This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Veritying and Monitoring loTs Network Behavior
using MUD Profiles

Ayyoob Hamza, Dinesha Ranathunga, Hassan Habibi Gharakheili,
Theophilus A. Benson, Matthew Roughan, and Vijay Sivaraman

Abstract—IoT devices are increasingly being implicated in cyber-
attacks, raising community concern about the risks they pose to critical
infrastructure, corporations, and citizens. In order to reduce this risk,
the IETF is pushing loT vendors to develop formal specifications of the
intended purpose of their loT devices, in the form of a Manufacturer Us-
age Description (MUD), so that their network behavior in any operating
environment can be locked down and verified rigorously.

This paper aims to assist loT manufacturers in developing and
verifying MUD profiles, while also helping adopters of these devices to
ensure they are compatible with their organizational policies and track
device network behavior using their MUD profile. Our first contribution
is to develop a tool that takes the traffic trace of an arbitrary loT
device as input and automatically generates the MUD profile for it. We
contribute our tool as open source, apply it to 28 consumer loT devices,
and highlight insights and challenges encountered in the process. Our
second contribution is to apply a formal semantic framework that not
only validates a given MUD profile for consistency, but also checks its
compatibility with a given organizational policy. We apply our framework
to representative organizations and selected devices, to demonstrate
how MUD can reduce the effort needed for loT acceptance testing.
Finally, we show how operators can dynamically identify loT devices
using known MUD profiles and monitor their behavioral changes in their
network.

Index Terms—IoT, MUD, Policy Verification, Device Discovery, Compro-
mised Device Detection

1 INTRODUCTION

The Internet of Things is considered the next technological
mega-trend, with wide reaching effects across the business
spectrum [2]. By connecting billions of every day devices
from smart watches to industrial equipment to the Internet,
IoT integrates the physical and cyber worlds, creating a

A. Hamza, H. Habibi Gharakheili, and V. Sivaraman are with
the School of Electrical Engineering and Telecommunications, Uni-
versity of New South Wales, Sydney, NSW 2052, Australia (e-
mails: ayyoobhamza@student.unsw.edu.au, h.habibi@unsw.edu.au, vi-
jay@unsw.edu.au).

e D. Ranathunga and M. Roughan are with the ARC Centre of Excellence
for Mathematical and Statistical Frontiers at the School of Mathematical
Sciences, University of Adelaide, SA, 5005, Australia (e-mails: dine-
sha.ranathunga@adelaide.edu.au, matthew.roughan@adelaide.edu.au).

o T Benson is with the School of Computer Science and Engineering, Brown
University, Providence, RI 02192, USA (e-mail: tab@cs.brown.edu).

o This submission is an extended and improved version of our paper

presented at the ACM Workshop on IoT S&P 2018 [1].

host of opportunities and challenges for businesses and con-
sumers alike. But, increased interconnectivity also increases
the risk of using these devices.

Many connected IoT devices can be found on search
engines such as Shodan [3], and their vulnerabilities ex-
ploited at scale. For example, Dyn, a major DNS provider,
was subjected to a DDoS attack originating from a large IoT
botnet comprising thousands of compromised IP-cameras
[4]. IoT devices, exposing TCP/UDP ports to arbitrary lo-
cal endpoints within a home or enterprise, and to remote
entities on the wider Internet, can be used by inside and
outside attackers to reflect/amplify attacks and to infiltrate
otherwise secure networks [5]. IoT device security is thus a
top concern for the Internet ecosystem.

These security concerns have prompted standards bod-
ies to provide guidelines for the Internet community to
build secure IoT devices and services [6]-[8], and for regula-
tory bodies (such as the US FCC) to control their use [9]. The
focus of our work is an IETF standard called Manufacturer
Usage Description (MUD) [10] which provides the first
formal framework for IoT behavior that can be rigorously
enforced. This framework requires manufacturers of IoTs to
publish a behavioral profile of their device, as they have the
best knowledge of how their device is expected to behave
when installed in a network; for example, an IP camera
may need to use DNS and DHCP on the local network, and
communicate with NTP servers and a specific cloud-based
controller in the Internet, but nothing else. Such device
behavior is manufacturer specific. Knowing each device’s
intended behavior allows network operators to impose a
tight set of access control list (ACL) restrictions per IoT
device in operation, reducing the potential attack surface
on their network.

The MUD standard provides a light-weight model to en-
force effective baseline security for IoT devices by allowing
a network to auto-configure the required network access
for the devices, so that they can perform their intended
functions without having unrestricted network privileges.
Many critical infrastructures and enterprises adopting IoT
devices in their network and MUD white listing model
can help network administrator to monitor and verify the
exceptions. In addition, many standard and regulatory bod-
ies such as NIST [11], and the European Union agency
for cybersecurity [12] recommend the adoption of MUD as
part of their best practices, reducing the vulnerability of

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

IoT devices to botnets and other network-based threats as
well as reducing the potential for harm from exploited IoT
devices. MUD as a good practice to secure the IoT devices.
MUD is also beneficial to manufacturers who want com-
petitive advantages [13] since it differentiates their device
by offering a network-based security feature, and hence
improving customer satisfaction and/or adoption due to
reduced security risks.

This paper provides solutions to improve the issues in
the proposed MUD ecosystem. MUD is a new and emerging
paradigm, and there is little collective wisdom today on how
manufacturers should develop behavioral profiles of their
IoT devices, or how organizations should use these profiles
to secure their network and monitor the runtime behavior
of IoT devices. Our preliminary work in [1] was one of the
first attempts to address these shortcomings. This paper!
significantly expands on our prior work by proposing an
IoT device classification framework which uses observed
traffic traces and incrementally compares them with known
IoT MUD signatures. We use this framework and trace
data captured over a period of six months from a testbed
comprising of 28 distinct IoT devices to identify (a) legacy
IoT devices without vendor MUD support; (b) IoT devices
with outdated firmware; and (c) IoT devices which are
potentially compromised. To the best of our knowledge, this
is the first attempt to automatically generate MUD profiles,
formally check their consistency and compatibility with an
organizational policy, prior to deployment. In summary, our
contributions are:

o We instrument a tool to assist IoT manufacturers to
generate MUD profiles. Our tool takes as input the
packet trace containing the operational behavior of
an IoT device, and generates as output a MUD profile
for it. We contribute our tool as open source [14],
apply it to 28 consumer IoT devices, and highlight
insights and challenges encountered in the process.

o We apply a formal semantic framework that not only
validates a given MUD profile for consistency, but
also checks its compatibility with a given organi-
zational policy. We apply our semantic framework
to representative organizations and selected devices,
and demonstrate how MUD can greatly simplify the
process of IoT acceptance into the organization.

e We propose an IoT device classification framework
using observed traffic traces and known MUD signa-
tures to dynamically identify IoT devices and moni-
tor their behavioral changes in a network.

The rest of the paper is organized as follows: §2 describes
relevant background work on IoT security and formal policy
modeling. §3 describes our open-source tool for automatic
MUD profile generation. Our verification framework for
MUD policies is described in §4, followed by evaluation of
results. We describe our IoT device classification framework
in §5 and demonstrate its use to identify and monitor IoT
behavioral changes within a network. We conclude the
paper in §6.

1. This project was supported by Google Faculty Research Awards

and Centre of Excellence for Mathematical and Statistical Frontiers
(ACEMS).

Fig. 1. A metagraph consisting of six variables, five sets and three
edges.

2 BACKGROUND AND RELATED WORK

Securing IoT devices has played a secondary role to in-
novation, i.e., creating new IoT functionality (devices and
services). This neglection of security has created a substan-
tial safety and economic risks for the Internet [15]. Today
many manufacturer IoT devices lack even the basic security
measures [16] and network operators have poor visibility
into the network activity of their connected devices, hinder-
ing the application of access-control policies to them [17].
IoT botnets continue to grow in size and sophistication and
attackers are leveraging them to launch large-scale DDoS
attacks [18]; devices such as baby monitors, refrigerators
and smart plugs have been hacked and controlled remotely
[19]; and many organizational assets such as cameras are
being accessed publicly [20], [21].

Existing IoT security guidelines and recommendations
[6]-[9] are largely qualitative and subject to human interpre-
tation, and therefore unsuitable for automated and rigorous
application. The IETF MUD specification [10] on the other
hand defines a formal framework to capture device run-time
behavior, and is therefore amenable to rigorous evaluation.
IoT devices also often have a small and recognizable pattern
of communication (as demonstrated in our previous work
[22]). Hence, the MUD standard allows IoT device behavior
to be captured succinctly, verified formally for compliance
with organizational policy, and assessed at run-time for
anomalous behavior that could indicate an ongoing cyber-
attack.

A valid MUD profile contains a root object called
“access-lists” container [10] which comprise of several ac-
cess control entries (ACEs), serialized in JSON format.
Access-lists are explicit in describing the direction of com-
munication, i.e., from-device and to-device. Each ACE matches
traffic on source/destination port numbers for TCP/UDP,
and type and code for ICMP. The MUD specifications also
distinguish local-network traffic from Internet communica-
tions.

We provide here a brief background on the formal mod-
eling and verification framework used in this paper. We
begin by noting that the lack of formal policy modeling
in current network systems contribute to frequent miscon-
figurations [23]-[25]. We use the concept of a metagraph,
which is a generalized graph-theoretic structure that offers
rigorous formal foundations for modeling and analyzing
communication-network policies in general. A metagraph
is a directed graph between a collection of sets of “atomic”
elements [26]. Each set is a node in the graph and each
directed edge represents the relationship between two sets.
Fig. 1 shows an example where a set of users (U;) are related
to sets of network resources (I%;, R2, R3) by the edges
e1, ez and ez describing which user u; is allowed to access
resource ;.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Metagraphs can have attributes associated with their
edges. An example is a conditional metagraph which includes
propositions — statements that may be true or false — as-
signed to their edges as qualitative attributes [26]. The
generating sets of these metagraphs are partitioned into a
variable set and a proposition set. A conditional metagraph
is formally defined as follows:

Definition 1 (Conditional Metagraph). A conditional meta-
graph is a metagraph S=(X, U X,,, E) in which X,, is a set of
propositions and X, is a set of variables, and:

1. at least one vertex is not null, i.e.,Ve' € B,V UW, # ¢

2. the invertex and outvertex of each edge must be disjoint,
ie, X = X, UX, with X, N X, = ¢

3. an outvertex containing propositions cannot contain other
elements, i.e., Vp € X,,,Ve' € E, if p € W, then W, = p.

Conditional metagraphs enable the specification of state-
ful network-policies and have several useful operators.
These operators readily allow one to analyze MUD policy
properties like consistency.

The MUD standard defines how a MUD profile needs
to be fetched. A MUD profile is downloadable using a
MUD url (e.g., via DHCP). The MUD specification suggests
creating a mapping of devices to their MUD urls for legacy
devices already in production networks. Therefore, in this
paper, we develop a method for automatic device identi-
fication using MUD profiles to reduce the complexity of
mapping a device to its corresponding MUD-url manually
(see §5). Our previous work [27] discussed the challenges
of enforcing MUD profiles into networks. We showed how
the MUD paradigm can effectively reduce the attack sur-
face while sophisticated attacks (those conforming to MUD
profiles) can still be launched on IoT devices. In other work
[28], we trained machine learning-based models by network
activity of MUD rules to detect volumetric attacks. The pri-
mary focus of this paper, instead, is on the pre-enforcement
stage whereby network operators can use MUD profiles to
ensure (prior to deployment) IoT devices are compatible
with their organizational policies. Additionally, this paper
develops a method to help operators identify existing de-
vices (already deployed) in the network by progressively
checking their behavior against a set of known profiles.

Past works have employed machine learning to classify
IoT devices for asset management [29], [30]. Method in [29]
employs over 300 attributes (packet-level and flow-level),
though the most influential ones are minimum, median, and
average of packet volume, Time-To-Live (TTL), the ratio of
total bytes transmitted and received, and the total number
of packets with RST flag reset. Work in [30] proposes to
use features with less computation cost at runtime. Existing
Machine learning based proposals need to re-train their
model when a new device type is added - this limits the
usability in terms of not being able to transfer the models
across deployments.

While all the above works make important contributions,
they do not leverage the MUD standard, which the IETF is
pushing for vendors to adopt. We overcome the shortfall by
developing an IoT device classification framework which
dynamically compares the device traffic traces (run-time
network behavior) with known static IoT MUD signatures.
Using this framework, we are able to identify (a) legacy IoT

TABLE 1
Flows observed for Blipcare BP (*: wildcard, proto: Protocol, sPort:
source port number, dPort: destination port number).

Source Destination proto sPort dPort
* 192.168.1.1 17 * 53
192.168.1.1 * 17 53 *

* tech.carematix.com 6 * 8777
tech.carematix.com * 6 8777 *

devices without vendor MUD support; (b) IoT devices with
outdated firmware; and (c) IoT devices which are potentially
compromised.

3 MUD PROFILE GENERATION

The IETF MUD is a new standard. Hence, IoT device man-
ufacturers have not yet provided MUD profiles for their
devices. We therefore developed a tool MUDgee which
automatically generates a MUD profile for an IoT device
from its traffic trace in order to make this process faster,
easier, and more accurate. Note that the generated profile
completeness solely depends on the completeness of the
input traffic traces. In this section, we describe the structure
of our open source tool [14], apply it to traces of 28 con-
sumer IoT devices, and highlight insights. To capture all the
possible benign states, we combined both autonomous and
interactive approaches. In order to autonomously capture
benign behavior of IoT devices in our testbed, we installed
a touch replay tool on a Samsung galaxy tab to record all
possible user interactions (e.g., turning on/off a lightbulb
or streaming video from a camera) with individual IoTs.
We also setup these devices in our lab environment and
captured direct user interactions. Traffic traces were stored
in an external hard disk connected to the router.

We captured traffic flows for each IoT device during
a six month observation period, to generate our MUD
rules. The IETF MUD standard allows both ‘allow’ and
‘drop’ rules. In our work, instead, we generate profiles
that follow a whitelisting model (i.e., only ‘allow’ rules
with default ‘drop’). Having a combination of ‘accept” and
‘drop’ rules requires a notion of rule priority (i.e., order)
and is not supported by the IETF MUD standard. For
example, Table 1 shows traffic flows observed for a Blipcare
blood pressure monitor. The device only generates traffic
whenever it is used. It first resolves its intended server
at tech.carematrix.com by exchanging a DNS query/re-
sponse with the default gateway (i.e., the top two flows).
It then uploads the measurement to its server operating on
TCP port 8777 (described by the bottom two rules).

3.1

MUDgee implements a programmable virtual switch
(vSwitch) with a header inspection engine attached and
plays an input PCAP trace (of an arbitrary IoT device) into
the switch. MUDgee has two separate modules; (a) captures
and tracks all TCP/UDP flows to/from device, and (b)
composes a MUD profile from the flow rules. We describe
these two modules in detail below.

MUDgee Architecture

Capture intended flows: Consumer IoT devices use services
provided by remote cloud servers and also expose services
to local hosts (e.g., a mobile App). We track both (intended)

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

@) "

Read PCAP
Loop till EOF | —=

Remove the flow
rule f if there is
no record in
DNS cache and
the flow volume
is less than a
threshold g

Label the Pkt as
unicast, multicast, or broadcast

Checks TCP SYN

DNS cache: store
domain-name and
its IP addr.

« identify direction (from/to device)
« identify type (local/Internet)

install bidirectional flow rule with
forward action

[remove flow rule f corresponding to same}

IP exists
in DNS cache

No

domain-name if age(f) > a
—

Fig. 2. Algorithm for capturing device flows and inserting reactive rules.

remote and local device communications using separate
flow rules to meet the MUD specification requirements.

It is challenging to capture services (i.e., especially those
operating on non-standard TCP/UDP ports) that a device
is either accessing or exposing. This is because local /remote
services operate on static port numbers whereas source port
numbers are dynamic (and chosen randomly) for different
flows of the same service. We note that it is trivial to deduce
the service for TCP flows by inspecting the SYN flag, but
not so easy for UDP flows. We, therefore, developed an
algorithm (Fig. 2) to capture bidirectional flows for an IoT
device.

We first configure the vSwitch with a set of proactive
rules, each with a specific action (i.e., “forward” or “mirror”
and a priority (detailed rules can be found in our technical
report [31]). Proactive rules with a ‘mirror” action will feed
the header inspection engine with a copy of the matched
packets. Our inspection algorithm, shown in Fig. 2, will
insert a corresponding reactive rule into the vSwitch.

Our algorithm matches a DNS reply to a top priority
flow and extracts and stores the domain name and its asso-
ciated IP address in a DNS cache. This cache is dynamically
updated upon arrival of a DNS reply matching an existing
request.

The MUD specification also requires the segregation of
traffic to and from a device for both local and Internet
communications. Hence, our algorithm assigns a unique
priority to the reactive rules associated with each of the
groups: from-local, to-local, from-Internet and to-Internet.
We use a specific priority for flows that contain a TCP SYN
to identify if the device or the remote entity initiated the
communication.

Flow translation to MUD: MUDgee uses the captured traffic
flows to generate a MUD profile for each device. We convert
each flow to a MUD ACE by considering the following;:

Consideration 1: We reverse lookup the IP address of the
remote endpoint and identify the associated domain name
(if any), using the DNS cache.

Consideration 2: Some consumer loTs, especially IP cam-
eras, typically use the Session Traversal Utilities for NAT
(STUN) protocol to verify that the user’s mobile app can
stream video directly from the camera over the Internet. If
a device uses the STUN protocol over UDP, we must allow
all UDP traffic to/from Internet servers because the STUN
servers often require the client device to connect to different
IP addresses or port numbers.

Consideration 3: We observed that several smart IP
cameras communicate with many remote servers operating
on the same port (e.g., Belkin Wemo switch). However, no

4

DNS responses were found corresponding to the server
IP addresses. So, the device must obtain the IP address
of its servers via a non-standard channel (e.g., the current
server may instruct the device with the IP address of the
subsequent server). If a device communicates with several
remote IP addresses (i.e., more than our threshold value
of five), all operating on the same port, we allow remote
traffic to/from any IP addresses (i.e., *) on that specific port
number.

Consideration 4: Some devices (e.g., TPLink plug) use
the default gateway as the DNS resolver, and others (e.g.,
Belkin WeMo motion) continuously ping the default gate-
way. The MUD standard maps local communication to fixed
IP addresses through the controller construct. We consider
the local gateway to act as the controller, and use the name-
space urn:ietf:params:mud:gateway for the gateway.

Consideration 5: The MUD specification allows sub-
net matching for ACLs with IP endpoints, but not
specifically for ACLs with domain name endpoints.
There are certain devices that communicate with a
large set of domain names which share the same top-
level domain. For example, our instance of Chromecast
fetches media contents from CDN servers with domain
names such as r4---sn-ntqe6n76.googlevideo.com and
r3---sn-55goxu-ntqge.googlevideo. com. It is practically
infeasible to capture traffic traces that cover all domain
names which can be contacted by the Chromecast, but
these domain names match a single top-level domain name
*.googlevideo.com. During the generation of MUD pro-
files by the MUDgee tool, such aggregation (masking) of
domain names can be done by the user (network admin-
istrator) who will provide the list of preferred top-level
domains. During the enforcement, having “*.” in source or
destination domain name fields of a MUD profile would
allow any prefixes. The authors of the MUD standard may
want to incorporate this amendment in future.

The generated MUD profiles of the 28 consumer IoT
devices in our testbed are listed in Table 2 and are publicly
available at: https://iotanalytics.unsw.edu.au/mud/.

3.2

We categorize lIoT devices into three groups: (a) devices with
static functionalities which can be well-defined; (b) devices
with static functionalities, but cannot be completely defined
due to use of dynamic IP addresses or domain names;
and, (c) devices with dynamic functionalities that can be
augmented by apps/recipes/redirection. In what follows,
we highlight insights obtained from a representative device
in each of these three categories.

(Category1) static functionality: The Blipcare BP moni-
tor is an example of an IoT device with static functionalities.
It exchanges DNS queries/responses with the local gateway
and communicates with a single domain name over TCP
port 8777. So, its behavior can be locked down to a limited
set of static flow rules. The majority of IoT devices that we
tested (i.e., 22 out of 28) fall into this category (marked in
green in Table 2).

(Category?2) static functionality but dynamic endpoints:
We use Sankey diagrams (shown in Fig. 3) to represent the
MUD profiles in a human-friendly way. The second category
of our generated MUD profiles is exemplified by Fig. 3(a).

Insights and challenges

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE
Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5
33434 [
0.pool.ntp. 123
E T || l:‘ 23.23.189.20 29317]
.any_lp. arbitary_port(1025-65535) \:’ uDP [ntp-g7g.amazon.com 123 i
INTERNET \ ipc.tplinkcloud.com o [___] domain_set1
|| apst-relay.tplinkcloud.com TNTERNET . ey . . ubpP
tpli ? 50443
[devs.tplinkcloud.com [| [200 0570 >
\:| urniietf:params:mud:gateway 53 | \ IGMP domain_set2 [
5353 [domain_set3 8o]
224.0.0.251 .
LOCAL ggooo any_local_ip I:‘ ICMP
224.00.2 [224.0.0.251 5353 []
| |224001 Tcp [1239.255.255.250 1900 [Tcp ‘
— LOCAL
8080) |:| urn:ietf:params:mud:gateway 53 I:‘ \GMP
80 any_local_ip 224.0.0.22 |

(a) TP-Link camera. (b) Amazon Echo (e.g., domain_setl:0.north-america.pool.ntp.org,
1.north-america.pool.ntp.org, domain_set2: dcape-na.amazon.com, soft-
wareupdates.amazon.com, domain_set3:kindle-time.amazon.com, live-

radio0l.mediahubaustralia.com, www.example.com).

Fig. 3. Sankey diagrams of MUD profiles for: (a) TP-Link camera, and (b) Amazon Echo.

TABLE 2
List of loT devices for which we have generated MUD profiles. Devices
with purely static functionality are marked in green. Devices with static
functionality but loosely defined (e.g., due to use of STUN protocol) are
marked in blue. Devices with complex and dynamic functionality are
marked in red.

Type IoT device
Netatmo Welcome, Dropcam, Withings
Smart Baby Monitor, Canary camera,
Camera TP-Link Day Night Cloud camera, August

doorbell camera, Samsung SmartCam,
Ring doorbell, Belkin NetCam

Awair air quality monitor, Nest smoke
sensor, Netatmo weather station

Air quality
sensors

Withings Smart scale, Blipcare Blood
Pressure meter, Withings Aura smart
sleep sensor

Healthcare
devices

Switches and iHome power plug, WeMo power switch,

Triggers TPLink plug, Wemo Motion Sensor
Lightbulbs Philips Hue lightbulb, LiFX bulb
Hub Amazon Echo, SmartThings
Multimedia Chromecast, Triby Speaker

Other HP printer, Pixstar Photoframe, Hello

Barbie

This Sankey diagram shows how the TP-Link camera access-
es/exposes limited ports on the local network. The camera
gets its DNS queries resolved, discovers local network using
mDNS over UDP 5353, probes members of certain multicast
groups using IGMP, and exposes two TCP ports 80 (manage-
ment console) and 8080 (unicast video streaming) to local
devices. All these activities can be defined by a tight set of
ACLs. But, over the Internet, the camera communicates to
its STUN server,accessing an arbitrary range of IP addresses
and port numbers shown by the top flow. Due to this
communication, the functionality of this device can only be
loosely defined. Devices that fall in to this category (i.e.,
due to the use of STUN protocol),are marked in blue in
Table 2. The functionality of these devices can be more
tightly defined if manufacturers of these devices configure
their STUN servers to operate on a specific set of endpoints
and port numbers, instead of a broad and arbitrary range.
(Category3) dynamic functionality: The Amazon Echo
and Triby speaker represent devices with complex and dy-
namic functionalities triggered by various user interactions.
Such devices (marked in red in Table 2), can communicate
with a growing range of endpoints on the Internet that
the original manufacturer cannot specify in advance. For
example, we found that our instance of Amazon Echo
communicates with “https://meethue.com” in response
to a voice command activating the Hue lightbulb in our lab.
For additional skills, however, the Amazon Echo is expected
to communicate with its cloud-based backend facilitating
subsequent interactions with the pertinent vendor servers.

As another example, it contacted a radio streaming website
“https://ic2ti.scahw.com.au” when the user requested
a radio streaming Alexa service via the Amazon Echo mo-
bile app. For these types of devices, the main challenge is
how manufacturers dynamically update their MUD profiles,
capturing their device capabilities.

The main limitation of generating a MUD profile using
traffic traces is that certain flows may be missed during the
packet capture, because some behaviors occur rarely (e.g.,
firmware updates). At least we can include all possible user
interactions in the traffic trace but in case of missing flows
in a MUD profile, network operators are still able to find
missing flows via exception packets (unconfirmed packets).
Those flows can then be manually verified by the network
administrator, and added to the MUD profile.

4 MUD PROFILE
CORRECTNESS AND COMPLIANCE

Network operators should not allow a device to be installed
in their network, without first checking its compatibility
with the organization’s security policy. We've developed a
tool — MUDdy — which can help with the task. MUDdy can
check an IoT device’s MUD profile is correct syntactically
and semantically and ensure that only devices which are
compliant and have MUD signatures that adhere to the IETF
standard are deployed in a network.

4.1 Syntactic correctness

A MUD profile comprises of a YANG model that describes
device-specific network behavior. In the current version of
MUD, this model is serialized using JSON [10] and this
serialization is limited to a few YANG modules (e.g., ietf-
access-control-list). MUDdy raises an invalid syntax excep-
tion when parsing a MUD profile if it detects any schema
beyond these permitted YANG modules.

MUDdy also rejects MUD profiles containing IP ad-
dresses with local significance. The IETF advises MUD-
profile publishers to utilize the high-level abstractions pro-
vided in the MUD standard and avoid using hardcoded
private IP addresses [10]. MUDdy also discards MUD pro-
files containing access-control actions other than ‘accept’ or
‘drop’.

4.2 Semantic correctness

Checking a MUD profile’s syntax partly verifies its correct-
ness. A profile must additionally be semantically correct; so
we must check a profile, for instance, for inconsistencies.
We emphasize here that a MUD profile is an IETF stan-
dard description of permitted traffic flows for an IoT device.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

local network

local gateway

google-public-dns-a.google.com

Fig. 4. Metagraph model of a LiFX bulb’s MUD policy. The policy de-
scribes permitted traffic flow behavior. Each edge label has attached
a set of propositions of the metagraph. For example es={protocol =
17,UDP.dport = 53, UDP.sport = 0 — 65535, action = accept}.
This profile contains a set of access control entries defined
by MUD specification syntax along with additional details
to identify the device type. Note that in order to check for
semantic correctness we need to combine actual network
flows with an action, therefore we relate each access control
entry to a network rule and we call it a “MUD policy rule”
which can be a 5-tuple, 4-tuple, or 3-tuple flow depending
on how it is specified in the MUD profile.

MUD policy inconsistencies can produce unintended
consequences [32] and in a MUD policy, inconsistencies
can stem from (a) overlapping rules with different access-
control actions; and/or (b) overlapping rules with identical
actions. The MUD standard excludes rule ordering, so,
the former describes ambiguous policy-author intent (i.e.,
intent-ambiguous rules). In comparison, the latter associates
a clear (single) outcome and describes redundancies. Our
adoption of an application-whitelisting model prevents the
former by design, but, redundancies are still possible and
need to be checked.

MUDdy models a MUD policy using a metagraph under-
neath. This representation enables us to use Metagraph al-
gebras [26] to precisely check the policy model’s consistency
(and hence MUD profile consistency). It's worth noting here
that past works [33] classify policy consistency based on
the level of policy-rule overlap. But, these classifications are
only meaningful when the policy-rule order is important
(e.g., in a vendor-device implementation). However, rule
order is not considered in the IETF MUD standard and
it is also generally inapplicable in the context of a policy
metagraph. Below is a summary description of the process
we use to check the consistency of a policy model.

4.2.1 Policy modeling

Access-control policies are often represented using the five-
tuple: source/destination address, protocol, source/destina-
tion ports [34]-[36]. We construct MUD policy metagraph
models leveraging this idea. Fig. 4 shows an example
for a Lifx bulb. Here, the source/destination addresses
are represented by the labels device, local-network,
local-gateway and a domain-name (e.g., pool.ntp.org).
Protocol and ports are propositions of the metagraph.

4.2.2 Policy definition and verification

We wrote MGtoolkit [37] — a package for implementing meta-
graphs — to instantiate our MUD policy models. MGtoolkit
is implemented in Python 2.7. The API allows users to cre-
ate metagraphs, apply metagraph operations and evaluate
results.

6

Mgtoolkit provides a ConditionalMetagraph class
which extends a Metagraph and supports propositions. The
class inherits the members of a Metagraph and additionally
supports methods to check consistency. We use this class
to instantiate our MUD policy models and check their
consistency.

Our verification of metagraph consistency uses domi-
nance [26] which can be introduced constructively as fol-
lows:

Definition 2 (Edge-dominant Metapath). Given a metagraph
S=(X, E) for any two sets of elements B and C in X, a metapath
M(B,C) is said to be edge-dominant if no proper subset of
M (B, C) is also a metapath from B to C.

Definition 3 (Input-dominant Metapath). Given a metagraph
S=(X, E) for any two sets of elements B and C in X, a metapath
M (B, C) is said to be input-dominant if there is no metapath
M'(B',C) such that B' C B.

In other words, edge-dominance (input-dominance) en-
sures that none of the edges (elements) in the metapath are
redundant. These concepts allow us to define a dominant
metapath as per below. A non-dominant metapath indicates
redundancy in the policy represented by the metagraph.

Definition 4 (Dominant Metapath). Given a metagraph
S=(X, E) for any two sets of elements B and C in X, a metapath
M (B, C) is said to be dominant if it is both edge dominant and
input-dominant.

We could use the dominance property to also check for
MUD policy conflicts, but since conflicts are removed by
design (MUD profiles are generated using an application
whitelisting model), we focus here on detecting redun-
dancies accurately. Identifying redundancies is important
because they indicate how efficiently the MUD profiles are
generated using MUDgee. A high redundancy count would
suggest improving the profile generation algorithms within.
Our aim here is not to eliminate all redundancies because
there is a trade-off between efficiency and convenience
when generating MUD profiles. We want the profiles to be
efficient while using the high-level abstractions provided
in the MUD standard for convenience, so some level of
redundancy is acceptable.

4.2.3 Compatibility with best practices

MUD policy consistency checks partly verify if it is se-
mantically correct. In addition, a MUD policy may need
to be verified against a local security policy or industry
recommended practices (such as the ANSI/ISA- 62443-1-
1), for compliance. Doing so, is critical when installing an
IoT device in a mission-critical network such as a SCADA
network, where highly restrictive cyber-security practices
are required to safeguard people from serious injury or even
death!

We built an example organizational security policy based
on SCADA best practice guidelines to check MUD policy
compliance. We chose these best practices because they offer
a wide spectrum of policies representative of various orga-
nizations. For instance, they include policies for the highly
protected SCADA zone (which, for instance, might run a
power plant) as well as the more moderately-restrictive

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Enterprise zone. Fig. 5(a) shows part of the metagraph
describing this example best practice security policy with
respect to permitted ICMP traffic flow behavior. So for
instance, the policy permits ICMP flow between the DMZ
and the Internet as well as between the DMZ and Enterprise
Zone, but not between the Internet and the Enterprise Zone.
This is due to ICMP’s lack of built-in security to prevent a
hacker from mapping or attacking a network.

We define a MUD policy rule to be SCADA (or En-
terprise) zone compatible if its corresponding traffic flow
complies with SCADA (or Enterprise) best practice pol-
icy. For instance, a MUD rule which permits a device to
communicate with the local network using DNS complies
with the Enterprise zone policy. But, a rule enabling device
communication with an Internet server using HTTP violates
the SCADA zone policy.

Our past work has investigated the problem of policy
comparison using formal semantics, in the SCADA do-
main for firewall access-control policies [38]. We adapt the
methods and algebras developed there, to also check MUD
policies against SCADA best practices. Key steps enabling
these formal comparisons are summarized below.

Policies are mapped into a unique canonical decompo-
sition. Policy canonicalization can be represented through a
mapping ¢ : & — ©, where ® is the policy space and © is
the canonical space of policies. All equivalent policies of ®
map to a singleton. For p*,p¥ € ®, we note the following
(the proof follows the definition)

Lemma 5. Policies p* = p¥ iff c(p*) = c(p¥).
MUD policy compliance can be checked by comparing
canonical policy components. For instance

device%controller) SCADAHEnteTprise) b

Is c(p =c(p
A notation also useful in policy comparison is that policy
P4 includes policy PZ. In SCADA networks, the notation
helps evaluate whether a MUD policy is compliant with
industry-recommended practices in [39], [40]. A violation
increases the vulnerability of a SCADA zone to cyber at-
tacks.
We indicate that a policy complies with another if it is
more restrictive or included in and define the following

Definition 6 (Inclusion). A policy p* is included in p¥ on A
iff pX(s) € {p¥ (s), ¢}, i.e., X either has the same effect as Y on
s, or denies s, for all s € A. We denote inclusion by p* C p¥.

A MUD policy (M P) can be checked against a SCADA
best practice policy (ZP) for compliance using inclusion

Is p]WP C pRP ?

The approach can also be used to check if a MUD policy
complies with local security policies of an organization,
ensuring that IoT devices are plug-and-play enabled only
in the compatible zones of the network. For instance, a
network operator may wish to install an IoT device (e.g.,
an Amazon Echo) in the Enterprise Zone for easier real-
time weather and traffic updates. Verifying that the de-
vice’s MUD policy complies with the organizational security
policy prior to installation is necessary. Fig. 5(b) shows
the MUD policy of the Amazon Echo, superimposed on
the organizational best practice policy, describing permitted
vs actual device ICMP flow. An inclusion check of the

TABLE 3
MUD policy analysis summary for our testbed loT devices using Muddy
(Safe to install? indicates where in a network (e.g., Enterprise Zone,
SCADA Zone, DMZ) the device can be installed without violating best
practices, DMZ - Demilitarized Zone, Corp Zone - Enteprise Zone).
Muddy ran on a standard desktop computer; e.g., Intel Core CPU
2.7-GHz computer with 8GB of RAM running Mac OS X)

Z |3 2
o) o
£k 3|8
n - 7] Y]
= e | 9 4 o0 | ep
B2 & b o £ 5
g | El° |3 5 ==
ii=] -1 (9] = =] =)
o | 5| E | & ° 3

[=

2 | 8|5 | & v g | &
) S |2l &8 |8 K o |
Device name * 3* &~ o [} IS
Blipcare bp 6 0 | 0.06 | 38 | DMZ, Corp Zone | 50 | 0
Netatmo weather 6 0 0.04 36 DMZ, Corp Zone | 50 0
SmartThings hub 10 0 1 39 | DMZ, Corp Zone | 60 | 0
Hello barbie doll 12 0 0.6 38 DMZ, Corp Zone | 33 0
Withings scale 15 4 0.5 40 | DMZ, Corp Zone | 33 | 0
Lifx bulb 15 0 0.8 42 DMZ, Corp Zone | 60 0
Ring door bell 16 0 1 39 | DMZ, Corp Zone | 38 | 0
Awair air monitor 16 0 0.3 101 | DMZ, Corp Zone | 50 0
Withings baby 18 0 0.2 41 | DMZ, Corp Zone | 28 | 0
iHome power plug 17 0 0.1 42 DMZ 41 | 6
TPlink camera 22 0 0.4 40 DMZ 50 | 4
TPlink plug 25 0 06 | 173 DMZ 24 | 4
Canary camera 26 0 0.4 61 DMZ 27 | 4
Withings sensor 28 0 0.2 71 DMZ 29 | 4
Drop camera 28 0 03 | 214 DMZ 43 | 11
Nest smoke sensor 32 0 0.3 81 DMZ 25| 3
Hue bulb 33 0 2 195 DMZ 27 | 3
Wemo motion 35 0 0.4 47 DMZ 54 | 8
Triby speaker 38 0 15 | 187 DMZ 29 | 3
Netatmo camera 40 1 0.9 36 DMZ 28 | 2
Belkin camera 46 3 0.9 55 DMZ 52 | 11
Pixstar photo frame 46 0 0.9 43 DMZ 48 | 28
August door camera | 55 9 0.8 38 DMZ 42 | 13
Samsung camera 62 0 1.7 | 193 DMZ 39 | 19
Amazon echo 66 4 32 | 174 DMZ 29 | 2
HP printer 67 | 10 | 1.8 87 DMZ 25 | 9
Wemo switch 98 3 3.1 | 205 DMZ 24 | 6
Chrome cast 150 | 24 | 11 56 DMZ 1 | 2

MUD policy against the best practice policy (which involves
canonical decomposition of the policies) informs us of a
policy conflict. In this case, the device’s MUD policy fails
compliance (due to the device’s use of ICMP to communi-
cate on the Internet), informing the network operator that it
should not be installed in the Enterprise Zone, and why.

4.3 Correctness and Compatibility Results

We ran MUDgee on a standard laptop computer (e.g., Intel
Core CPU 3.1 GHz computer with 16GB of RAM running
Mac OS X) and generated MUD profiles for 28 consumer IoT
devices installed in our testbed. MUDgee generated these
profiles by parsing a 2.75 Gb PCAP file (containing 4.5
months of packet trace data from our testbed), within 8.5
minutes averaged per device. Table 3 shows a high-level
summary of these MUD profiles.

It should be noted that a MUD profile generated from
a device’s traffic trace can be incorrect if the device is
compromised, as the trace might include malicious flows.
In addition, the generated MUD profile is limited to the
input trace. Our tool can be extended by an API that allows
manufacturers to add rules that are not captured in the
PCAP trace.

Zigbee, Z-wave and bluetooth technologies are also in-
creasingly being used by IoT devices. Thus, such devices
come with a hub capable of communicating with the Inter-
net. In such cases, a MUD profile can be generated only for
the hub.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

DMZ ars

(a) Example Best Practice Security Policy describing permitted ICMP
traffic flow behavior.

Corp
DMZ Sl
" Amazon >
Echo

(b) Amazon Echo’s MUD policy superimposed on Fig. 5(a) describing

its ICMP traffic flow behavior.

Fig. 5. Metagraph models of policies for: (a) Organizational Best Practice Security Policy for permitted ICMP traffic behavior between three zones:
Internet, DMZ and Enterprise Zone, and (b) Amazon Echo’s MUD policy superimposed on part (a) describing its ICMP flow behavior. We assume

here an Enterprise Zone installation of the device.

We then ran MUDdy on a standard desktop computer
(e.g., Intel Core CPU 2.7-GHz computer with 8GB of RAM
running Mac OS X) to automatically parse the generated
MUD profiles and identify inconsistencies within them.
Our adoption of an application whitelisting model re-
stricts inconsistencies to redundancies. We determined non-
dominant metapaths (as per Definition 4) in each policy
metagraph built by MUDdy, to detect redundancies. The
average times (in milliseconds) taken to find these redun-
dancies are shown in Table 3.

As the table shows, there were for instance, three re-
dundant rules present in the Belkin camera’s MUD policy.
These rules enabled ICMP traffic to the device from the local
network as well as the local controller, making the policy
inefficient.

Table 3 also illustrates the results from our MUD policy
best-practice compliance checks. For instance, a Blipcare
blood pressure monitor can be safely installed in the De-
militarized zone (DMZ) or the Enterprise zone but not in a
SCADA zone: 50% of its MUD rules violate the best prac-
tices, exposing the zone to potential cyber-attacks. Policy
rules enabling the device to communicate with the Internet
directly, trigger these violations.

In comparison, an Amazon echo speaker can only be
safely installed in a DMZ. Table 3 shows that 29% of the
device’s MUD rules violate the best practices if it’s installed
in the SCADA zone. Only 2% of the rules violate if it’s
installed in the Enterprise zone. The former violation stems
from rules which for instance, enable HTTP to the device.
The latter is due to rules enabling ICMP to the device from
the Internet.

MUDdy’s ability to pinpoint to MUD rules which fail
compliance, helps us to identify possible workarounds to
overcome the failures. For instance, in the Belkin camera,
local DNS servers and Web servers can be employed to lo-
calize the device’s DNS and Web communications to achieve
compliance in the SCADA zone.

4.4 MUD recommendations

At present, the MUD specification allows both accept and
drop rules but does not specify priority, allowing ambi-
guity. This ambiguity is removed if only accept rules (i.e.,
whitelisting) is used. Whitelisting means metagraph edges
describe enabled traffic flows. So, the absence of an edge
implies two metagraph nodes don’t communicate with one

another. But when drop rules are introduced, an edge also
describes prohibited traffic flows, hindering easy visualiza-
tion and understanding of the policy. We recommend the
MUD standard be revised to only support explicit ‘accept’
rules.

The MUD standard also does not support private IP
addresses, instead profiles are made readily transferrable
between networks via support for high-level abstractions.
For instance, to communicate with other IoT devices in the
network, abstractions such as same-manufacturer is provided.

The MUD standard however, permits the use of public
IP addresses. This relaxation of the rule allows close cou-
pling of policy with network implementation, increasing its
sensitivity to network changes. A MUD policy describes
IoT device behavior and should only change when its ac-
tual behavior alters and not when network implementation
changes! Hardcoded public IP addresses can also lead to
accidental DoS of target hosts. A good example is the DoS
of NTP servers at the University of Wisconsin due to hard-
coded IP addresses in Netgear routers [41]. We recommend
that support for explicit public IP addresses be dropped
from the MUD standard.

5 CHECKING RUN-TIME PROFILE OF IOT DEVICES

In this section, we describe how the network behaviors of
IoT devices are tracked at run-time, mapping the behavior
of each device to one of a set of known MUD profiles. This is
needed for managing legacy IoTs that do not have support
for the MUD standard. A MUD profile is a simple and
environment-neutral description of IoT communications,
and hence allows us to develop a simple model to identify
corresponding devices. To do so, a behavioral profile is
automatically generated and updated at run-time (in the
form of a tree) for an IoT device, and a quantitative measure
of its “similarity” to each of the known static MUD profiles
(e.g., provided by manufacturers) is calculated. It is noted
that computing similarity between two such profiles is a
non-trivial task.

Profile structure: A device profile has two main com-
ponents, namely “Internet” and “Local” communication
channels, as shown by purple and green areas in Fig. 6. Each
profile is organized into a tree-like structure containing a set
of nodes with categorical attributes (i.e., end-point, proto-
col, port number over Internet/Local channels) connected

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

TPLink plug

[

[to INTERNET] [from INTERNET] { from LOCAL]

uk.pool.ntp.org
devs. tplinkcloud.com
uk.pool.ntp.org
devs. tplinkcloud.com

6, dstPort:50443
17, srcport: 123
srcPort: 50443

ethType: 2048, proto:

17, dstPort: 53

)
~
-
S
3
°
~
-

ethType: 2048, proto:
ethType: 2048, proto:

ethType:2048, proto: 6,
ethType: 2048, proto:

3
°
5
3
<
S
&
%
3
=
£
T

(a) 30-minutes of traffic capture.

TPLink plug

(tomrerner | wommrerner | wowoca.] [fomiocar)

ca.pool.ntp.org

H fr.pool.ntp.org
: H uk.pool.ntp.org

devs. tplinkcloud.com

fr.pool.ntp.org

: H uk.pool.ntp.org

ca.pool.ntp.org
255.255.255.255

]-—[devs. tplinkcloud.com

2048, proto:

tPo

srcPort: 50443

ethType: 2048, proto:
17, dstPort: 53

3
2
=
o
3
S
&
5
3
=
£
T

ethType:2048, proto: 6,

{
[

(b) 480-minutes of traffic capture.

Fig. 6. Run-time profile of a TPLink power plug generated at two snapshots in time: (i) after 30 minutes of traffic capture; and (ii) after 8 hours of
traffic capture. As observable the profile grows over time by accumulating nodes and edges.

through edges. Following the root node in each tree, there
are nodes representing the channel/direction of communi-
cation, endpoints with which the device communicates, and
the flow characteristics (i.e., the leaf node). The run-time
profile of a device (given a set of known MUD profiles) is
generated using a method similar to that described in §3,
with minor modifications, as described below.

The MUDgee tool tracks the traffic volume exchanged in
each direction of UDP flows distinguishing the server and
the client. However, this would lead to a high consump-
tion of memory for generating run-time profiles. Therefore,
given a UDP flow, all known MUD profiles are searched
for an overlapping region on either the IoT side or the
remote side. If an overlapping region is found, then the tree
structure is updated with intersecting port ranges — this can
be seen in Fig. 6 where the leaf node shown in light-blue text
has been changed according to known MUD profiles. If no
overlap is found with the MUD profiles, then the UDP flow
is split into two leaf nodes: two flows matching the UDP
source port (with a wild-carded destination) and the UDP
destination port (with a wild-carded source) separately. This
helps to identify the server side by a subsequent packet
matching either of these two flows.

Metrics: We denote the run-time and MUD profile of an
IoT type (i) by sets R and M;, respectively. Each element of
these two sets is represented by a branch of the tree structure
shown in Fig. 6. The run-time profile R is progressively
developed over time based on the traffic observed on the
network, and it grows until the complete behavior of the
device is captured. For a given IoT device, the similarity of
its R with a number of known M;’s is calculated.

There are a number of metrics for measuring the simi-
larity of two sets. For example, the Jaccard index has been
widely used for comparing two sets of categorical values,
and defined by the ratio of the size of the intersection of
two sets to the size of their union, i.e.,, |[R N Mi|/|R U Mil.
Inspired by the Jaccard index, we define the following two
metrics:

o Dynamic similarity score: simq(R, M;) = %
o Static similarity score: sims(R, M;) = %

These two metrics collectively represent the Jaccard index,
each reflecting the degree of similarity from the viewpoint

of either run-time or MUD profile. Note that the Jaccard
index gives a combined similarity, and hence is unable to
indicate the cause of variation between the two sets (i.e.,
R and M;). Having two fine-grained metrics enables our
scheme to gain a richer visibility into similarity and achieve
a faster convergence in identifying IoT devices with high
accuracy (explained in §5.1 and §5.2). Each metric can take
a value between 0 (i.e., dissimilar) and 1 (i.e., identical).

Similarity scores can be computed either periodically
(every epoch) or triggered by an event (when a change
is observed in the profile). In the periodic approach, in-
creasing epoch time would cause delay in the identification
process, while reducing the epoch time would lead to a
higher computation cost which is unnecessary especially
when run-time profiles update slowly. On the other hand,
the event-based approach may seem appealing, but can
also be computationally challenging especially when device
behaviors are fairly dynamic (e.g., IP cameras communicate
with their STUN server, verifying remote users stream-
ing video [1]). Network administrators can take either of
these approaches based on their requirements and available
compute resources. In this paper, we choose to compute
similarity scores periodically, every 15 minutes (our epoch
time). When computing |R N M|, redundant branches of
the run-time profile are temporarily removed based on the
MUD profile that it is being checked against. This assures
that duplicate elements are pruned from R when checking
against each M.

The run-time profile grows over time by accumulating
nodes (and edges), as shown in Fig. 6, for example. It is
seen in Fig. 6(a) that the run-time profile of a TP-Link
power plug consists of 8 elements (i.e., edges), 30 minutes
after commencement of this profile generation. As shown
in Fig. 6(b), the element count of the profile reaches 15
when more traffic an additional 450 minutes) of the device
is considered.

At the end of each epoch, a device (or a group of devices)
will be chosen as the “winner” that has the maximum
similarity score with the IoT device whose run-time profile
is being checked. It is expected to have a group of winner
devices when the dynamic similarity is considered, espe-
cially when only a small subset of device behavioral profile
is observed — the number of winners will reduce as the run-

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10
1.0 el L e ST Qo 107——————————TTTTT]
v o o
g0.8 5 0.8 0.8
s V. b e P 3
> = =
'% 0.6 L0.6 J0.6
z | £ £
w0 (%]
3 0.4¢! --- Awair air quality) 0.4 --- Awair air quality L 0.4 --- Awair air quality
= - LiFX bulb £ - LiFX bulb £ - LiFX bulb
i 0.2 —-— Wemo switch c 0.2 —-— Wemo switch c 0.2 —-— Wemo switch
n —— Amazon Echo 5‘ —— Amazon Echo S‘ —— Amazon Echo
0.0 0.0 0.0
0 2000 4000 6000 0 2000 4000 6000 0 2000 4000 6000
Time (min) Time (min) Time (min)

(a) Static similarity score.

(b) Dynamic similarity score.

(c) Dynamic similarity score (SSDP excluded).

Fig. 7. Time-trace of dynamic and static similarity scores for the winners of four loT devices. Convergence time depends on the behavior complexity
of the device; for example, the static similarity score of the LiFX bulb converges to 1 within 1000 minutes whereas it takes about 12 days for the

more complex Amazon echo to converge.

time profile grows over time.

Fig. 7 shows graphs of the winner similarity scores as
a function of time for selected IoT devices, including the
Awair air quality sensor, the LiFX bulb, the WeMo switch,
and the Amazon Echo. In these plots, the winner is correctly
identified for all of these four IoTs. Fig. 7(a) shows that the
static similarity score grows slowly over time, and in a non-
decreasing fashion. The convergence time depends on the
complexity of the device behavioral profile. For example,
the static similarity of the Awair air quality and LiFX bulb
devices converges to 1 (i.e., full score) within 1000 minutes.
But for the Amazon Echo, it takes more time to gradually
discover all flows, ultimately converging to the full score in
about 12 days.

Also, there are IoT devices for which the static similarity
might never converge to 1. For example, the WeMo switch
and WeMo motion devices use a list of hard-coded IP
addresses (instead of domain names) for their NTP com-
munications. These IP addresses, however, do not serve
the NTP service anymore, and consequently no NTP re-
ply flow is captured. Similarly, it was observed that the
TPLink plug uses the “s1b.time.edu.cn” address for NTP
communications, and this domain name also seems to be
not operational anymore. In addition, devices such as the
August doorbell and Dropcam contact public DNS resolvers
(e.g., 8.8.4.4) if the local gateway fails to respond to a DNS
query of the IoT device, meaning that this specific flow will
only be captured if there is an Internet outage.

On the other hand, in Fig. 7(b) the dynamic similarity
score grows quickly (it may even reach a value of 1, meaning
R C M;). It may stay at 1 if no variation is observed
— variation is the complement of the dynamic similarity
measured in the range of [0, 1] and computed as 1 — simg .
The Awair air quality sensor is an example of such behavior,
as shown by dashed black lines in Fig. 7(b) — 19 out of 28
IoT devices in the testbed were found to behave similarly
to the Awair air quality sensor in their dynamic similarity
score. In some other cases, this score may slightly fall and
rise again. Note that a fluctuating dynamic similarity never
meets 1 due to missing elements (i.e., variations). Missing
elements can arise for various reasons, including: (a) MUD
profile is unknown or not well-defined by the manufacturer,
(b) the device firmware is old and not up-to-date, and (c) the
IoT device is compromised or under attack.

During testing, we found that 9 of our lab IoTs had slight

to LOCAL from LOCAL

k] k]
3 3
E E
o @
E E
o a
5 5
o o
))
W 5
o 7 o 7
) %)
= =1
g g
5 5
5 ES

dstPort:5000
dstPort:49153
dstPort:49152
dstPort:49154
dstPort:8059
dstPort:8008
dstPort:80
srcPort :49153
srcPort :49152
srcPort:49154
srcPort :8059
srcPort :8008
srcPort :80
srcPort :5000

ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,
ethType:2048, proto:6,

Fig. 8. SSDP runtime profile describing all discovery communications
across all devices in the network.

variations for two reasons: firstly, responding to discovery
requests in Local communications, if they support SSDP
protocol® — these responses cannot be tightly specified by the
manufacturer in the MUD profile since such flows depend
on the environment in which the IoT device is deployed.
The WeMo switch is an example of this group, as shown
by dashed-dotted lines in Fig. 7(b). To address this issue,
all discovery communications were used to generate a sep-
arate profile (shown in Fig. 8) by inspecting SSDP packets
exchanged over the Local network. The SSDP server port
number on the device can change dynamically, thus the
inspection of the first packet in a new SSDP flow is required.
The second reason is that missing DNS packets leads to the
emergence of a branch in the profile with an IP address as
the end-point instead of a domain name. This rarely occurs
in our testbed network, because every midnight the process
starts storing traffic traces into a new PCAP file, and thus a
few packets can be lost during this transition to a new PCAP
file. Missing a DNS packet was observed for the LiFX bulb,
as shown by dotted lines in Fig. 7(b).

In view of the above, SSDP activity is excluded from
local communications of IoT devices to obtain a clear run-
time profile. As shown in Fig. 7(c) , without SSDP activity,
the dynamic similarity score is able to correctly identify the
correct winner for the WeMo switch within a very short time

2. A device which supports Simple Service discovery protocol adver-
tises its capabilities to Multicast UDP port 1900. Typically the payload
contains device information including IP address, name, UUID, man-
agement URL, functionalities.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

[—=— winners =---- static similarity

T 6 +0.90 >
= m————— =
= P i =
£ 5] P r0.75 .2
- J E
Saq | .- +0.60 %
I =
= 3 t0.45 %
g &
2_ 2 - F0.30 S
1 t0.15 ®©
©

© (0] 500 1000 15000'0

Time (min)

Fig. 9. Time trace of winners count and static similarity score averaged
across 27 testbed loT devices. The former shows six winners on average
at the beginning of the identification process. This count drops to a single
winner in less than three hours. Even with a single winner, the static
similarity needs about ten hours on average to exceed a threshold of
0.8.

interval.

Lastly, it is important to note that similarity scores (both
static and dynamic) can be computed at an aggregate level
(i.e., combining Local and Internet channels), or for indi-
vidual channels, meaning one score for the Local and one
for the Internet channel. The two scores might not converge
in some cases where the Local channel similarity chooses
a winner while the Internet channel similarity finds a dif-
ferent winner device. Per-channel similarity never results
in a wrong winner, though it may result in no winner.
However, the aggregate similarity may end up identifying
an incorrect winner, especially when the Local activity be-
comes dominant in the behavioral profile. This is because
many IoTs have a significant profile overlap in their Local
communications (e.g., DHCP, ARP, or SSDP). Therefore, the
per-channel similarity is checked first. If the two channels
disagree, the process switches to aggregate similarity to
identify the winner.

In what follows, we explain how the profile structure
and the metrics are used for identifying IoT devices. In
§5.1, we develop our identification process based on MUD
profiles, and demonstrate its efficacy in an ideal scenario.
In §5.2, we enhance our scheme to overcome practical
challenges such as (a) expected MUD profile is unknown
(legacy IoT devices without vendor MUD support), (b) IoT
devices with outdated firmware, and (c) IoT devices that are
potentially compromised or under attack, that can arise in
real environments.

5.1 Identifying loT Devices at Run-Time

Dataset: We use packet traces (i.e., PCAP files) collected from
our testbed including a gateway (i.e., a TP-Link Archer C7
flashed with the OpenWrt firmware) that serves a number
of IoT devices. We use tcpdump tool to capture and store all
network traffic (Local and Internet) onto a 1TB USB storage
connected to this gateway. The resulting traffic traces span
three months, starting from May 2018, containing traffic
corresponding to devices listed in Table 2 (excluding With-
ings baby monitor). The MUDgee was used to generate the
MUD profiles for the IoT devices in the testbed. We also
developed an application over our native SDN simulator
[42] to implement our identification process. We considered
a smart home setting for our experiments — it is envisaged
that a cloud-based security service is provided (e.g., by ISP)
to secure smart home devices. In our previous work [27], we
demonstrated how MUD rules are automatically enforced

11

Amazon Echoj

August doorbell
Awair air-quality 0 0

Belkin camerag 0 0

True label

Blipcare BP-meter; 0 0

o
o
o
o
o
o
o
o
o

Canary camera|

o

Chromecast ultra

Amazon Echo, o
August doorbell o
Awair air-qualit

Belkin cameral o

Blipcare BP-meter o

Canary cameral o
Chromecast ultra

Dropcan} o

Hello barbief o

HP printert o

Hue bulbf o

iHhome powerplug o

LiFX bulbl o

Nest smoke-sensort o

Netatmo cameral o

Predicted label

Fig. 10. Partial confusion matrix of true vs predicted device labels. The
cell values are in percentages. As the table shows, for instance, the
Amazon Echo (first row) is always predicted as the sole winner in all
epochs. Hence, a value of 100% is recorded in the first column and 0%
in the remaining columns.

into off-the-shelf home gateways using SDN techniques
without user intervention. A similar method can be applied
to enterprise networks where devices communicate with
servers, on-premise or on the cloud. Note that IoT devices
such as IP cameras, motion sensors, and bulbs that we used
in our experiments are also found in enterprise networks.

Identification Process: As explained above, the dynamic
similarity score converges faster than the static similarity
score. The device identification process begins by tracking
dynamic similarity at the channel level, and continues as
long as the channels still agree (i.e., they both choose the
same winner). Depending on the diversity of observed
traffic to/from the IoT device (Local versus Internet), there
can be multiple winners at the beginning of the process.
In this case, the static similarity is fairly low, since a small
fraction of the expected profile is likely to be captured in a
short time interval. This means that the process needs to see
additional traffic from the device before it concludes.

Fig. 9 shows the time evolution of the winners count and
static similarity, averaged across all 27 IoT devices in the
testbed. Focusing on the solid blue line (left y-axis), there
were up to 6 winners on average at the beginning of the
identification process. The winners count gradually comes
down (in less than three hours) to a single winner, and
stabilizes. Even with a single winner, the static similarity,
shown by dashed black lines (right y-axis), needs about ten
hours on average to exceed a score of 0.8.

Note that the similarity may take a very long time to
reach the full score of 1 (sometimes, it may never reach
the full score as explained earlier in Fig. 7). Therefore, a
complete capture of MUD flows is not guaranteed. It is up
to the operator to choose an appropriate threshold at which
this process concludes — a higher threshold increases the
confidence level of the device identification, but it comes at
the cost of longer convergence time. Thus the dynamic sim-
ilarity (starting with channel level similarity, and possibly
switching to aggregate level) is used to identify the winner
IoT at run-time. The static similarity, on the other hand, is
used to track the confidence level — an indication of safe
convergence if the dynamic similarity of full score is not
reached.

To evaluate the efficacy of IoT device identification at
run-time, the traces collected in 2018 (i.e., Data-2018) were

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

h|g2 deviation captured State Dynamic Static Correctly More data Deviation
- similarity similarity ified? qui Cap!

]

z s . K

s : % 1 High High Yes

= e

E 18 = High Low ? Yes

o 1.8

=1 1

o] o .

2 Vé 3 Low High Yes Yes

Low ? Yes Yes

—

Dynamic similarity

Fig. 11. Plot of dynamic similarity vs static similarity depicting 4 distinct
states. In state-1, both dynamic and static similarity scores are high and
we obtain a single correct winner. In state-2, dynamic similarity is high
but static similarity is low (usually occurs when only a small amount of
traffic is observed). State-3 describes a region with high static similarity
yet low dynamic similarity, indicating high-deviation at run time (e.g., due
to old firmware or device being compromised). In state-4 both dynamic
and static similarity scores are low indicating a significant difference
between the run-time and MUD profiles.

replayed into the packet simulator tool. Fig. 10 is a confusion
matrix of the results, where the rows are true labels, the
columns are the predicted labels, and the cell values are
percentages. For example, the first row shows that the
Amazon Echo is always predicted as the sole winner in each
and every epoch of the identification process, thus 100% in
the first column and 0% in the remaining columns — no other
device is identified as the winner in any single epoch time.

Looking at the Dropcam row, it is identified as multiple
devices (i.e., more than one winner) for some epochs — non-
zero values are seen against all columns. But, it is important
to note that Dropcam is always one of the winners, thus
100% against the Dropcam column. Further, it is also identi-
fied for example as the Amazon Echo in 0.4% of epochs.

A 100% correct convergence was observed for all devices
except for the Netatmo camera, whereby it is not correctly
identified in 2.3% of epochs. This mis-identification occurs
due to missing DNS packets where some flows were incor-
rectly matched on STUN related flows (with wild-carded
endpoints) of the Samsung camera and the TP-Link camera.
However, this mis-identification occurred only during the
first few epochs and then it converged to the correct winner.

In what follows, we discuss changes in IoT traffic behav-
ior in the network.

5.2 Monitoring Behavioral Change of loTs

In a real environment, there are several challenges to cor-
rectly identify an IoT device at run-time: (a) there might be
a device on the network for which no MUD profile is known,
(b) the device firmware might not be up-to-date (thus, the
run-time profile would deviate from its intended known
MUD profile), and/or (c) the device might be under attack
or even fully compromised. Each of these three challenges
and their impact on the similarity score (both dynamic and
static) are discussed below.

Fig. 11 depicts a simplified scatter plot of dynamic sim-
ilarity versus static similarity, highlighting how these two
metrics are interpreted. On the plot, states are labeled as 1,
2, 3, and 4. The ideal region is the quadrant highlighted
for state-1 whereby both dynamic and static scores are
high, and there is a single and correctly identified winner.
Considering state-2 in this figure, there is a high score of
dynamic similarity, whereas the static similarity is fairly
low. This score combination is typically expected when a
small amount of traffic from the device is observed, and

12

>
3
o
N
<}
E
m
o
>
o
S}
o
o
S}
o
o
o
S}
o
o
S}
S}
o

o
o
o
=
o
(S
®
o
o

August doorbelf 0 0o 0 0o o0

True label

S}

Awair air-qualit:

=
i o
=1
=
=)
=3

Amazon Echop o
August doorbell
Awair air-qualit)

Belkin camera|

Blipcare BP-metel
Canary camera o
Chromecast ulti
Dropca
Hello barbief o
HP printer o
Hue bulbf o
iHhome powerplugt o
Ring doorbell}
TP-link camerat o

Predicted label
Fig. 12. Partial confusion matrix for when the intended MUD profile is
absent for each device being checked.

more traffic is needed to determine whether the dynamic
similarity continues to maintain a high score and the static
similarity possibly starts rising. In state-3, having a low
dynamic similarity is alarming, given the high score in the
static similarity — indicating high variations at run-time. This
score combination is observed when many flows observed
in the device traffic are not listed in the intended MUD
profile for two possible reasons: (a) the device firmware is
not current, or (b) the device is under attack (or even com-
promised). Lastly, having low scores in both dynamic and
static similarity metrics highlights a significant difference
(or small overlap) between the run-time and MUD profiles.
This scenario likely results in identification of an incorrect
winner.

To summarize, IoT network operators may need to set

threshold values for both dynamic and static similarity
scores to select the winner device. Also, the identification
process needs to begin with the channel-level similarity (for
both dynamic and static metrics) avoiding a biased inter-
pretation, and may switch to aggregate-level in the absence
of convergence. The impact of three scenarios impacting the
IoT behavioral changes is described below.
MUD profile unknown: To investigate this scenario, the
MUD profile of each device was removed from the list of
known MUDs. Fig. 12 shows the partial results for selected
devices. Unsurprisingly, devices on the rows are identified
as others (i.e., one or multiple wrong winners selected), since
their intended MUD profile is not present when checked
at run-time. For example, the Amazon Echo converges to
identification as a TP-Link camera, and the Awair air quality
sensor is consistently identified as six other IoT devices.
Ideally, there should not be any one device identified as
the winner. Note that these results are obtained while no
thresholding is applied to the similarity scores, and only the
maximum score indicates the winner.

Fig. 13 shows scatter plots of channel-level scores for
dynamic and static similarity metrics, respectively. The 2018
dataset was used to generate two sets of results: one with
MUD profiles of the devices (shown by blue cross markers),
and the other without their MUD profiles (shown by red
circle markers), across all 27 IoT devices. For the dynamic
similarity in Fig. 13(a), having two thresholds (i.e., about
0.60 on the Internet channel and 0.75 on the Local channel)
would filter incorrect instances. For the static similarity
in Fig. 13(b), a threshold of 0.50 on the Internet channel
is sufficient to avoid incorrect identifications. This single
threshold is because the IoT profile on the Internet channel
varies significantly for consumer devices (in the testbed
setup), but enterprise IoTs may tend to be active on the
Local network — thus a different thresholding is generally

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

T
1.0 % known MUD ® 1 ®omn i 1.0 % known MUD ® ':
»
0gl ® unknown MUD : ogl ® unknown MUD % &yh".
o o | o % x %%
o JI ——5=& 206 »
g @ o o .| & [T g ———— n
£04 e x| £04
TR ‘s ¢
s *
0.2 - ® :l} ® 021 oo sge , Soo
0. PULIR, PV | 0. maa o mama a®
8.00 0.25 0.50 0.75 1.00 8.00 0.25 0.50 0.75 1.00
Local Local

(a) Dynamic similarity score.

(b) Static similarity score.

13

(_iHome power plug_]

[toINTERNET | [from INTERNET] [toLocAL J{ from LOCAL |

[api.evrythng.com] [api.evrythng.com]

Fig. 13. Scatter plots of channel-level scores for dynamic and static
similarity metrics across 27 testbed loT devices. Each plot depicts two
sets of results: one for known MUD (blue markers) and the other for
unknown MUD (red markers). Enforcing two thresholds (i.e., about 0.60
on the Internet channel and 0.75 on the Local channel) would filter
incorrect matches found using dynamic similarity. A threshold of 0.50
on the Internet channel is sufficient to avoid false identification when
using static similarity. TABLE 4

Identification results for data 2016.

o
4
&
S
o
b=
17}
°
<

=3
@
&
S
o
5
&

o
@
€
S
a
=
&
o

o
@
€
S
o
S
]
©
[

o Convergence with tt 1d Endpoint compacted
IoT device g Known MUD Unknown Known MUD Unknown
S MUD MUD
2 [Correctly [Incorrectly | State | Incorrectly | Correctly | Incorrectly | Incorrectly
§ identified identified identified identified identified identified
& | () (%) (%) (%) (%) (%)
Amazon Echo Yes | 65.7 0 3 0 65.7 0 0
August doorbell Yes [O 0 4 0 100 0 0
Awair air quality Yes | 100 0 1 0 100 0 0
Belkin camera Yes | 100 0 1 0 100 0 0
Blipcare BP meter No | 100 0 1 0 100 0 0
Canary camera No | 100 0 1 0 100 0 0
Dropcam Yes | 959 0 3 0 100 0 0
Hello barbie No | 100 0 1 0 100 0 0
HP printer Yes | 3.6 0 4 0 99.8 0 0
Hue bulb Yes | 0 0 4 0 90.6 0 0
iHome power plug | Yes | 0.5 0 4 0 100 0 0
LiFX bulb No | 100 0 1 53 100 0 5.3
Nest smoke sensor Yes | O 0 4 0 100 0 0
Netatmo camera Yes | 97.3 0 3 0 9 0 0
Netatmo weather No | 100 0 1 0 100 0 0
Pixstar photoframe | No | 100 0 1 0 100 0 0
Ring doorbell Yes | 99.6 0 3 0 97.9 0 0
Samsung smartcam | Yes | 97.6 0 1 0 97.6 0 0
Smart Things No | 100 0 1 0 100 0 0
TPlink camera Yes | 100 0 3 0 100 0 0.9
TPlink plug Yes [100 0 1 0 100 0 0
Triby speaker Yes | 399 0 3 0 99.8 0 0
WeMo motion No | 100 0 1 0.7 100 0 273
WeMo switch Yes [O 100 1 100 0 100 100

required for each network.

It is important to note that a high threshold would

increase the identification time, and a low threshold ac-
celerates the process but may lead to identification of a
wrong winner. It is therefore up to the network operator
to set appropriate threshold values. One conservative ap-
proach would be to accept no variation in the dynamic
similarity, requiring a full score of 1 along with a static
similarity score of more than 0.50 for each of the Local and
Internet channels. For example, the results were regenerated
by setting conservative thresholds mentioned above, and
thus no winner was identified due to low scores in both
dynamic and static similarity metrics, as shown by the state-
4 quadrant in Fig. 11. This indicates that IoT devices, in
absence of their MUD profiles, are consistently found in
state-4, flagging possible issues.
Old firmware: 10T devices either upgrade their firmware au-
tomatically by directly communicating with a cloud server,
or may require the user to confirm the upgrade (e.g., the
WeMo switch) via an App. For the latter, devices will remain
behind the latest firmware until the user manually updates
them. To illustrate the impact of old firmware, packet traces
collected from the testbed over a duration of six months
starting in October 2016 were used to generate run-time
profiles against MUD profiles generated from data 2018.
Table 4 below shows the results from data 2016.

The column labeled “Profile changed” indicates whether
any changes on device behavior were observed (i.e., verified

o [.. .e
S L S =]
2
s 2 5 s
s ° s s
~ S N <
) N o9
< 59 ﬁ <
I < s =]
I S 15 I
o I N I
) P o o
S g 3 ES
£ £ £ £
< s =

E =
5] o 5

Fig. 14. Tree structure depicting profile difference (i.e., R - M) for the
iHome power plug.

manually) from the data 2016 dataset, compared to data
2018. These behavioral changes include endpoints and/or
port number. For example, the TP-Link camera commu-
nicates with a server endpoint “devs.tplinkcloud.com”
on TCP 50443 according to the data 2016. However, this
camera communicates with the same endpoint on TCP 443
in the data 2018. Additionally, in the data 2018 dataset, an
endpoint “ipcserv.tplinkcloud.com” is observed, which
did not exist in the data 2016.

The “Convergence” column in Table 4 shows the per-
formance of the device identification process (converging
to a single winner) without thresholding, for two scenar-
ios, namely known (i.e., with) MUD and unknown (ie.,
without) MUD. When MUD profiles of device are known
(i.e., present), all devices except the WeMo switch converge
to the correct winner. Surprisingly, the WeMo switch is
consistently identified as the WeMo motion — even the static
similarity increases to 0.96. This is because both WeMo
motion and WeMo switch share the same cloud-based end-
point for their Internet communications in data 2016, but
these endpoints have changed for the WeMo switch (but
not for the WeMo motion) in data 2018. It is important
to note that the primary objective is to secure IoT devices
by enforcing tight access-control rules to network elements.
Therefore, the WeMo switch can be protected by the rules of
the WeMo motion until it is updated to the latest firmware.
Once the WeMo switch is updated, the intrusion detection
process may generate false alarms, indicating the need for
re-identification.

As discussed above, a threshold is required to improve
the identification process, discovering unknown devices or
problematic states. Therefore, thresholds determined using
the data 2018 were applied and the results are shown in the
column labeled as “Convergence with threshold” in Table 4.
Devices that did not have behavioural changes (from 2016
to 2018), converge correctly and appear in perfect state-1.
Looking into other devices, for example the Amazon Echo,
only 65.7% of instances are correctly identified - it took a
while for the identification process to meet the expected
thresholds set for similarity scores.

It is observed that devices with profile changes are
found in state-3 or state-4. In order to better understand
the reason for a low score in dynamic similarity, the profile
difference can be visualized in the form of a tree structure.
For example, this difference (ie., R — M) is shown in

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Run-time profile
(endpoint compacted)

Run-time profile
(original)

to INTERNET to INTERNET

hpeprint.com

chat.hpeprint.com

ccc.hpeprint.com
xmpp006 . hpeprint .com
h10141.wwwl.hp.com
h20593.www2.hp.com

6, dstPort:443
6, dstPort:80
ethType: 2048, proto:
6, dstPort: 5222
6, dstPort: 443
6, dstPort: 80
ethType: 2048, proto:
6, dstPort: 5223
ethType: 2048, proto:
6, dstPort:80
ethType: 2048, proto:
6, dstPort:443
ethType: 2048, proto:
6, dstPort:443
ethType: 2048, proto:
6, dstPort:80
ethType: 2048, proto:
6, dstPort: 5222
ethType: 2048, proto:
6, dstPort: 443
ethType: 2048, proto:
6, dstPort: 80

ethType: 2048, proto:
ethType: 2048, proto:
ethType: 2048, proto:
ethType: 2048, proto:

ethType: 2048, proto:

14

MUD profile
(endpoint compacted)

to INTERNET

MUD profile
(original)

to INTERNET

chat.hpeprint.com

*xmpp009 . hpeprint .com
h10141.wwwl.hp.com

hpeprint.com

6, dstPort: 5223
ethType: 2048, proto:
6, dstPort: 5222
ethType: 2048, proto:
6, dstPort: 443
ethType: 2048, proto:
6, dstPort: 80
ethType: 2048, proto:
6, dstPort: 5223
ethType: 2048, proto:
6, dstPort:80
ethType: 2048, proto:
6, dstPort:443
ethType: 2048, proto:
6, dstPort:80
ethType: 2048, proto:
6, dstPort: 5222
ethType: 2048, proto:
6, dstPort: 443
ethType: 2048, proto:
6, dstPort: 80
ethType: 2048, proto:
6, dstPort: 5223
ethType: 2048, proto:
6, dstPort:80

Fig. 15. Endpoint compaction of the HP printer run-time and MUD profiles in the “to Internet” channel direction yields high static and dynamic
similarity (shown by the overlapping region in brown). Without compaction these similarities are significantly low (shown by the overlapping region

in blue).

Fig. 14 for the iHome power plug IoT device. It can be seen
that this device (in data 2016) communicates over HTTP
with “api.evrything.com”, and serves HTTP to the Local
network. However, these communications do not exist in
the MUD profile for the device (generated from data 2018).
This difference may indicate to a network operator that
a firmware upgrade is needed or that the MUD profile
(offered by the manufacturer) is not complete.

Some devices (e.g., the HP printer and the Hue bulb) may
be found consistently in state-4 throughout the identification
process. Structural variations in the profile can arise largely
due to changes in the endpoints or port numbers. Tracking
changes in port numbers is non-trivial. However, for end-
points fully qualified domain names can be compacted to
primary domain names (i.e., removing sub-domain names).
If the device is under attack or compromised, it likely com-
municates with a completely new primary domain. Fig. 15
illustrates endpoint compaction in an HP printer profile just
for the “to INTERNET” channel direction. For this channel
direction and without endpoint compaction, the static and
dynamic similarity scores are 0.28 and 0.25, respectively.
Applying endpoint compaction results in high scores of 1
and 0.83 for static and dynamic similarities, respectively.

Endpoint compaction was applied to all of the IoT de-
vices in the data 2016 dataset, and the results are shown un-
der the column labelled “Endpoint compacted” in Table 4.
Interestingly, this technique has significantly enhanced the
identification: all state-4 devices become state-1 devices. An
interesting observation here is the unknown MUD scenario
for the WeMo motion detector, where the rate of incorrect
identification (as WeMo switch) is fairly high, at 27.3%.
However, it is not at all surprising to see different IoT
devices from the same manufacturer identified as each other
when compacting endpoints.

To summarize, if the identification process does not
converge (or evolves very slowly), then the difference visu-
alization and endpoint compaction described above enables
network operators to discover IoT devices running old
firmware.

TABLE 5
Convergence time (minutes) for all datasets & Performance metric
calculated for Data-2018.

Device Convergence Time(min) C G C E

=1 g & =

i - i v

Y [4 E

K= & & =

© ~ © 2 2 3 -

g 3 g E 2| ¢ | £

‘ﬂ LY g = & 5 2

g g ;) * 3 e &

[I3 I £ E

=] A =] g
Amazon Echo 15 - 38355 13.72 | 6.58 68.83 | 1.38
August doorbell 60 - 45 20.11 | 13.44 65.84 1.71
Awair air quality 30 - 15 7.14 0.25 1498 | 0.38
Belkin camera 15 1065 105 16.26 5.79 65.3 0.95
Chromecast 15 - - 13.05 | 10.10 | 346.65 | 5.20
Hue bulb 15 - 9315 9.75 243 40.30 | 0.89
iHome powerplug 15 - 165 6.87 0.79 16.99 0.49
Nest smoke 15 - 5] 530 | 27.00 | 65.70 | 1.55
Netatmo camera 360 - 1650 8.35 0.98 67.96 1.20
WeMo switch 15 | 2820 15 6.54 446 | 22599 | 5.20

Attacked or compromised device: The efficacy of the process
when IoT devices are under direct/reflection attacks or
compromised by a botnet was also evaluated, using traffic
traces collected from the testbed in November 2017 (“data
2017”), and including a number volumetric attacks spanning
reflection-and-amplification (SNMP, SSDP, TCP SYN, and
Smurf), flooding (TCP SYN, Fraggle, and Ping of death),
ARP spoofing, and port scanning launched on four IoT de-
vices, namely the Belkin Netcam, the WeMo motion sensor,
the Samsung smart-cam and the WeMo switch (listed in
Table 5). These attacks were sourced from within the local
network and from the Internet. For the Internet sourced
attacks, port forwarding was enabled (emulating a malware
behavior) on the network gateway.

Since the IoT devices in the testbed are all invulnerable
to botnets, we built a custom IoT device named “Senseme”
[43] using an Arduino Yun communicating with an open-
source WSO2 IoT cloud platform. This device included a
temperature sensor and a lightbulb. The Senseme device
was configured to periodically publish the local temperature
to the server, and its lightbulb was remotely controlled via
the MQTT protocol [44]. First the MUD profile of this device
was generated, and then it was deliberately infected by the

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

Belkin camBXAd 0.0 0.0 0.0 0.0] M.,

Samsung cam| 0.0 EEXJ 0.0 0.0 0.0] M,

Wemo motionl 0.0 0.0 EER 0.0 0.0] [l

True label

Wemo switchf 0.0 0.0 0.0

Sensemel 0.0 0.0 0.0 0.0 ieJoNe

@
1S
0]
%]
c
9]

n

Belkin cam}
amsung camt
Wemo motiont
Wemo switcht

(7p]
Predicted label

Fig. 16. Partial confusion matrix for 5 devices only (testing with attack
data 2017).

[Senseme J

to INTERNET from INTERNET

31.194.8.210
85.231.57.40
39.235.190.4
5.240.211.38
181.111.214.17
190.14.238.45
192.190.252.118

=
o
3
B

ethType: 2048, proto:
6, dstPort: 23
ethType: 2048, proto:
6, dstPort: 2323
ethType: 2048, proto:
6, dstPort: 23
ethType: 2048, proto:

Fig. 17. Profile difference for the Mirai infected device.

Mirai botnet [45]. In order to avoid harming others on the
Internet, the injection module of the Mirai code was disabled
so that only its scanning module was used. A Mirai infected
device scans random IP addresses on the Internet to find
open ports TCP 23 and TCP 2323 for telnet access.

We applied the identification process with thresholding
to data 2017, and found that all devices were identified
correctly with high static similarity and low dynamic sim-
ilarity (i.e., high variations). A partial confusion matrix of
the identification is shown in Fig. 16. Since the MUD profile
of Senseme is fairly simple in terms of branch count, it
quickly converges to the winner with a high static similarity
score, whereas other devices require more time to converge.
Therefore, the success rate for identifying Senseme device is
higher than for other devices.

Various attacks have different impacts on the run-time
profiles of IoT devices. For example, ARP spoof and TCP
SYN would not create a new branch in the tree structure
of the device profile, and consequently no variation is
captured. Fraggle, ICMP, Smurf, SSDP, and SNMP attacks
would result only two additional flows, meaning a minor
variation is captured. However, Port scans (botnet included)
cause a large variation, since an increasing number of end-
points emerge in the tree structure at run-time. For example,
the Mirai botnet scans 30 IP addresses per second, causing
the dynamic similarity score to approach 0. Fig. 17 shows

15
g 1.01 --=- static similarity
g ----- dynamic similarity
> 0.8
= T
— 1
O 1
= 0.6 H
E T ‘
7] R |
0.4y
© .1
80210
D Tttt e
S | T e
©0.0 . .
0 5000 10000 15000
Time (min)

Fig. 18. Evolution of similarity scores for Belkin camera under attack.

the profile difference (or variation) for the infected Senseme
device at run-time. Lastly, we show in Fig. 18 the evolution
of similarity scores for Belkin camera under attack. It is seen
that the static similarity slowly grows till it coverages to the
correct winner — according to Fig. 16 the first row, 2.2% of
instances (only during the beginning of the process) did not
converge to any winner. Instead, the dynamic similarity falls
in time approaching to zero.

5.3 Profile-monitoring performance analysis

We now quantify the performance of the process for real-
time monitoring of IoT behavioral profiles by four metrics,
namely: convergence time, memory usage, inspected pack-
ets, and number of flows.

Convergence time: Convergence time depends on user
interaction with the device, the type of the device, and
the similarity score thresholds. Some devices do not com-
municate unless the user interacts with the device (e.g.,
the blipcare BP meter), devices like the Awair air quality
sensor and the WeMo motion sensor do not require any
user interaction, and devices such as cameras have many
communication patterns, such as device to device, device
to Internet server and remote communication. Therefore
convergence times will vary based on the types of devices
in the deployment.

Table 5 below lists the IoT devices and the times it
took to converge to the correct device. All the devices in
the 2018 dataset converged to the correct device within a
day. One possible reason for this is that during the data
collection, user interaction with the mobile application was
programmed using a touch replay tool (i.e., turning on the
Hue lightbulb, checking the live camera view) in a Samsung
galaxy tab, and the user interaction was replayed every 6
hours. Therefore a significant number of states of the device
was captured due to these interactions, whereas with the
2017 dataset it took 2 days. The shaded cells for the 2016
data set are the devices that converged due to endpoint com-
paction. Other than the Netatmo camera, all other devices
only converged due to compaction. For the Netatmo camera,
it took 4410 minutes to converge when endpoint compaction
was not applied; however due to endpoint compaction it
converged within 1650 minutes.

The Smart things, Hue bulb and Amazon echo IoT
devices took a considerable time to converge. When the data
was analyzed, it was found that all 3 devices captured few

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

flows due to an interaction from the first few minutes, and
then it was stale until close to the convergence time.

Three limits for the monitoring time were used, in
chronological order: the first is a time limit for convergence
with thresholding, then a time limit for convergence whilst
compaction, and lastly a time limit to stop monitoring.

System performance: In order to quantify the perfor-
mance of the system, the following four metrics were calcu-
lated: the average number of inspected packets, the average
number of flows, the average number of nodes in the device
profile tree, and the computation time for the compaction
of the tree, redundancy removal and similarity score cal-
culation. The average number of flows is is an important
metric for the operation of a hardware switch with limited
TCAM capacity, and the other 3 metrics are relevant to the
scalability of the process.

As shown in Table 5, the average number of flows for
each device is typically fewer than 10, with the largest flow
count of about 20 for the August doorbell. This range of flow
counts is easily manageable in an enterprise network setting
with switches that are capable of handling millions of flow
entries. However, in home networks with routers that can
accommodate up to hundreds of flows, it may be necessary
to limit the IoT monitoring process to only a few devices at
a time, in order to manage the TCAM constraint.

Regarding the number of packets inspected, it is clear
that the IoT monitoring process is very effective by keep-
ing the number of inspected packets to a minimum (e.g.,
mostly less than 10 packets per minute for each device).
The computing time of the process solely depends on the
number of nodes and the number of known MUD profiles.
The time complexity of the process can be expressed as
O(n.m.log n), where n is the number of branches in the
profile tree and m is the number MUD profiles we are check-
ing against. The time complexity for the search space was
reduced by employing standard hashing and binary search
tree techniques. For a Chromescast device as an example
in Table 5, the average computing time is 5.20 ms, where
there are on average 346 nodes in its run-time profile. This
can be further improved by using parallelization, whereby
similarity scores are computed over individual branches.
It is important to note that the computing time is upper-
bounded by setting an upper bound limit on the count of
tree branches generated at run-time.

Lastly, in terms of space, 40 Bytes of memory is required
for each node of a tree. This means that for Chromecast, on
average, less than 14 KB of memory is needed. Additionally,
all known MUD profiles are present in memory. Therefore,
the space complexity heavily depends on the number of
MUD profiles being checked.

Limitations: Our identification approach comes with
two limitations: (a) an unbounded delay in identifying
devices, and (b) different types of IoT devices may have
the same MUD profile (for cybersecurity applications, the
knowledge of the behavioral profile is of more importance
than the exact device type). We note that there exist ML
(machine learning)-based models for identifying IoT devices
using packet and/or flow features [29], [30]. However, ML-
based methods are unable to provide exact reasons for hav-
ing a low confidence in identifying devices (e.g., unknown
type, or behavioral changes). Another challenge with the

16

ML-based approach is transferability of prediction models
which often require a complete retraining to accommodate
new classes of device type. In addition, a large amount
of training data is required for each device type/version.
Given the pros and cons of these two approaches, they are
complementary.

6 CONCLUSION

In this paper, we have proposed a suite of tools that allow
IoT manufactures to automatically generate MUD profiles
while also help network operators formally check the com-
patibility of IoT devices with a given organizational policy
prior to deployment. We have also developed a method to
identify IoT devices and their behavioral changes at run-
time using MUD profiles. We demonstrated using these
tools and methods how the IETF MUD standard can help
reduce the effort needed to dynamically identify and secure
IoT devices.

REFERENCES

[1] A. Hamza et al., “Clear As MUD: Generating, Validating and
Applying IoT Behavioral Profiles,” in Proc. ACM Workshop on IoT
Security and Privacy (IeT S&P), Budapest, Hungary, August 2018.

[2] G. Sachs, “The Internet of Things: The Next Mega-Trend,” [On-
line]. Available: www.goldmansachs.com/our-thinking/pages/
internet-of-things/, 2014.

[3] J. Matherly. (2018) Shodan. https://www.shodan.io/.

[4] S. Hilton. (2016) Dyn Analysis Summary Of Friday October 21
Attack. https:/ /bit.ly /2xCr7WN.

[5] M. Lyu et al., “Quantifying the reflective ddos attack capability
of household iot devices,” in Proc. ACM WiSec, Boston, Mas-
sachusetts, July 2017.

[6] U.D. of Homeland Security. (2016) Strategic Principles For Secur-
ing the Internet of Things (IoT). https:/ /bit.ly/2eXOGzV.

[7] NIST. (2016) Systems Security Engineering. https://bitly/
2tak6fP.

[8] E. U. A. F. Network and I. Security. (2017) Communication net-
work dependencies for ICS/SCADA Systems. https://www.enisa.
europa.eu/publications/ics-scada-dependencies.

[9] FCC. (2016) Federal Communications Commission Response 12-
05-2016. https:/ /bit.ly /2gUztSv.

[10] E. Lear, R. Droms, and D. Romascanu, “Manufacturer Usage
Description Specification,” RFC 8520, Mar. 2019. [Online].
Available: https:/ /rfc-editor.org/rfc/rfc8520.txt

[11] National Institute of Standards and Technology, “Securing Small-
Business and Home Internet of Things (IoT) Devices,” [Online].
Available: https:/ /bit.ly /2S]MXoS, Nov 2019.

[12] European Union for Cyber Security, “Good Practices for Security
of IoT,” [Online]. Available: https:/ /bit.ly /2wzuOSg, Nov 2019.

[13] Cisco DevNet. (2018) Manufacturer Usage Description. [Online].
Available: https:/ / developer.cisco.com/site/mud /

[14] A. Hamza. (2018) MUDgee. https://github.com/ayyoob/
mudgee.

[15] D. M. Mendez et al., “Internet of Things: Survey on Security and
Privacy,” CoRR, vol. abs/1707.01879, 2017.

[16] E. Loi et al., “Systematically evaluating security and privacy for
consumer iot devices,” in Proc. ACM IoT S&P, Dallas, Texas, USA,
Nov 2017.

[17] C. Systems, “Cisco 2018 Annual Cybersecurity Report,” Tech.
Rep., 2018.

[18] S.Boddy et al., “The Hunt for IoT: The Rise of Thingbots,” F5 Labs,
Tech. Rep., July 2017.

[19] V. Sivaraman ef al., “Smart-Phones Attacking Smart-Homes,” in
Proc. ACM WiSec, Darmstadt, Germany, July 2016.

[20] P. World. (2016) Backdoor accounts found in 80 Sony IP security
camera models. https:/ /bit.ly /2GbKejk.

[21] (2018) MUD maker. http://www.insecam.org/en/bycountry/
us/.

[22] A. Sivanathan et al., “Characterizing and classifying iot traffic in
smart cities and campuses,” in Proc. IEEE INFOCOM workshop on
SmartCity, Atlanta, Georgia, USA, May 2017.

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2997898, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING

[23]

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]
[37]

[38]

[39]
[40]

[41]

[42]
[43]

[44]

[45]

1545-5971 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

A. Wool, “Trends in firewall configuration errors: Measuring the
holes in Swiss cheese,” IEEE Internet Computing, vol. 14, no. 4, pp.
58-65, 2010.

D. Ranathunga et al., “Case studies of scada firewall configurations
and the implications for best practices,” IEEE Transactions on
Network and Service Management, vol. 13, pp. 871-884, 2016.
Ranathunga et al., “Verifiable policy-defined networking for secu-
rity management.” in SECRYPT, 2016, pp. 344-351.

A. Basu et al., Metagraphs and their applications. Springer Science
& Business Media, 2007, vol. 15.

A. Hamza et al., “Combining mud policies with sdn for iot intru-
sion detection,” in Proc. ACM Workshop on IoT Security and Privacy
(IoT S&P), Budapest, Hungary, August 2018.

A. Hamza, H. H. Gharakheili, T. A. Benson, and V. Sivaraman,
“Detecting volumetric attacks on lot devices via sdn-based moni-
toring of mud activity,” in Proc. ACM SOSR, San Jose, USA, April
2019.

Y. Meidan et al., “Detection of unauthorized iot devices using ma-
chine learning techniques,” arXiv preprint arXiv:1709.04647, 2017.
A. Sivanathan ef al., “Classifying iot devices in smart environ-
ments using network traffic characteristics,” IEEE Transactions on
Mobile Computing, 2018.

A. Hamza and others., “Clear as mud: Generating, validating and
applying iot behaviorial profiles (technical report),” ArXiv e-prints,
Apr. 2018.

A. Wool, “A quantitative study of firewall configuration errors,”
IEEE Computer, vol. 37, no. 6, pp. 62-67, 2004.

E. Al-Shaer et al., “Conflict classification and analysis of dis-
tributed firewall policies,” IEEE JSAC, vol. 23, no. 10, pp. 2069-
2084, 2005.

Cisco Systems, Cisco ASA Series CLI Configuration Guide, 9.0, Cisco
Systems, Inc., 2013.

Juniper Networks, Inc., Getting Started Guide for the Branch SRX
Series, 1133 Innovation Way, Sunnyvale, CA 94089, USA, 2016.
Palo Alto Networks, Inc., PAN-OS Administrator’s Guide, 8.0, 4401
Great America Parkway, Santa Clara, CA 95054, USA, 2017.

D. Ranathunga et al., “Mgtoolkit: A python package for imple-
menting metagraphs,” SoftwareX, vol. 6, pp. 91-93, 2017.
Ranathunga et al., “Malachite: Firewall policy comparison,” in
IEEE Symposium on Computers and Communication (ISCC), June
2016, pp. 310-317.

K. Stouffer et al., “Guide to Industrial Control Systems (ICS)
security,” NIST Special Publication, vol. 800, no. 82, pp. 16-16, 2008.
E. Byres et al., “NISCC good practice guide on firewall deployment
for SCADA and process control networks,” NISCC, 2005.

D. Plonka. (2013) Flawed Routers Flood University of Wis-
consin Internet Time Server. www.pages.cs.wisc.edu/~plonka/
netgear-sntp/.

A. Hamza. (2018) SDN pcap simulator. [Online]. Available:
https://github.com/ayyoob/sdn-pcap-simulator

(2018) WSO2 IoT Server. [Online]. Available: https://wso2.com/
iot

(2018) SenseMe. [Online]. Available: https://github.com/wso2/
samples-iots/tree/master /SenseMe

(2018) Mirai botnet. [Online]. Available: https://github.com/
jgamblin/Mirai-Source-Code

Ayyoob Hamza received his Bachelors’ degree
in Computer Science from the University of
Colombo, Sri Lanka and is currently a Ph.D.
Candidate at the University of New South Wales
in Sydney, Australia. Prior to his research ca-
reer, he worked at WSO2 Inc. as a Senior Soft-
ware Engineer for 3 years working on loT solu-
tions. His research interests includes Internet of
Things, Network Security, Distributed Systems
and Software-Defined Networking.

17

Dinesha Ranathunga is a Postdoctoral re-
search fellow at the ARC Centre of Excel-
lence for Mathematical and Statistical Frontiers
(ACEMS) at University of Adelaide, Australia.
He received his Ph.D. for his thesis titled "Auto-
configuration of critical network infrastructure”
from the University of Adelaide in 2017. His
research interests include SCADA network se-
curity, Policy Defined Networking, Software De-
fined Networking and loT security.

Hassan Habibi Gharakheili received his B.Sc.
and M.Sc. degrees of Electrical Engineering
from the Sharif University of Technology in
Tehran, Iran in 2001 and 2004 respectively, and
his Ph.D. in Electrical Engineering and Telecom-
munications from UNSW in Sydney, Australia in
2015. He is currently a lecturer at UNSW Syd-
ney. His current research interests include pro-
grammable networks, learning-based networked
systems, and data analytics in computer sys-
tems.

Theophilus A. Benson Theophilus Benson re-
ceived his Ph.D. from University of Wisconsin,
Madison in 2012 and his B.S. from Tufts univer-
sity in 2004. He is now an Assistant Professor at
Brown University in Providence, Rhode Island,
USA. His research focuses on designing frame-
works and algorithms for solving practical net-
working problems with an emphasis on speeding
up the internet, improving network reliability, and
simplifying network management.

Matthew Roughan obtained his PhD in Applied
Mathematics from the University of Adelaide in
1994. He has since worked for the Co-operative
Research Centre for Sensor Signal and Infor-
mation Processing (CSSIP), in conjunction with
DSTO; at the Software Engineering Research
Centre at RMIT and the University of Melbourne,
in conjunction with Ericsson; and at AT&T Shan-
non Research Labs in the United States. Most
recently, he works in the School of Mathematical
Sciences at the University of Adelaide, in South
Australia. His research interests range from stochastic modelling to
measurement and management of networks like the Internet. He is
author of over a 100 refereed publications, half a dozen patents, and
has managed more than a million dollars worth of projects. In addition,
his coauthors and he won the 2013 Sigmetrics "Test of Time” award, and
his work has featured in New Scientist and other popular press.

Vijay Sivaraman received his B. Tech. from the
Indian Institute of Technology in Delhi, India, in
1994, his M.S. from North Carolina State Uni-
versity in 1996, and his Ph.D. from the University
of California at Los Angeles in 2000. He has
worked at Bell-Labs as a student Fellow, in a sili-
con valley start-up manufacturing optical switch-
routers, and as a Senior Research Engineer at
the CSIRO in Australia. He is now a Profes-
sor at the University of New South Wales in
Sydney, Australia. His research interests include
Software Defined Networking, network architectures, and cyber-security
particularly for loT networks.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:20:46 UTC from IEEE Xplore. Restrictions apply.

