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ABSTRACT
Most research on traffic matrices (TM) has focused on find-
ing models that help with inference, but not with other im-
portant tasks such as synthesis of TMs, traffic prediction, or
anomaly detection. In this paper we approach the problem
of a general model for traffic matrices, and argue that such a
model must be sparse, i.e., have a small number of parame-
ters in comparison to the size of the TM. A Multi-Resolution
Analysis (MRA) of TMs can provide such a sparse repre-
sentation. The Diffusion Wavelet (DW) transform is a good
choice as a MRA tool here, because it inherently adapts
to the structure of the underlying network. The paper de-
scribes our construction of the two-dimensional version of
the DW transform and shows how to use it for our proposed
MRA of TMs. The results obtained with operational net-
works confirm the sparseness of the DW-based TM analysis
approach and its applicability to other TM-related tasks.

Categories and Subject Descriptors
C.2.5 [Computer Communications]: Local and Wide
Area Networks—Internet ; C.4 [Performance of Systems]:
Modeling Techniques.

General Terms
Algorithms, Measurement.

Keywords
Traffic Characterization, Traffic Matrices, Diffusion Wavelets,
Multi-Resolution Analysis.

1. INTRODUCTION
Internet Traffic Matrices (TMs), giving traffic volumes

from ingress to egress nodes in a network, have drawn con-
siderable interest (see [1] and the references therein). TMs
are a basic input to many network engineering tasks, but
they are non-trivial to measure, and so much work has gone
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into measurement [8] or their indirect inference [2, 14, 19,
20, 21] from readily available link load measurements. There
have been a number of practical outcomes as a result [17].

The papers about inference of traffic matrices have found
utility because they use easily obtained measurements. How-
ever, the link load measurements commonly collected from
operational networks do not provide enough information to
form a well-posed inference problem, with the consequence
that some type of side information (usually in the form of a
traffic matrix model) is needed to perform the inference.

But modeling TMs is not just about inference. There
are other tasks such as TM synthesis [9, 15], giving one
the control needed to generate many samples with precisely
controlled parameters, in order to undertake performance
analysis of, for instance, new traffic engineering algorithms.
It is critical in such synthesis that the important properties
of real TMs are accurately represented in the synthetic TMs,
otherwise incorrect results may arise. However, the proper-
ties of real-world TMs have not been exhaustively studied
as yet, and it is not currently known which are most im-
portant. This problem is magnified by a lack of publicly
available traffic data from commercial ISPs.

Network engineering with TMs also needs models. For
instance, it is common to use TMs as part of the design of
the layout of a new or re-designed network [7]. As such, we
need to predict a traffic matrix at some time in the future. In
addition, we may wish to detect anomalous traffic behaviour,
and a simple approach to such anomaly detection is to look
for large deviations from predicted behaviour.

Most research on traffic matrices has focused almost ex-
clusively on inference, but not the other tasks. The problem
of finding a “good” model for TMs is problem dependent,
and so quite open. In this paper we suggest one key crite-
rion for a TM model and point out a tool for constructing
and estimating such a model.

The criterion we focus on here is that the traffic matrix
model should be sparse. A traffic matrix for a network with
N nodes has N2 terms, and since N can be in the thousands,
the number of terms in the traffic matrix can become very
large. A sparse model has a number of parameters M ¿ N2.
There are good reasons to search for a sparse model:

• In general, there is a tradeoff between model fidelity
and the model’s predictive power. For instance, by
having a large number of parameters we may have a
model that works well for one set of data, but does not
provide good predictions because it is too specific.

• If the model has few parameters then we have more
hope of attaching physical meaning to these parame-



ters, with the result that the ”magic” of tuning them
appropriately for new network settings can be replaced
by engineering insight.

• The inference problem is ill-posed when we have K =
O(N) link-load measurements, but N2 parameters that
we need to estimate. If the TM model had M ≤ K pa-
rameters, then the problem might become well posed.

Often, approaches to TM inference have sought some kind
of sparse model for the matrices, with a view that this will
bring the problem back towards being well-posed. The grav-
ity model [20] is a good example, with only 2N parameters.
However, in this case the model itself is not a particularly ac-
curate representation of a TM, it simply forms a prior used
in a regularization approach for inference. We will not dis-
cuss all of the possible models, but note that the search for
sparsity was not the explicit criterion for previous models.
The majority of existing models have generally been argued
from background engineering knowledge of the Internet.

Our approach for finding such a sparse model is to use
Multi-Resolution Analysis (MRA). Wavelet-based MRA tech-
niques for “denoising” seek a sparse model for a signal by
soft-thresholding the transformed signal. Such approaches
have a number of advantages: long-range correlations are
approximately decorrelated in the wavelet domain, reducing
dependencies between potential model parameters; fast al-
gorithms exist for wavelet transforms; and standard wavelet
transforms are linear, leading to a number of desirable prop-
erties. Most importantly, many of the “perceptible” features
of signals are preserved in relatively few wavelet coefficients.
The sparseness of the coefficients is the leading reason why
modern compression techniques often use wavelets.

Standard wavelet-based MRA analysis is not appropri-
ate for traffic matrices. In a TM the spatial relationships
between elements are more complicated than in an image,
which is after all a simple rectangular grid sampling of a two-
dimensional field. We exploit the new Diffusion Wavelets
(DW) approach [5] and perform multi-resolution analysis of
functions defined on graphs. The graph represents the un-
derlying network (over which our traffic matrix is routed),
and reflects the natural spatial relationships in the TM. For
instance, two traffic matrix elements originating from loca-
tions close together in the network may share characteristics
such as their diurnal traffic pattern.

Our main contribution is to generalize Diffusion Wavelets
to 2D and apply them to modelling traffic matrices, which we
see as two-dimensional functions of the nodes. We find that
in the Diffusion Wavelets domain traffic matrices are sparse
and (surprisingly) stable across time. Indeed, when this sta-
bility is broken, it is a hint of the presence of anomalies in
the traffic matrix. The results described in this paper were
obtained from real data from operational networks and can
be considered a ”proof of concept”, i.e. a first step towards
creating viable sparse models of TMs for use in the various
tasks mentioned above: inference, synthesis, and prediction.
Further studies in each of these areas are needed to demon-
strate the full potential of the proposed approach.

2. BACKGROUND AND RELATED WORK
An IP network can be abstractly thought of as a graph,

whose nodes are routers or Points-of-Presence (PoPs), and
whose edges are links between these. A traffic matrix de-
scribes the volumes of traffic traversing a network from the

point at which it enters the network to the exit point, mea-
sured over some time period. Such a matrix is useful in ca-
pacity planning, traffic engineering, network reliability anal-
ysis, and many other network engineering tasks. It is possi-
ble to measure such a matrix using measurement technolo-
gies such as flow level traffic collection, but typically these
are hard to implement across a large network [20]. On the
other hand SNMP data is easy to collect, and almost ubiq-
uitous. However, SNMP data only provides link load mea-
surements, not TM measurements. The link measurements
y are related to the TM, which is written as a column vector
x, by the relationship y = Ax where A is called the rout-
ing matrix [19]. The resulting problem of inferring the TM
from link measurements is a classic underconstrained, linear-
inverse problem which needs some sort of side information.
Examples of such additional information used in the con-
text of Internet TMs are a Poisson model [19], a Gaussian
model [2], a logit-choice model [14], or a gravity model [20].

Further efforts on modeling the relationships between TM
elements have been described in [11] and successfully ex-
ploited for anomaly detection in [10]. These papers focused
on Principal Components Analysis (PCA) of the traffic ma-
trices as times series. PCA exploits the correlations between
TM elements to separate the periodic components of the
traffic (see [16]) from random fluctuations and anomalous
events. However, it is unclear how the structures described
within [11] would lead to a simple model for use in synthesis.
On the other hand, the gravity model [20] is so simple that
it has already seen extensive use as a model for TMs.

A first approach to apply graph-based MRA to the study
of traffic matrices was carried out by Crovella and Kolac-
zyk [6], where ”graph wavelets” were introduced as an ex-
tension of the 2D wavelet transform. Graph wavelets pro-
vide a way of computing the load differences between links
separated by a certain number of nodes (i.e., the concept of
scale is replaced by that of hop distance between links). The
authors also show how the tool can be used for anomaly de-
tection. The main drawbacks of this approach are the lack
of a fast computational algorithm and its non-orthogonali-
ty. Graph wavelets do not provide a sparse representation of
traffic data but rather an overcomplete decomposition sim-
ilar to that of the Continuous Wavelet Transform (CWT).

Diffusion Wavelets [5] can be understood as a generaliza-
tion of graph wavelets, allowing more freedom for choos-
ing the underlying kernel function (or “mother wavelet”),
along with generalized distances in the graph, an orthonor-
mal basis, and a fast computation algorithm. To the best
of our knowledge, the only relevant application of Diffusion
Wavelets in the context of computer networks is [4], where
Coates et al. address the problem of assessing the number of
measurement points required to monitoring end-to-end path
metrics, such as delay at the IP level or bit-error-rate perfor-
mance at the physical level of an optical network. The au-
thors construct a diffusion operator on an alternative graph
where the nodes are the routes of the original network, and
the links are a similarity measure of the routes (the fraction
of shared links, according to the routing data), and apply
the (1D) DW transform. The implicit sparsity of the ana-
lyzed data in the transformed domain, together with the use
of sparse inference techniques, allows an efficient monitor-
ing with a reduced number of devices (for example, network
mean end-to-end delay can be measured with high precision
by monitoring only 7% of the routes).



3. WAVELETS & DIFFUSION WAVELETS
Wavelet methods have been used in signal and image pro-

cessing for denoising and compressing, among other applica-
tions. The Discrete Wavelet Transform (DWT) analyzes sig-
nals by computing its scalar product with dilated (by powers
of 2) and translated versions of the mother wavelet func-
tion, thus analyzing the input signal at time scales t = 2j .
Provided that the mother wavelet satisfies certain condi-
tions [13], the resulting transform is orthonormal and can
be efficiently implemented by a bank of quadrature-mirror
low-pass and high-pass filters (h(n) and g(n), respectively)
followed by downsampling, as illustrated in Figure 1.

The low-pass filters perform successive approximation on
the signal at coarser and coarser scales. Intuitively, we might
think of this as successively “blurring” the original signal.
Implicitly, there exists a mother scaling function from which
we could derive the blurring functions using the same di-
lations and translations as with the mother wavelet. The
wavelet details dx(j, k) capture the difference between the
approximation ax(j−1, k) at some scale j−1, and a coarser
level of approximation ax(j, k). In mathematical terms, we
obtain a set of nested approximation (scaling) subspaces Vj ,
V1 ⊃ V2 ⊃ . . . ⊃ VJ and their orthogonal complements, the
high-frequency detail (wavelet) subspaces Wj = Vj−1 − Vj .

In the frequency domain the DWT results in a decompo-
sition in subbands whose spectra are halved at each step.
This gives rise to a multiresolution analysis in which the
original signal is decomposed into a low frequency approxi-
mation at the largest time scale t = 2J , ax(J, k) and a set of
high-frequency details dx(j, k) (the wavelet coefficients) for
each time scale t = 2j , j = 1 . . . J . The transform can be
generalized to 2D images, as we will see in Section 4.

Figure 1: Left: the 1D DWT filter bank for J=3,
with approximation ax(3, k) and details dx(j, k), j =
1 . . . 3. Right: the associated spectrum subbands.

The aforementioned classical time- and space-based wave-
let transforms operate on signals defined on uniformly sam-
pled grids on R and R2, respectively. However, a TM is not
defined on a regular lattice — it is defined across a computer
network, which can be represented by a graph. Diffusion
Wavelets [5] are a generalization of the wavelet transform
in which the MRA can be performed on structures such as
manifolds or graphs. In our case the underlying structure
is a graph G{V, E} (where V and E are the vertex and
edges sets, respectively). We wish to analyze a function
f : V → R, i.e., we have a function f(i), which maps each
vertex i to a real number.

The approach is to create a diffusion operator that plays
the role of the mother scaling function. Application of the
diffusion operator “blurs” the original function, but in a way
that is adapted to the underlying graph. Locations that are
close together in the graph will be blurred into each other,
while locations that are far apart will remain separated. The

use of the underlying graph for the diffusion makes the DW
intrinsically adapted to the “topology” over which the func-
tions f(i) are defined.

Mathematically we represent the diffusion operator by a
linear transform Tf . Just as there are many possible mother
wavelet and scaling functions, there are many choices we
could make for T . Simple examples include a heat-like dif-
fusion (hence the name) across the graph, or a stochastic
matrix representing a random walk on the matrix. The lat-
ter seems a natural choice since it models an approximation
of the distance between nodes in a graph, but instead we
follow [12] and choose the I − L operator, where I is the
identity matrix and L is the normalized Laplacian [3] of A,
the (weighted) adjacency matrix of the graph1. This opera-
tor is closely related to the random walk [3, 12] and it has the
same eigenvalues but, unlike the random walk, the I−L op-
erator is symmetric, among other desirable properties. The
operator is later scaled in order to be doubly-stochastic.

The dilation operator used to construct subsequent scal-
ing functions is simply to take powers of the matrix T . In-
tuitively, if a diffusion continues over n time steps, we would
apply the linear transform n times, i.e., T nf . This results
in successive blurring of the function, as required. In the
random walk interpretation, assume f represents an initial
distribution of states, then T nf represents the state distribu-
tion after n time steps, which we know will tend to blur (for
an irreducible Markov chain) towards the equilibrium dis-
tribution. Analogously to the standard wavelet transform,

DW progresses in powers of 2, i.e., we consider T 2j

f .
For graphs, the natural equivalent to the frequency-based

decomposition resulting from the DWT is spectral graph
theory, i.e., the study of the eigenvalues and eigenfunctions
of linear operators [3]. The Spectral Theorem results in a
simple representation of the linear operator

T =
X
i=1

λiν
T
i νi,

where λi are the eigenvalues of T and νi are their associated
eigenvectors. If T is a doubly stochastic matrix, |λi| ≤ 1.

The principle that underlies PCA (Principal Components
Analysis) is that it is common that many eigenvalues of such
an operator will be near zero, and thus we may approximate
the matrix T through a partial sum. This has been exploited
in the direct analysis of traffic matrices [11]. Here, the con-
cept is applied to the graph-diffusion operator T , but we will
apply it very conservatively. In our approximation we will
ignore eigenvalues |λi| ≤ ε, where ε is a tunable parameter
with small value (ranging from 10−3 to 10−10 in our exper-
iments). Few (if any) eigenvalues are removed in the first
round, but things change when we consider powers of T .

The eigenvalues of T n are λn
i , and the eigenvectors remain

invariant with respect to n. As n → ∞ all of the eigenval-
ues |λi| < 1 will tend to zero, and eventually they will fall
below the threshold ε. As such, the successive application
of the (now approximated) diffusion operator will break the
graph spectrum into subbands, much as the classical wavelet
transform does.

1In a network-related scenario we may wish to make a tran-
sition across a “long” link less likely. Weights can (for ex-
ample) be inversely proportional to the routing weights, ob-
taining a diffusion operator that is somehow related to load-
balancing routing. In the unweighted adjacency matrix case,
a constant value (e.g. 1) can be used as weight.



Figure 2: Left: filter bank associated with the 2D wavelet transform, for J=2 scales. Right: the associated
subband decomposition.

The MRA can then be defined as follows: for a given scale

j, the eigenvectors associated with |λ2j

i | ≥ ε span the low
frequency approximation subspace Vj , while the eigenvec-
tors associated with the eigenvalues discarded at step j, i.e.,

such that |λ2j

i | < ε and |λ2j−1

i | ≥ ε span the high frequency
or detail subspace Wj . At each step j the surviving eigen-
vectors are appropriately reorthonormalized (for example,
with a Gram-Schmidt-style algorithm).

Coiffman and Maggioni [5] present a fast algorithm for
performing the aforementioned computations, and obtaining
the approximation and detail coefficients at level j (denoted
as CVj and CWj , respectively) by projecting the function
under study onto the Vj and Wj subspaces.

4. 2D DW TRANSFORM
Traffic matrices can be represented as two-dimensional

functions F (v1, v2) of pairs of vertices where v1 is the ingress
node, v2 is the egress node, and F (v1, v2) is the traffic vol-
ume from v1 to v2. Hence, we need to extend DWs to 2D.

Classical 1D wavelets can be used to construct a separa-
ble basis in 2D by combining the application of the low-
and high-pass filter banks in the horizontal and vertical
dimensions of the input image I(x, y), thus generating 4
subbands at each scale: the low-pass/low-pass approxima-
tion aaI(j, k, l), and the details adI(j, k, l), daI(j, k, l) and
ddI(j, k, l) from the other filter combinations. After appro-
priately downsampling the outputs, the process is iterated
on the approximation subband, as shown in Figure 2.

Analogously, our approach to 2D DWs transforms the
function F (v1, v2) by projecting it twice onto the approx-
imation and detail subspace bases defined by the 1D DW
diffusion operator, once along each “direction”. The details
of the algorithm vary because we no longer have simple filter
bank implementations of the high-pass and low-pass opera-
tions, but intuitively the process is similar. We denote by
CV Vj , CV Wj , CWVj and CWWj the transform coefficients
corresponding to the low-pass approximation subspace V Vj

and the high-frequency detail subspaces V Wj , WVj and
WWj , respectively. For the 1D DW transform described
here, the resulting 2D transform retains the highly desirable
properties of orthonormality, invertibility (i.e. we can ex-
actly reconstruct the original function from its coefficients)
and separability.

Figure 3 presents a simple illustrative example on a 10-
node graph. The 1D DW transform decomposes the graph
spectrum in 3 subbands with 2, 3 and 5 eigenvalues for the
W1, W2 and V2 subbands respectively, while the 2D DW
divides the graph spectrum into the approximation V V2 and
the details V W2, WV2, WW2, V W1, WV1 and WW1, each
one including a set of n×m eigenvalues/eigenvectors.

Figure 3: Example of a decomposition generated by
the 2D diffusion wavelet transform, for J=2.

5. MRA OF TRAFFIC MATRICES
In our first experiments with the 2D DW tool we have

studied over 20000 traffic matrices belonging to two datasets
from the Abilene and GEANT networks, with 12 and 23
PoPs, respectively. The granularity of the TMs is 5 minutes
in Abilene and 15 minutes for GEANT. For more details
about the datasets refer to [18].

The TMs were analyzed with the 2D Diffusion Wavelet
transform, with two goals in mind. First, we wanted to vi-
sualize how the diffusion process affected a traffic matrix,
in order to develop our intuition about the multi-resolution
decomposition and check the invertibility and perfect re-
construction properties. Secondly, we wanted to assess the
compressibility obtained with the 2D DW.

Figure 4 shows the results obtained with the DW trans-
form of a representative TM from Abilene (March 2nd 2004
from 12:00 to 12:05). The graphs show reconstructions of
the TMs from the approximation coefficients (CV Vj ) and
detail coefficients (CV Wj , CWVj and CWWj ) at each scale
j. The analysis has been performed with the unweighted
and normalized random walk as diffusion operator and a
precision ε = 10−7. Since no eigenvalues are discarded in
the first and second detail subspaces, the associated approx-
imation reconstructions are identical to the original traffic
matrix and are not shown in the figure. We can see clearly
the low-frequency effect of the successive blurring applied by
the diffusion operator in the approximations, together with
the high-frequency components of the details.

Regarding the compressibility of TMs we have performed
several tests on fortnight-long and month-long series from
both datasets in order to assess the extent to which the
energy of the original matrices is compressed in a few co-
efficients. Table 1 shows the results for two representative,
month-long traces. The results obtained with other traces
are consistent with those shown in the table, and confirm the
sparseness of the DW representation: on average, 15% of the
coefficients retain more than 90% of the original TM energy.
Figure 5 supports the results of this compressibility study by



Figure 4: Approximations and details of the decom-
position of the TM-2004-03-02-1200 Abilene TM.
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Figure 5: Mean normalized MSE vs percentage of
coefficients for two month-long TM traces.

Energy preserved
Trace under study 80% 90%
Abilene June 04 4 coeffs (2.8%) 21 coeffs (14.6%)

GEANT March 05 24 coeffs (4.5%) 75 coeffs (14.2%)

Table 1: Percentage of coefficients needed to pre-
serve certain fractions of the original TM energy.

plotting the Mean Square Error (MSE) of the reconstructed
TMs versus the percentage of coefficients used in the recon-
struction. Note that despite the major differences between
Abilene and GEANT the results are almost identical, illus-
trating how the DW is able to capture the structure of the
TM independently of the actual network topology.

Finally, we have found that there is a characteristic signa-
ture related to the rank of the coefficients (ordered in terms
of their contribution to the TM’s total energy), which is also
consistent across time, except when there is some anomaly
in the TM series (such as a sudden traffic volume change).
Figure 6 shows an example of such a feature. The figure
shows the rank of the biggest 20 coefficients of the 14-day
long March 2004 Abilene trace. A change can be clearly seen
around the 3500th TM (in the first hours of March 14th),
which coincides in time with a notable structural change in
the original traffic matrices (a big increase in the traffic di-
rected to Houston from many sources). This suggests that
structural TM changes can be detected by monitoring just
a small number of coefficients (instead of all 144 paths) as
long as they make up the bulk of the TM’s total energy.
This is still far from becoming a fully working MRA-based
anomaly detection algorithm, but the DW transform seems
potentially useful for such a task.

6. CONCLUSIONS
This paper presents a proof of concept, in the sense that

we have shown that diffusion wavelets provide a sparse ap-
proximation of traffic matrices, and hence are a promising
approach to modelling said TMs. However, more work has
to be carried on (i) transforming the compressibility of the
traffic matrix into a physical model; (ii) using this model to
solve the various tasks at hand: inference (exploiting the di-
mensionality reduction), synthesis, prediction and anomaly
detection; (iii) investigating how the sparse DW model is



Figure 6: Coefficient signature of the month-long
Abilene March 2004 trace.

related to other modelling efforts such as the gravity model
or the PCA-based models, to mention some of them; (iv)
exploring other diffusion operators (e.g. the weighted adja-
cency matrix case in the I−L operator); and (v) investigat-
ing how network topologies can be represented and studied
with the MRA approach.
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