTGt,

where Gt is the transpose of G. One of the reasons why wavelet transforms are
widely used is that the resulting wavelet representations tend to concentrate energy
in a few of the coefficients, thus resulting in a sparse representation. To explain this
in more detail, consider a partition of the matrix G into two block submatrices of
size n/2 × n; that is,

(3.3) G =
(

G1

G2

)
.

This in turn allows us to partition the wavelet transformed matrix A as follows

(3.4) A =
(

A11 A12

A21 A22

)

where Aij = GiTGt
j . The wavelet coefficients in each of the four submatrices al-

low for different interpretations, exhibit different behavior, and can be quantized
differently in order to gain a compression advantage. For example, as in image com-
pression, where using A11 alone to reconstruct the image will produce a smoothed
version of the original image, in the case of traffic matrices, A11 defines an approx-
imate “coarsened” version of the original traffic matrix that is obtained by aggre-
gating over appropriate rows and columns of T . On the other hand, the details are
contained in the other submatrices, and their contributions to the reconstructed
traffic matrix can be controlled by thresholding them and by tuning the value of
the threshold. In the area of image compression, much is known about the subtle
correlations between the wavelet coefficients, especially when the wavelet transform
is applied repeatedly. However, in the context of traffic matrices, such an under-
standing is still missing.

Note that separability in the context of traffic matrices has a clear interpretation.
Aggregating rows corresponds to aggregating source nodes and aggregating columns
corresponds to aggregating destination nodes. In effect, separability allows for a
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2D transform that reduces to two 1D transforms, one for source nodes, the other
for destination nodes. Since the rows and columns selected for aggregation by the
analysis matrix G are fixed and may not correspond to any physically, managerially,
or logically defined hierarchy, we can provide some extra flexibility by permuting
the rows and columns using permutation matrices Πr and Πt

c, respectively. This
results in more flexible wavelet transformed matrices of the form

(3.5) A = GΠrTΠt
cG

t.

This of course leads to the problem of permutation matrix selection, a hard com-
binatorial problem by itself, unless the permutations to use are obvious and arise
naturally within the hierarchical network structure of interest.

As far as reconstruction is concerned, the wavelet transformed matrix A may
be inverted through the use of the synthesis matrix H = G−1, via the equation
T = HAHt. The wavelet transform is information preserving and thus T can be
recovered exactly1. However, from a modeling perspective, we would like to study
the quality of the resulting traffic matrix estimate when the wavelet coefficients
are modified in some way, e.g., by setting some to zero through an appropriately
designed thresholding operation. This requires that adequate distance measures
be used (e.g., Kullback–Leibler divergence, norm-based metrics such as l2-norm or
Frobenius norm), but a detailed study of appropriate evaluation metrics is beyond
the scope of this paper and will appear elsewhere. As an example, in Section 3.3
below, we will consider a reconstruction of the form

(3.6) T̂ = H

(
A11 0
0 0

)
Ht.

Concerning the structure of the wavelet transformed traffic matrix itself, note
that in the case of the Haar analysis matrix, A11 is guaranteed to have non-negative
entries (since the entries in G1 are non-negative) and can therefore be thought of
as a genuine traffic matrix. The other submatrices carry detail information that is
lost in the aggregation and will in general have non-negative as well as negative
entries.

A traffic matrix T is called a gravity matrix or gravity model if T = uvt for some
vectors u and v. Gravity models have been used successfully as models for traffic
matrices in inference and synthesis [47], though they have limitations [6]. Note that
the defining property of a gravity matrix corresponds to separability of the traffic
matrix. Moreover, if T is a gravity matrix, we have

(3.7) A = (Gu)(Gv)t,

that is, A is also a gravity matrix. Since this is independent of the precise type
of analysis matrix G, the property of being a gravity matrix is preserved not only
under aggregation, but under other forms of filtering as well. Similarly, it also follows
that each of the submatrices Aij is also a gravity matrix. In terms of reconstructed
traffic matrices, it is not hard to see that the reconstruction (3.6) will result in a
gravity matrix provided the submatrix matrix A11 is a gravity matrix. On the other
hand, the reconstruction

(3.8) T̂ = H

(
A11 0
0 A22

)
Ht.

1This is assuming infinite precision arithmetic if the wavelet analysis matrix contains irrational
numbers. The desire for exact reconstruction is one of the motivations for considering lifting
schemes.



226 Zhang, Ge, Diggavi, Mao, Roughan, Vaishampayan, Willinger, and Zhang

will not be a gravity matrix if A22 is nonzero. Thus if we wish the approximate
traffic matrix

(3.9) T̂ = H

(
Ã11 Ã12

Ã21 Ã22

)
Ht

to be a gravity matrix, we must be careful to ensure that Ã (with submatrices Ãij)
is also a gravity matrix.

Gravity models are of particular interest in the context of MRA of traffic matrices
because the underlying assumption of the gravity model (i.e., traffic homogeneity)
is expected to improve with aggregation. Larger aggregates of traffic should behave
more and more like a gravity model, until the top level approximation (just the
total traffic in the network) is exactly represented by such a model. Note however
that systematic biases away from a gravity model may be regional, so aggregat-
ing topologically may actually result in delayed convergence to the gravity model,
whereas, randomized aggregation may actually converge quite quickly to fit a grav-
ity model. Other approaches to aggregation that are less oblivious to actual routing
of the traffic through the network may have the benefit of quick convergence and
lack of systematic bias.

3.3. A look at real traffic matrices

Fig 2. The Abilene network.

To illustrate various features of actual traffic matrices, we first consider the Abi-
lene network shown in Figure 2. Abilene [1] is the U.S. Internet backbone for higher
education. It is comprised of high-speed connections between core routers (Juniper
T640) which are located in 11 U.S. cities, with the Atlanta node consisting of two
core routers (i.e., ”Atlanta” and ”Atlanta-M5”). The Abilene backbone is shown
in Figure 2(a) and is a sparsely connected mesh; connectivity to regional and local
customers is not shown but is provided with some minimal amount of redundancy.
Abilene maintains peering connections with other higher educational networks (do-
mestic and international) but does not connect directly to the commercial Internet.
This feature is shown in Figure 2(b) which depicts the connectivity of Abilene’s core
router in Washington, D.C. at the level of populated router interfaces (numbered
1–16). For example, interfaces 3 and 5 connect to the core router in New York and
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one of the core routers in Atlanta, respectively; interfaces 4, 6, 11, and 12 connect
to Internet exchange points; and the other interfaces shown reflect peering connec-
tions to customers such as AS81 which belongs to the North Carolina Research and

(a) Abilene backbone network (b) Local router (Washington, D.C.)

Fig 3. Measured traffic matrices.

(a) Abilene traffic matrix elements (b) Local router traffic matrix elements

Fig 4. Measured traffic matrices over time.

A snapshot of Abilene’s traffic matrix is shown in Figure 3(a) and depicts the
amount of traffic carried between each Abilene node on 09/01/2006. For that same
day, the local router traffic matrix for the Washington, D.C. node is shown in Fig-
ure 3(b). Note that the large diagonal elements in Figure 3(a) reflect a pronounced
locality property of Abilene traffic, while the local router traffic matrix in (b) is
largely determined by the configuration of this core router (i.e., which interface
carries which in- and out-going traffic). Plotting in Figure 4(a) the values of the
12 largest elements of the traffic matrix in Figure 3(a) for successive 1-hour inter-
vals for the 6-day period from 09/01/2006 to 09/06/2006 shows the presence of a
dominant diurnal cycle that has been well-documented in past studies of single-link
traffic dynamics over large time scales [48]. A very similar behavior can be observed
for the entries on the local router traffic matrix in Figure 4(b).

Considering the static Abilene traffic matrix T in Figure 3(a), two simple ap-
proximations are obtained by computing the corresponding gravity model TG and
deriving the wavelet transformed model TW of the form given by (3.6). Note
that for the gravity model, we have TG = uvt with ui = (1/

√
(S))

∑
j Ti,j and
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(a) Gravity model TG (b) Wavelet model TW

Fig 5. Approximate traffic matrices.

(a) Difference between T and TG (b) Differences between T and TW

Fig 6. Quality of traffic matrix approximations; red bars (pointing up) are positive, blue bars
(pointing down) are negative differences.
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vj = (1/
√

(S))
∑

i Ti,j , where S =
∑

i,j Ti,j . To derive a simple, yet meaningful
wavelet transformed traffic matrix, we aggregate the Abilene nodes geographically
in pairs of two as shown in Figure 2(a) by using appropriate permutation matrices
Πr = Πc, compute the wavelet transformed matrix A via (3.5), and set TW = T̂
where T̂ is given by equation (3.6). While Figure 5 shows the two approximate
traffic matrices, Figure 6 depicts the differences between T and TG, and between T
and TW , respectively. Note that while neither approximations can account for the
large diagonal elements of T , the wavelet transformed traffic matrix TW results in
a qualitatively better approximation of T than the gravity model TG. At the same
time, Figure 6(b) also shows the effects of relying on the simple dyadic structure
associated with the Haar transform when choosing the matrix A given by (3.1) as
our analysis matrix. When comparing Figures 3(a) and 5(b), this aggregation into
groups of two appears as the most significant difference between the original and
the wavelet transformed traffic matrices and suggests alternate and more flexible
choices of wavelet transforms and corresponding analysis matrices. However, not
every choice that is meaningful from a networking perspective is feasible from an
MRA perspective (i.e., A may not be invertible, causing problems for the recon-
struction), and herein lies much of the tension that exists between developing a
MRA that is, one the one hand, suitable for the Internet context and, on the other
hand, amenable to a rigorous mathematical treatment.

4. Summary and Outlook

By combining the analysis of single-link traffic rate processes with the more recent
studies of network-wide traffic matrices, a detailed exploration of Internet traffic as
a spatial-temporal object across the different layers of the TCP/IP protocol stack
looms as a real possibility. However, to study Internet traffic over a wide range of
scales in space and time and across different layers will require a dramatic widening
of MRA technology as it is known and used today. In Section 3, we discussed some
basic features of such an MRA for the case of static traffic matrices, but much work
remains even in this case where temporal and layer-specific aspects are largely sup-
pressed and the focus is on the spatial characteristics of the total traffic volumes
exchanged between pairs of nodes in the network. In particular, we would like to
know how to coarsify traffic matrices in such a way that the reconstructed approx-
imations automatically satisfy the non-negativity constraints and can therefore be
interpreted as genuine traffic matrices. In the case of wavelet transformed matrices,
we are especially interested in thresholding techniques that ensure non-negativity of
the reconstruction, especially when the transform is applied iteratively. Other open
issues concern the choice of appropriate metrics for comparing different traffic ma-
trices across scales and within a given scale; the development of flexible “zoom-in”
capabilities for exploring Internet traffic localized in time, space, or layer; and the
use of non-separable wavelet-transform matrices to develop truly 2D wavelet-based
MRA schemes.

In its full-blown version, the envisioned MRA framework promises to significantly
advance Internet theory and practice. For example, in terms of its ability to impact
a more theoretical study of the Internet, it would provide a framework for unifying
various Internet congestion control modeling and analysis approaches found in the
current literature. On one end of the spectrum, by concentrating on the transport
layer and accounting for very fine scales in space (e.g., link-to-link, host-to-host),
but considering a largely trivial temporal dynamic (e.g., infinite source models),
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the proposed framework incorporates the scenarios treated in recent work by Low
et al. [35, 40, 51] on the existence, uniqueness, and stability of equilibria of hetero-
geneous congestion control in general networks. On the other end of the spectrum,
when focusing on the same transport layer and allowing for very fine scales in time
(e.g., flow-level source models), but requiring an essentially trivial spatial struc-
ture (e.g., linear networks), it also captures the setup considered in recent work by
Gromoll and Williams [25, 26] who study stability and heavy traffic behavior of a
general stochastic flow model of congestion control for two very specific types of
networks. The challenge will be to bridge the gap between these two extremes and
establish similar existence, uniqueness, and stability results for models of Internet
congestion control that allow for very fine scales in time and space. This is closely
related to the problem of generalizing Kurtz’s construction to network-wide traffic
matrices by (i) accounting for the spatial aspect of Internet traffic, (ii) incorpo-
rating those mechanisms of Internet congestion control that shape the behavior of
network-wide traffic at the transport layer over sufficiently large time scales, and
(iii) explaining features of an overall traffic matrix in terms of application-specific
traffic matrices (e.g., Web traffic only, Peer-to-Peer traffic only).

From a more practical perspective, the envisioned MRA technology can also be
expected to aid the development of novel and powerful tools for root-cause analyses
of network failures or detection of different types of unwanted traffic (e.g., spam,
botnets, worms, viruses). The ability to examine network traffic measurements in
a systematic manner across many different time scales, over a variety of different
spatial scales (e.g., IP address, prefix, autonomous domains), and at the different
layers in the TCP/IP protocol stack suggests a holistic approach to exploiting
Internet-related measurements that has been largely absent to date. In particular,
it argues for tools and techniques with “drill-down” or “zoom-in” capabilities that
are informed by coarse-scale representations of the data and are guided by a detailed
understanding of the correlations that might exist at the different scales in time,
over space, and across layers. While multi-scale approaches to, for example, network
intrusion detection have been popular in the recent past, the main challenge here
will be to fully exploit the multi-dimensional aspect of scale and not treat it one
dimension at a time.
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