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Graphs

Graph: G(N,E)
I N = set of nodes (vertices)
I E = set of edges (links)

Often we have additional information on links, e.g.,
I link distance
I link capacity
I link strength

we call these weights.
Often graphs change over time

I nodes, links, and weights can change

we call these dynamic graphs
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Why?

To represent data where “connections” are 1st class objects in
their own right

I storing the data in the right format improves access, processing, ...
I it’s natural, elegant, and might be efficient if we do it properly

Many examples
I Telephone call records: how often does person A call B

F AT&T use this to detect fraudsters (amongst other things)
I Musicians – how alike are musicians A and B

F last.fm use to make music recommendations
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Network of Musicians (last.fm)

http://sixdegrees.hu/last.fm/
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Compression

Compression is almost ubiquitous now
I lossless vs lossy (e.g., GIF vs JPEG)
I algorithm vs encoding (e.g., DCT+quantisation vs Huffman Coding)

Type of graph that is compressed

lossless lossy
static, unweighted [1, 2, 3] [4, 5]

static, weighted [6] [7, 8]
dynamic, unweighted [9]
dynamic, weighted [10, 11, 12]
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Tool

Weighted sum of weighted graphs

G = αA⊕ βB

means

N(G) = N(A) ∪ N(B),

E(G) = E(A) ∪ E(B),

and
wG(e) = αwA(e) + βwB(e), for all e ∈ E(G),

where if an edge is not present, we treat it as if it has weight 0.
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Measuring dynamic graphs

Usually we can’t see the graph itself
I we see a proxy measurement
I we have errors because network changes, and measurement errors

Example: call records
I underlying graph gives social connections
I measure a links strength by number of calls
I underlying graph evolves at the same time as we measure it

Exponentially Weighted Moving Average (EWMA) Graph

Gt = θGt−1 ⊕ (1− θ)gt ,

I gt is measured graph in current time interval t
I Gt is updated estimate of graph
I 1− θ is the “gain”
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Approximation

Lossy compression is approximation
I on-line algorithms combine estimation and approximation

Mathematical representation in this context

Ĝt = A
(
θĜt−1 ⊕ (1− θ)gt

)
.

where A(·) is an approximation function
I can prune edges
I can approximate edge weights

M.Roughan (UoA) Graph Compression August 6, 2015 8 / 14



Top-k approximation

Idea is to model Community of Interest (COI) signature [11, 12]
I approximation is just “take the top k edges”
I also prune edges whose weight falls below ε

Parameters (k , ε)
I choose so that 95% of edges are kept

Applied to detecting fraudsters
I you are who you call
I compare COI signature of new customers to database of “bad”

accounts
Problems:

I non-trivial to choose parameters
I doesn’t work well as general approximation technique
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Shrinkage approximation

Similar idea, but don’t make a fixed k
All weights are soft thresholded

wĜ(e) = [wG(e)− λ]+ ,

Only one parameter λ
Draws on ideas from de-noising
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Results: errors with compression approximately 10:1
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Results: compressed degree distributions
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Conclusion

Graph Compression is Good
I lossy compression can reduce size of data 10:1 with reasonable

errors
New method

I shrinkage outperforms top-k in many respects
Haven’t talked about encoding at all

I we don’t know how this approximation interacts with encoding, but it
should be good as we are de-noising

I encoding works better on structured data (as opposed to noise)
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Bonus frames
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