
Class-of-Service Mapping for QoS: A Statistical
Signature-based Approach to IP Traffic Classification

Matthew Roughan
�

Subhabrata Sen � Oliver Spatscheck � Nick Duffield �
School of Mathematical Sciences, University of Adelaide,SA 5005, Australia

�
AT&T Labs – Research, Florham Park, NJ 07932-0971, USA �

matthew.roughan@adelaide.edu.au � sen,spatscheck,duffield � @research.att.com

ABSTRACT
The ability to provide different Quality of Service (QoS) guaran-
tees to traffic from different applications is a highly desired feature
for many IP network operators, particularly for enterprise networks.
Although various mechanisms exist for providing QoS in the net-
work, QoS is yet to be widely deployed. We believe that a key
factor holding back widespread QoS adoption is the absence of suit-
able methodologies/processes for appropriately mapping the traffic
from different applications to different QoS classes. This is a chal-
lenging task, because many enterprise network operators who are
interested in QoS do not know all the applications running on their
network, and furthermore, over recent years port-based application
classification has become problematic. We argue that measurement
based automated Class of Service (CoS) mapping is an important
practical problem that needs to be studied.

In this paper we describe the requirements and associated chal-
lenges, and outline a solution framework for measurement based
classification of traffic for QoS based on statistical application sig-
natures. In our approach the signatures are chosen in such as way
as to make them insensitive to the particular application layer pro-
tocol, but rather to determine the way in which an application is
used – for instance is it used interactively, or for bulk-data trans-
port. The resulting application signature can then be used to derive
the network layer signatures required to determine the CoS class
for individual IP datagrams. Our evaluations using traffic traces
from a variety of network locations, demonstrate the feasibility and
potential of the approach.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—Network Management, Network Monitoring

General Terms
Measurement, Algorithms, Management
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1. INTRODUCTION
The past few years have witnessed a dramatic increase in the

number and variety of applications running over the Internet and
over enterprise IP networks. The spectrum includes interactive (e.g.,
telnet, instant messaging, games etc.), bulk data transfer (e.g., ftp,
P2P file downloads), corporate (e.g., Lotus Notes, database trans-
actions), and real-time applications (voice, video streaming, etc.),
to name just a few.

Network operators (particularly in enterprise networks) are ac-
tively seeking the ability to support different levels of Quality of
Service (QoS) for different types of applications. The need is driven
by (i) the inherently different QoS requirements of different types
of applications (e.g., low end-end delay for interactive applications,
high throughput for file transfer applications etc.); (ii) the different
relative importance of different applications to the enterprise: e.g.,
Oracle database transactions may be considered critical and there-
fore high priority, while traffic associated with browsing external
web sites is generally less important; and (iii) the desire to opti-
mize the usage of their existing network infrastructures under finite
capacity and cost constraints, while ensuring good performance for
important applications. In spite of a clear perceived need, and the
fact that various mechanisms (diffserv, traffic prioritization, etc. [8,
17, 7]) have been developed for providing different service quality
guarantees in the network, their adoption has not been widespread.
A pertinent question then is: what ails QoS?

Realization of service differentiation capabilities requires associ-
ation of the traffic with the different applications, determination of
the QoS to be provided to each, and finally, mechanisms in the un-
derlying network for providing the QoS. Based on interactions with
large enterprise network operators, we believe that a key issue be-
hind the slow spread of QoS-use is not the lack of interest or need,
but rather, the absence of suitable mapping techniques that can aid
operators in classifying the network traffic mix among the different
QoS classes. We refer to this as the Class of Service (CoS) mapping
problem, and hypothesize that solving this would go a long way in
making the use of QoS more accessible to operators.

In principle the division into CoS could be done by end-points
— for instance by end-user applications. However, for reasons of
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trust, and scalability of administration and management it is typ-
ically more practical to do this within the network, for instance
at the router that connects the Local Area Network (LAN) to the
Wide Area Network (WAN). Alternatively there might be appli-
ances which sit near the LAN to WAN transition point performing
packet marking for QoS.

CoS mapping inside the network is a non-trivial task. Ideally,
a network system administrator would possess precise information
on the applications running inside their network, along with simple,
unambiguous mappings from easily obtained traffic measurements
to applications (e.g. by port numbers, or source and destination IP
addresses). This information is vital not just for the implementa-
tion of CoS (e.g. via diffserv), but also in planning the capacity
required for each class, and balancing tradeoffs between cost and
performance that might occur in choosing class allocations. For in-
stance, one might have an application whose inclusion in a higher
priority class is desirable, but not cost effective (based on traffic
volumes and pricing), and so some difficult choices must be made.
Good data is required for these to be informed choices.

However, in general, the required information is rarely up-to-
date or complete, if it is available at all. The traditional ad-hoc
growth of IP networks, the continuing rapid proliferation of new
applications, the merger of companies with different networks, and
the relative ease with which almost any user can add a new appli-
cation to the traffic mix with no centralized registration are some
factors contributing to this “knowledge gap”. Furthermore, over
recent years it has become harder to identify network applications
within IP traffic. Traditional techniques such as port-based classi-
fication of applications have become much less accurate (details in
Section 2).

This paper presents a signature-based traffic classification frame-
work as a candidate solution for the CoS mapping problem, and
demonstrates the feasibility and potential of the approach using
large traffic traces collected from multiple Internet locations. Our
classification method is based on utilizing the statistics of particu-
lar applications in order to form signatures. By choosing signatures
that are determined by the way in which an application is used (e.g.
is it used interactively, or for bulk data transport), we should ob-
tain signatures that are insensitive to the particular application layer
protocol. We can therefore perform CoS categorization without de-
tailed knowledge of the specific application protocol, or usage case
(some applications may be used for multiple tasks with different
QoS requirements). The method would be used off-line to form a
set of port, or IP address based rules for CoS assignment that would
then be applied on-line in the QoS implementation. Our evaluations
indicate that the technique has relatively low error rates. For exam-
ple, our cross-validation tests using 3-Nearest Neighbor (details in
Section 5) yield classification error of ��� �	� and �
���� respectively
when the traffic is categorized into three and four classes, using two
features. We found that even better results (for instance 0.0% errors
were possible) with three features. The evaluations even showed
relatively low error rates even for fine grain traffic classes. The
last suggests that such statistical classification techniques may be
good candidates for identifying even individual applications. Such
identification of the different applications and their associated net-
work traffic has a number of important usages for network opera-
tions and management (outside of QoS implementation), including

application-specific traffic engineering, capacity planning, provi-
sioning, and security.

The remainder of this paper is organized as follows. Section 2
overviews existing techniques for identifying IP traffic and their
limitations. Section 3 presents a three-phase framework for realiz-
ing CoS mapping. Section 4 presents our techniques for CoS classi-
fication from network traffic. Section 5 presents evaluations of our
techniques using real traffic traces. Finally, Section 6 concludes the
paper.

2. IP TRAFFIC CLASSIFICATION
One approach commonly used for identifying applications on an

IP network is to associate the observed traffic (using flow level data,
or a packet sniffer) with an application based on TCP or UDP port
numbers. We argue here that this method (described below) is in-
adequate.

The TCP/UDP port numbers are divided into three ranges: the
Well Known Ports (0-1023), the Registered Ports (1024-49,151),
and the Dynamic and/or Private ports (49,152-65,535). A typi-
cal TCP connection starts with a SYN/SYN–ACK/ACK handshake
from a client to a server. The client addresses its initial SYN packet
to the well known server port of a particular application. The source
port number of the packet is typically chosen dynamically by the
client. UDP uses ports similarly to TCP, though without connec-
tion semantics. All future packets in either a TCP or UDP session
use the same pair of ports to identify the client and server side of the
session. Therefore, in principle the TCP or UDP server port num-
ber can be used to identify the higher layer application, by simply
identifying which port is the server port and mapping this port to an
application using the IANA (Internet Assigned Numbers Author-
ity) list of registered ports [20]. However, port-based application
classification has limitations. First, the mapping from ports to ap-
plications is not always well defined. For instance,� Many implementations of TCP use client ports in the registered

port range. This might mistakenly classify the connection as be-
longing to the application associated with this port. Similarly,
some applications (e.g. old bind versions), use port numbers
from the well-known ports to identify the client site of a ses-
sion.� Ports are not defined with IANA for all applications, e.g. P2P
applications such as Napster and Kazaa.� An application may use ports other than its well-known ports
to circumvent operating system access control restrictions, e.g.,
non-privileged users often run WWW servers on ports other
than port 80, which is restricted to privileged users on most
operating systems.� There are some ambiguities in the port registrations, e.g. port
888 is used for CDDBP (CD Database Protocol) and access-
builder.� In some cases server ports are dynamically allocated as needed.
For example, FTP allows the dynamic negotiation of the server
port used for the data transfer. This server port is negotiated on
an initial TCP connection which is established using the well-
known FTP control port.
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� The use of traffic control techniques like firewalls to block unau-
thorized, and/or unknown applications from using a network
has spawned many work-arounds which make port based appli-
cation authentication harder. For example port 80 is being used
by a variety of non-web applications to circumvent firewalls
which do not filter port-80 traffic. In fact available implemen-
tations of IP over HTTP allow the tunneling of all applications
through TCP port 80.� Trojans and other security (e.g. DoS) attacks generate a large
volume of bogus traffic which should not be associated with the
applications of the port numbers those attacks use.

A second limitation of port-number based classification is that
a port can be used by a single application to transmit traffic with
different QoS requirements. For example, (i) Lotus Notes transmits
both email and database transaction traffic over the same ports, and
(ii) scp (secure copy), a file transfer protocol, runs over ssh (se-
cure shell), which is also used interactively on the same port (TCP
port 22). This use of the same port for traffic requiring different
QoS requirements is quite legitimate, and yet a good classification
must separate different use cases for the same application. In prac-
tice, one use case may dominate on a particular VPN (Virtual Pri-
vate Network), or use cases will have other discriminating factors
such as the servers’ IP addresses. Thus a clean QoS implementa-
tion is still possible through augmenting the classification rules to
include IP address-based disambiguation. Server lists exist in some
networks, but again, in practice these are often incomplete, or a
single server could be used to support a variety of different types of
traffic, so we must combine port and IP address rules.

A possible alternative to port based classification is to use a painstak-
ing process involving installation of packet sniffers and parsing
packets for application-level information to identify the application
class of each individual TCP connection or UDP session. However,
this approach cannot be used with more easily collected flow level
data, and its collection is computationally expensive, limiting its
application to lower bandwidth links. Also this approach requires
precise prior knowledge of applications and their packet formats
– something that may not always be possible. We use it here to
identify Kazaa and Gnutella traffic from their application layer pro-
tocols, but this requires substantial effort for each application, and
in some cases, each application version. Furthermore, the introduc-
tion of payload encryption is increasingly limiting our ability to see
inside packets for this type of information.

In this paper we explore the potential of signatures derived from
measured traffic for CoS categorization. In practice, this approach,
in conjunction with the above techniques and the partial knowledge
available for most corporate networks can be used to bear on the
problem of application identification and traffic classification.

2.1 Related work
Previous related work has examined the variation of flow charac-

teristics according to application. Claffy [10] investigated the joint
distribution of flow duration and number of packets, and its varia-
tion with flow parameters such as inter-packet timeout. Differences
were observed between the support of the distributions of some ap-
plication protocols, although overlap was clearly present between
some applications. Most notably, the support of the distribution of
DNS transactions had almost no overlap with that of other appli-

cations considered. The use of such distributions as a discrimina-
tor between different application types was not considered. There
exists a wealth of other research on characterizing and modeling
workloads for particular applications, e.g., [22, 31, 4, 2, 9, 34]. An
early work in this space, [29], examines the distributions of flow
bytes and packets for a number of different applications. Interflow
and intraflow statistics are another possible dimension along which
application types may be distinguished. [30] found that user initi-
ated events—such as telnet packets within flows or ftp-data
connection arrivals—can be described well by a Poisson process,
whereas other connection arrivals deviate considerably from Pois-
son.

All these studies assume that one can identify the application
traffic unambiguously and then obtain statistics for that applica-
tion. In contrast, we are considering the dual problem of inferring
the application from the traffic statistics. This type of approach has
been suggested in very limited contexts such as identifying chat
traffic [12]. Our work extends this idea while providing a rigor-
ous mathematical framework for performing classification based
on signatures. Signature-based detection techniques have also been
explored in the context of network security, attack and anomaly de-
tection (e.g. [6, 5, 36, 26]) where one typically seeks to find a signa-
ture for an attack. However, we apply our classification techniques
to identify everyday traffic.

3. REALIZING COS MAPPING

The constraints under which CoS mapping must operate are prin-
cipally related to computational complexity. At high speeds, the
rules that can be used for this task are rather limited. Typically, one
can use simple criteria such as port numbers or IP source/destination
addresses, but not details from the higher layer protocols. Our task
is to use statistical signature based classification (trained on prior
networks’ traffic, and applied to traffic measurements from the cur-
rent VPN) to form a set of local rules based on port, or IP addresses,
which would then be applied on-line for CoS assignment.

We propose to realize this type of CoS mapping using a three
stage process.

1. statistics collection,

2. classification,

3. rule creation.

The first stage — statistics collection — involves placing monitors
in the network, and collecting appropriate statistics of the traffic
from certain aggregates. In this case, the aggregates we consider
are the server port ��� , and server IP address1 � � of a connection � .
One could choose these aggregates in a more flexible manner, with
the proviso that the aggregates used must be easily implementable
as rules (see below). There are a number of techniques available
for efficiently identifying the interesting aggregates, for instance,
see [13]. We then form a vector of statistics ��������� for each con-
nection � , and use this to update the statistics of each aggregate that
1Notice that server address are usually statically allocated, rather
than allocated via DHCP, and so we do not need to worry about
constantly shifting IP addresses, at least on the time scales of mea-
surements considered here.
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connection is involved in, for instance statistics ������� � � for port ag-
gregates, and � �!� � � � for server aggregates. For statistics collected
on TCP connections, the procedure would be:

foreach packet
if new TCP connection (give it index � ++)

determine the aggregates for �
server port � � = dst port of SYN
server IP address � � = dst IP of SYN
...

initialize a set of statistics �"�����#�
else if part of existing TCP connection �

update connection statistics � � ���#�
else if end TCP connection �

update connection statistics � � ���#�
update statistics foreach aggregate
by server port: � � �����$�
by server IP address: � � � � �#�

The update procedure for connections depends on the statistic in
question. Ideally, we should choose statistics that can be updated
on-line in a streaming fashion, i.e. recursively. This means that we
do not need to store data per packet, but rather per connection, for
instance, assuming an update algorithm like% �& ���#�('*)"��+ �,�- % �& ���#� -/. ���#�0� -
where + �, is the measurement for the 1 th packet in connection � ,
and

% �& ���#� is the 2 th statistic for connection � , and . ���#� is some
(small) set of state information (e.g. the packet number 1 ) for con-
nection � , then the memory required to store the state depends on
the number of connections, not number of packets. For example,
for a series of real-valued data + , , the following statistics may be
easily computed recursively:

1. average: 3+ ,54�6�7 �198:� + ,54�6 8 11;8:� 3+ , -
2. variance:

var ��< ,=4�6 � 7 �1 + ,54�6 8 1?>@�1 var ��< , �08 11A>B� 3+DC, > 1;8E�1 3+FC,54�6 �
where

3+ , and var ��< , � are the mean and variance, respectively,
of the first 1 samples of data. However, even for more difficult
statistics, such as quantiles, there are a number of approximation
algorithms [18] that can be used to approximate the statistic on-line.
The variables + , could represent packet size, or inter-arrival time,
or other features, and so we can generate a moderately large number
of statistics even with the limitation of on-line computation. Some
statistics need only be computed at the start and end of the TCP
connection — for instance, the duration, which we may compute
by including the start time of connection � in the state variables. ���#� .

Likewise, it is appealing to be able to update the statistics of each
aggregate recursively, but this is not necessary, as it is much easier
to store one set of statistics per connection than per packet. If the
statistics for each connection are stored, then we could alternatively
compute the statistics per aggregate off-line, after the data collec-
tion.

We may also finalize any extant TCP connections at the end of
data collection in one of two ways: by including them in our statis-
tics, or excluding them. Either approach biases the results — for
instance, if we exclude the connections we naturally exclude any
connections longer than our measurement interval, but if we include
them we underestimate the duration of the connections. These edge
effects will be minimized by having a longer data collection inter-
val, so in this work we propose using one day worth of data, though
it may be practical to use longer data sets. Ideally, the collection
intervals for training data should be the same as those for test data,
so that both data sets are subject to the same biases.

After statistics collection, unsurprisingly, one has a collection of
statistics indexed by aggregate (in our case server port, and server
IP address). The next step is to classify the traffic on each ag-
gregate. We do so using the classification algorithms described in
Section 4 (or alternative algorithms if these are shown to be more
accurate), in conjunction with a pre-existing set of training data,
carefully collected on well understood networks of the type under
study.

Once we have completed classification we will have associated
each aggregate with a class. Assuming the classes map directly to
CoS we can immediately construct the rules required in the QoS
implementation. That is, assume that aggregate G � has been deter-
mined to belong to class H , , which requires QoS I & . We now have
a mapping G ��J H , J I & -
which can be instantiated as a rule. For instance, if G �"K � � corre-
sponds to a particular server port � � , our rule is
place traffic to/from port ��� in class I & .
One can obviously create a large set of such rules, and in gen-

eral it might be non-trivial to reduce the size of this rule set to
something manageable. However, in practice, differential pricing
between classes means that only traffic specifically requiring high
priority should go into high priority classes, and so the majority
of application will most likely be placed in a lower priority class.
Hence there are typically only a few classes, and the majority of
aggregates will go into a default class, so few rules will be needed.

Once a set of rules has been created, these would then be imple-
mented on (for example) the access router, which would use them
to mark the packets appropriately, and place them in appropriate
queues for forwarding. Thus the classification process described so
far is an off-line process, to be applied before the fact to create a set
of simple rules that would be used in the actual on-line QoS imple-
mentation. Note that the error rate of the classification algorithm is
in forming these rules, not in classification of packets in the actual
QoS implementation. This is an important distinction: the error rate
does result in packets being placed in suboptimal classes, however,
these packets only pay for the class in which they are placed. This
is not the same, for example, as paying a business class airfare and
being bumped to economy. It is simply a case of an administrator
occasionally booking the wrong class of ticket because he has in-
correctly categorized the importance of some of his administratees.

Furthermore, the above process (as described) is automated. How-
ever, it is desirable for a human to “double-check” the assignment
rules. The method described here cannot be made 100% foolproof
simply because a particular network operator may have specific re-
quirements which deviate from the norm. A human would be able
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to map the classes/rules to known traffic and servers, and ensure
that the known policy based rules were enforced in priority to those
derived above. Think of this as our disgruntled business class pas-
senger updating his administrator’s list of important people, so that
he receives the air transport he deserves in the future. In essence,
the technique above is intended to fill in the unknown gaps in the
best possible way.

A side benefit of the above approach is that the collected statis-
tics can be used in other ways. For instance, the traffic volume per
aggregate could be useful in planning the required capacity for each
QoS class, or the network in general. In fact, given a set of prices
per class, the measured volumes, and a set of utilities per applica-
tion class, one could create the mapping from the application classH , to QoS class I & through an optimization process using traffic
data, rather than as a set of fixed rules.

Once monitors are installed, there is no reason one could not use
them in an on-going manner. One could continue to make measure-
ments (as above) of the statistics per aggregate, and if something
changes significantly, then one could change the rules used. An
example might be the introduction of a new application with differ-
ent QoS characteristics, requiring a rule update. It is not, however,
envisioned that these updates would occur often.

4. COS CLASSIFICATION
We next present the different components in our classification

approach: identifying different application classes, selecting candi-
date classification features, and finally specific classification meth-
ods.

4.1 Class Definitions
In practice, service differentiation mechanisms like diffserv to-

day only allow a relatively small number of application classes.
For our initial study, we focus on the following L broad applica-
tion classes, commonly found in corporate networks.� Interactive: The interactive class contains traffic which is re-

quired by a user to perform multiple real-time interactions with
a remote system. This class includes such applications as remote
login sessions or an interactive Web interface.� Bulk data transfer: The bulk data transfer class contains traffic
which is required to transfer large data volumes over the net-
work without any realtime constraints. This class includes ap-
plications such as FTP, software updates, and music or video
downloads (say through an application such as Kazaa).� Streaming: The streaming class contains multimedia traffic with
realtime constraints. This class includes such applications as
streaming and video conferencing.� Transactional: The transactional class contains traffic which is
used in a small number of request response pairs which can be
combined to represent a transaction. DNS, and Oracle transac-
tions belong to this class.

The choices were motivated by the need to select a small num-
ber of classes that would be simple, intuitive and still adequately
represent the different QoS requirements of commonly used appli-
cations. We view these 4 classes as a starting point, with the actual
choice of application classes being a topic for research.

To characterize each application class we need a reference data
set for each class from which we can extract a set of representative
features. Acquiring such a reference data set is made difficult by
precisely the problems described in Section 2. Selecting the net-
work traffic based on port numbers may not yield reliable statistics
that are representative of any particular class, however, to classify
them otherwise requires a reference data set. To break this circular
dependency we selected some applications per class, which based
on their typical use, have a low likelihood of being contaminated
by traffic belonging to another application class. In particular we
focus on applications which:� are clearly within one class (to avoid mixing the statistics

from two classes);� are widely used, so as to assure we get a good data-set;� have server ports in the well known port range to reduce the
chance of mis-use of these ports.

These reference applications will then be used to estimate a num-
ber of statistics, from which we will select features for use in CoS
categorization. Based on the criterion established in the previous
section, the reference applications selected for each application class
are: � Interactive: Telnet,� Bulk data: FTP-data, Kazaa,� Streaming: RealMedia streaming,� Transactional: DNS, HTTPS.

We include HTTPS in the transactional class, because a large
proportion of HTTPS interactions involve users filling out a form,
for instance to conduct secure credit card purchases over the WWW.
In our current study, we do not use web traffic to train the classi-
fication. However we do include WWW traffic statistics (as cap-
tured using port 80) in some plots as an example application, as it
provides some interesting intuition into the results. Also, although
Kazaa does not have registered ports, in particular data sets we have
reliable ways of identifying Kazaa traffic (as describe below).

4.2 Candidate Features
The list of possible features one could consider is very large. We

can broadly classify these into five categories:
1. Simple packet-level features such as mean packet size and

various moments such as variance, RMS (root mean square) size,
etc., are simple to compute, and can be gleaned directly from packet-
level information. They offer a characterization of the application
that is independent of the notion of flows, connections or other
higher level aggregations. Another advantage is that packet-level
sampling, which is widely used in network data collection, has lit-
tle impact on these statistics. Other statistics that can be derived
from simple packet data are time series, from which we could de-
rive a number of features, for instance relating to correlations over
time (e.g. parameters of long-range dependence such as the Hurst
parameter). An example of this type of classification can be seen in
[23], where the authors use time-of-day traffic profiles to categorize
web sites.

2. Flow-level statistics are summary statistics at the grain of net-
work flows. A flow is defined to be an unidirectional sequence
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of packets that have some field values in common, typically, the� -tuple (source IP, destination IP, source port, destination port, IP
Protocol type). Example flow-level features include mean flow du-
ration, mean data volume per flow, mean number of packets per
flow, and variance of these metrics, etc. There are some more com-
plex forms of information one can also glean from flows (or packet
data) statistics, for instance, we may look at the proportion of inter-
nal versus external traffic within a category – external traffic (traffic
to the Internet) may have a lower priority within a corporate set-
ting. These statistics can be obtained using flow-level data collected
at routers using, e.g. Cisco NetFlow [27]. They do not require the
more resource intensive process of finer grain packet-level traces. A
limitation is that flow-collection may sometimes aggregate packets
that belong to multiple application-level connections into a single
flow, which would distort the flow-level features.

3. Connection-level statistics are required to trace some inter-
esting behavior associated with connection oriented transport-level
connections such as TCP connections. A typical TCP connection
starts and ends with well defined handshakes from a client to a
server. The collection process needs to track the connection state
in order to collect connection level statistics. In addition to the
features mentioned for the flow-level, other features that are mean-
ingful to compute at the TCP connection level are the symmetry
of a connection, advertised window sizes and the throughput distri-
bution. The connection-level data generally provides better quality
data than the flow-level information, but requires additional over-
head, and would also be impacted by sampling or asymmetric rout-
ing at the collection point.

4. Intra-flow/connection features There are features we might
wish to collect which are based on the notion of a flow or TCP
connection, but require statistics about the packets within each flow.
A simple example is the statistics of the inter-arrival times between
packets in flows. This requires data collected at a packet level, but
then grouped into flows. We use the relative variance of these inter-
arrival times as a measure of the burstiness of a traffic stream. Intra-
flow/connection features include loss rates, latencies, etc.

5. Multi-flow: Sometimes interesting characteristics can be cap-
tured only by considering statistics across multiple flows/connections.
For instance, many peer-to-peer applications achieve the download
of a large file by bulk downloads of smaller chunks from multi-
ple machines — the individual chunk downloads are typically per-
formed close together in time. For some multimedia streaming pro-
tocols, the high volume data connection is accompanied by a con-
current, separate connection between the same set of end-systems,
containing low volume, intermittent control data (e.g. RTSP [32]).
These multi-flow features are more complex and computationally
more expensive to capture than flow or connection data alone.

Table 1 gives a summary of the types of features, and which types
of measurements are needed to collect them. At the conclusion of
our ongoing work we would like to have identified a minimal set of
statistical features that can be used to classify traffic into application
classes reliably and independently of the actual application.

4.3 Classification methods
In this paper we test two simple, but common methods for classi-

fication: Nearest Neighbor (NN) and Linear Discriminant Analysis
(LDA). The general problem of classification is: given M classes,

N
features, and O training data points, we wish to determine a

set of general rules for classifying future data on the basis of a
feature vector. Each training data point consists of a pair + ,QP� RAS -UT ,VPXW � - �Y�Z� - M\[ , where + , is the feature vector, and T , is
the class of the 1 th data point, and our rule should provide a map-
ping ]T_^ � R S J W � - �Y�Y� - M\[ .

One very simple method of classification is NN. In this classifi-
cation method we assign a new data point to the class of its nearest
(in this paper we shall use Euclidean distance as the metric for dis-
tance) neighbor from the training data. That is we take ]T ��+D� to
be the class T � of the data point + � which minimizes the distance`�` + � >@+ `�`

. NN methods can be generalized to 2 -NN (where the2 nearest neighbors essentially ‘vote’ on the class of the observa-
tion), to enhance its robustness. 2 -NN methods are generally very
good on low-dimensional data (small

N
), but are less effective on

high-dimensional data, and give little insight into the most useful
features.

An alternative set of approaches can be drawn from statistical
decision theory, in which we choose ]T ��+D� 7 T � if

Pr � T � ` a 7 +D� 7 bdcfegh�i 60j k k k j l�m Pr �on ` a 7 +D�=�
That is, we choose the class with maximal conditional probability,
given the feature vector + . This approach is known as the Bayes
classifier. In general we can call p g 7 Pr �on ` a 7 +D� a discrimi-
nant function, and we choose the class with the maximum discrim-
inant. A 2 -NN approach can be seen as an approximation to the
Bayes classifier above, where we are approximating the probabili-
ties Pr �on ` a 7 +D� by the proportion of the 2 nearest neighbors of
class n .

There are many alternative approaches for estimating the dis-
criminant functions. LDA [19] is a simple method that can be de-
rived via a number of approaches. Perhaps the most famous deriva-
tion is Fisher’s — he posed the problem “Find the linear combina-
tion q 7srut a such that the between class variance is maximized
relative to the within-class variance”. When one considers this lin-
ear combination it forms a natural discriminant between the classes,
that minimizes the overlap between them. Another simple method
of derivation of LDA is to assume that each class n has a Gaussian
distribution with mean v g and with the same intra-class covariancew

for each class. In this case the distribution of features vectors
within each class can be drawn from

) & � a � 7 ��$�x��0y"z C ` w ` 6 z C { eu|~} > �� � a >\v & � t w;� 6 � a >Dv & ��� -
where v & is the within class mean (in the feature space) for class 2 .
From Bayes rule we may derive

��� T 7 2 ` + 7 a � 7 ) & � a ��x��� � )f�0� a ��x�� -
where x � is the prior probability of class � . In comparing two classes� and 1 , it is sufficient to compare the log ratio for which the nor-
malizing constants cancel. The log ratio is given by

����� ����� T 7 � ` + 7 a �0�f��� T 7 1 ` + 7 a �0���
When simplified, this results in the linear discriminant functions

p g � a � 7 a t w;� 6 v g > �� v t & w;� 6 v g 8 ����� x g �
6



features
data source packet level flow-level connection-level intra-flow multi-flow
packet trace yes yes yes yes yes
sampled packets yes biased no biased biased
flow-data some yes no no yes
SNMP no no no no no
server logs some some some no some

Table 1: The table illustrates the types of features available from different measurement tools. Notice that in some cases it may be
possible to determine some features from a data, but not an arbitrary feature, e.g. flow level data can be used to measure average
packet sizes, but not the variance of packet sizes. Server logs can be used to collect some data as well, but typically only for a
particular application: though such data is limited for classification purposes, such data is helpful in training, because of the high
reliability with which we know the application. Also, in some cases, in particular with sampled packet data, the feature measurements
will be biased, the details of such biases can be quite complex.

where the prior probabilities x g of each class n are estimated usingx g 7 O g �5O ( O g being the number of training data points in classn ), and the means v g and the covariance
w

are estimated using stan-
dard estimators. For any data point + we then choose the class with
the largest p g ��+F� . LDA is so named because the decision bound-
aries thus formed will be linear. This method may be generalized
in a number of ways, for instance by assuming that the covariance
of each class is different – an approach that generates Quadratic
Discriminant Analysis [19, p.88] (QDA), so called because the de-
cision boundaries are now quadratic curves. For QDA the discrimi-
nant functions are almost identical, except that

w
is replaced by

w &
the covariance of the data in class 2 . Alternatively, one may per-
form LDA on a set of quadratic features – that is, rather than only
using features ��G -�� � , one uses the features ��G -/�d- G C -/� C - G � � .
This generates results similar to QDA [19, p.88].

Typically, one estimates x & as above, but the data used here is
from a variety of networks, including the public Internet, while the
QoS questions of interest are typically important for enterprise net-
works. On such, one would expect somewhat different proportions
of each application. Hence we shall use uninformative (uniform)
priors here. Given more data from different types of networks, we
should be able to improve these priors, and thus the results.

There are countless generalizations, and alternatives to the meth-
ods presented here, from the literature on classification, pattern
recognition, and machine learning. However, the above approaches
are representative of a wide variety of possibilities.

5. RESULTS
We first describe the different traffic data sets used in our evalu-

ations and then present our results.

5.1 Data Description
4 sets of data from different sources were used for this study:� Waikato trace: The Waikato Applied Network Dynamics (WAND)
group at the University of Waikato( http://wand.cs.waikato.
ac.nz/wand), are responsible for developing very precise high-
speed packet monitoring hardware. The WAND group have used
this hardware to collect an extensive archive of packet header
traces from various parts of the Internet in New Zealand, which
they archive with NLANR http://pma.nlanr.net/PMA/.
For this study we used a seven day long packet header traces

drawn from the Auckland-IV data set [25], collected from the
University of Auckland uplink from the 23rd to the 29th of March
2001. The trace itself is much longer (over six weeks), but also
very large (65 GB containing over 3 billion IP headers), and so
we used only a segment here.� The second data source was application level session logs from
a commercial streaming service [34]. A streaming session is ini-
tiated when a new request for a streaming object is received at
a streaming node. The session terminates either when the client
sends a termination request, or due to some error situation. At
termination, a single entry is created in the log summarizing a
range of information for that session. The fields in each log entry
include: requesting IP address, particulars of requested resource,
whether the file is a Real or Windows Media object, transport
protocol used for streaming (TCP or UDP), total data transmitted,
total packets, session end-time, total session time, status/error
codes, etc. Over 185,000 sessions for RealMedia streaming ob-
jects, over a seven days period from Dec 13-19, 2001 were ana-
lyzed.� Gigascope trace 1: The third data set was collect at a choke point
in an access network on a T3 line from the 7th of May to the 16th
of July, 2003, using a Gigascope probe [11]. The Gigascope was
configured to collect TCP connection records. Each such TCP
connection record contains the information found in a typical
flow records such as IP addresses and port numbers. However,
in addition a TCP connection record combines the flow records
in both directions and maintains additional statistics such as peak
throughput and latency for each direction of the TCP connec-
tion. Another difference to typical flow records (such as Netflow)
is that the Gigascope maintains a state machine for each TCP
connection it monitors and, therefore, only one TCP connection
record is generated per TCP connection. Cisco Netflow artifi-
cially truncates some ‘flows’ by flushing them from the cache
whenever a timeout is exceeded, memory is full, and at arbitrary
(typically 30 minute) intervals. A consequence of this difference
is that the maximum TCP connection record duration is longer
than that for the artificially truncated flows collected by Netflow.
In addition, Gigascope can use keyword based filtering to select
applications more accurately than port based algorithms, and we
use this ability to explicitly separate Kazaa and Gnutella traf-
fic, from the other applications (which are then classified using
port numbers). There was only a small amount of Gnutella traf-
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fic present, so we do not consider this here. Table 2 presents
connection-level statistics per application for this trace. Note that
the numbers corresponding to domain (i.e., DNS) only consider
DNS communications over TCP.� Gigascope trace 2: The next data set is also collected using Gi-
gascope (see above). However, in this case, the Gigascope was
placed on the span (monitoring) port of the major edge router of
AT&T Research’s local network. Thus we see all of the traffic to
and from the public Internet over a T3 connection, and also from
our local network to other company sites via another T3 con-
nection, and also a significant amount of internal LAN to LAN
traffic.
The reasons for collecting this set of data are twofold: primarily
we wanted to gain some additional insight into the issues relating
to traffic on an enterprise network more like those which to which
we might wish to apply the techniques described here. Secondly,
in the previous sets of data we do not have packet header traces
for a large volume of streaming traffic. Thus we cannot compute
arbitrary statistics of the data, for instance, the statistics of the
inter-arrival times. Hence, with this traffic stream, we do not per-
form TCP reconstruction, but rather maintain complete packet
header traces, so that we can measure the inter-arrival times be-
tween packets in a flow (as well as other statistics).
The network in question consists of several hundred users, with a
similar number of PCs. It was observed from the 17th of October
until the 3rd of November 2003. The most noticeable differences
in this traffic, as compared to the above sources are (1) a lack
of much traffic resembling P2P applications (at least at the port
level), and (2) FTP transactions were typically within either the
local network, or to nearby locations. Thus their throughput was
very high due to the low Round-Trip Times (RTTs), and hence
they differed significantly in this respect from the FTP connec-
tions in the previous data set. Such differences may be more typ-
ical in enterprise settings, where a large amount of data transfers
may be local, but one might expect at least some of the traffic
to be non-local. The HTTP traffic on this network was mostly
external, and so we shall use this for comparison in this one data
set to see the impact the RTT has on our measurements.� Gigascope trace 3: Our last data set is similar to the previous
Gigascope trace, in its monitor location and setup. However, the
data was measured over 13 days from the 13th until the 26th of
April 2004. It should be noted that even this packet trace alone
was 60 GB of data, representing about 150 million flows. We
note though that such large data sets are only required for the ex-
ploratory analysis of the data, such as we perform here. In actual
practice, as noted above, on-line techniques can be used collect
statistics both for training, and other data, and thereby reducing
the volume of data requiring storage by orders of magnitude.

5.2 Simple Classification results
As previously stated, the first step in our classification process is

to identify the important features necessary to classify the traffic.
To demonstrate the potential of our approach we evaluated the fol-
lowing easily obtainable features in this regard: the average packet
size, flow duration, bytes per flow, packets per flow, and Root Mean
Square (RMS) packet size. Of these, the pair of most value were
the average packet size and flow duration, and we shall use those

characteristics to classify the reference applications introduced in
Section 4. We then identify the main limitations of these features
and introduce a new additional feature to provide more resolution.

We have tested a number of approaches including 2 -NN, LDA,
and QDA, on a number of different features (listed above), but the
approaches found to be most illustrative of the possibilities here
were 2 -NN, and LDA with quadratic variables, applied to the flow
duration and average packets size. LDA with quadratic variables,
though similar to QDA, seemed to produce slightly better results
given the small amounts of data available to estimate within class
covariances. Figures 1 (a) and (b) show scatter plots of data from
seven separate one day long WAND traces. The plots show aver-
age packet size versus average flow duration for four applications:
Telnet, DNS, FTP-data, and Streaming video, the first three from
WAND, and the last from the streaming application logs, because
there is very little streaming traffic within the WAND data. In Fig-
ure 1 (a) we also show LDA boundaries (solid lines) when the traffic
is broken into four classes, while in Figure 1 (b) � -NN boundaries
are shown.

Figure 2 presents similar plots from the first data set collected by
the Gigascope (each data-point represents averages over one day’s
data). In this case the connection records used in the plots show the
average TCP connection duration, rather than the flow lengths. As
noted above, the durations in this data can be significantly larger
than those seen in Figure 1. In these plots, we use six applications
for training the classification (dns, ftp-data, https, kazaa, realme-
dia, and telnet). We can do so in this data set (as compared with the
previous data) because we can use Gigascope’s advanced features
to make an accurate classification of applications such as Kazaa.
WWW traffic is not used in training the classification, but is in-
cluded in the plot because the results are interesting. WWW traffic
falls between the bulk-data and transactional classes — exactly as
one might suspect. It also has some occasional departures into the
streaming class — also a possibility for web traffic. Finally, Fig-
ure 3 shows similar plots to Figure 2, but for a seven-class breakup.

While the above plots suggest that the boundaries obtained are
reasonable, they do not provide a quantitative measure of the qual-
ity of the classification. We next obtain such a measure using cross-
validation [19]. To perform cross-validation we randomly divide
the data into 10 blocks, and for each block use the other 9 blocks
as training data, and then validate the classification on the block in
question. We validate by comparing the true class of a measurement
with that determined by the various algorithms above and report the
results in Table 3. The table shows (in the 4 class column) that the
errors are only 5.1% for the best method, 3-NN.

Interestingly in this data, analysis of the within-class variance of
the measurements show that the variation decreases significantly as
the number of connections increases. This is what one would expect
if the measurements are statistically uncorrelated, and suggests that
one could improve the accuracy of the results by simply increasing
the sample sizes. Research is needed into how large a sample one
requires for training and classification.

Although, we do not propose specific application classification
as a general technique (it is not needed for QoS), it may be valuable
in places, and so we also perform cross-validation for the problem
of classifying applications. For the data in question, this leads to
seven classes (domain, ftp-data, https, kazaa, realmedia, telnet, or
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Application mean connections per day duration (seconds) packet size (bytes)
domain 3676 12.3 � 25.6 224.0 � 415.3
ftp-data 6105 89.8 � 98.2 874.3 � 219.0
https 155249 10.1 � 3.1 404.0 � 55.6
kazaa 1207491 65.1 � 18.4 805.3 � 42.8
realmedia 1212 175.1 � 123.5 679.3 � 131.6
telnet 8670 948.8 � 716.4 148.7 � 162.8
www 3905871 22.7 � 38.6 651.1 � 51.0

Table 2: Gigascope Trace � connection-level statistics: The duration and packet size is represented as mean value � 1.96 times the
corresponding standard deviation
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Figure 1: Four class breakup for the Waikato data.
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(b) Zoom into upper left region.

Figure 2: Four class breakup for the first Gigascope trace.

www). One can also see from Table 3 that the errors are still not
large, ���Y� %, and once again 3-NN is the best method of those
tried. Figure 3 shows the boundaries obtained corresponding to 7-
class breakup using LDA.

While the above results show that we get fairly good classifi-
cation, it may well be possible to do much better. For example,
streaming video and bulk data transport have similar ranges of char-
acteristics using the above features, and so are harder to discrimi-

nate. Table 3 shows results of a 3-class classification combining
streaming and bulk-data transport classes, which has lower errors
than the 4-class case. This may be because many streaming ap-
plications actually act much like bulk-data by filling their playout
buffer as fast as possible. Therefore, simple statistics such as those
used in our preliminary work are not ideal for discriminating the
two. Perhaps, for many cases, streaming video does not warrant its
own class, and could happily co-exist with bulk data. However, in
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Figure 3: Seven class breakup for the first Gigascope trace.

error rate
algorithm 4 class 3 class 7 class
LDA 5.6 % 3.4 % 10.9 %
1-NN 7.9 % 3.4 % 12.6 %
3-NN 5.1 % 2.5 % 9.4 %
5-NN 5.6 % 2.5 % 9.9 %
7-NN 5.6 % 2.8 % 9.7 %
15-NN 6.2 % 3.4 % 11.4 %

Table 3: The cross-validation results.

practice, it is often desirable to prioritize one over the other, and so
we need to do further investigation to see if other statistics make
it possible to discriminate these classes more clearly. We shall ex-
plore this further in Section 5.3.

A pertinent question is: Can we discriminate classes without any
flow level statistics, using only packet level statistics? The packet
size alone is not sufficient to discriminate Telnet type applications
from DNS type applications. Figure 4 shows the results of classi-
fication (using the WAND data) based on the packet size and RMS
packet size. For a particular application there is a strong linear re-
lationship between the two variables. However, the relationship
appears to differ for the different applications, which leads to the
ability to distinguish between DNS, and Telnet traffic in a way that
would not be possible using one variable alone. Figure 4 shows
an LDA classification of FTP-data, DNS, and Telnet traffic. Note
however, that it would be impossible to distinguish FTP-data and
WWW traffic on the basis of these features, so we can see that while
packet level statistics can be useful, it is more practical to include
features from higher level aggregations of the traffic as well.

5.3 Streaming vs data
As noted previously, the features so far considered were least

effective in discriminating streaming traffic from bulk-data traffic.
However, one might suspect that streaming traffic, which involves
continuous transfer of data over some period, would have a more
regular traffic pattern than data transfers. When transferring data,
the typical goal is to move the data as quickly as possible, and the
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Figure 4: Classification of FTP-data, DNS, and Telnet traffic.
WWW traffic is included here only to show that it would be
hard to distinguish this traffic from FTP-data based purely on
the packet level features.

limiting factor is typically the TCP congestion control [21, 1]. The
properties of this congestion control have been frequently studied;
for a far from complete set of studies see [28, 24, 16, 14, 3]. It is
well known (see, for instance, [15]) that TCP’s congestion control,
combined with ACK compression can induce additional burstiness
in traffic. Hence, we might expect that in comparison streaming
traffic would appear less bursty at the packet arrival level than bulk-
data traffic (at the byte level Variable Bit Rate (VBR) video traffic
may also show a large degree of burstiness because of the nature of
the information content, and VBR video codecs, but this burstiness
appears in the packet sizes, not the inter-arrival times).

Of course, one must note that much streaming traffic is carried
over TCP to avoid firewalls that block UDP traffic (for instance on
our LAN in particular), and so there may be some interactions be-
tween the video codec (which may use adaptive rates to try to get
the best performance) and TCP, which may limit the transmission
rate during congestion. Hence, the relative burstiness may not be a
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cut-and-dried metric for classification, and so we test this conjec-
ture using the second data set collected using Gigascope trace � .

The data set is a packet header trace over multiple days. We form
flows from the packets (using the standard five-tuple formed from
protocol and source and destination IP addresses and ports), and
within each flow compute both the mean and standard deviation
of the inter-arrival times. We then take the ratio of these to give
us a measure of the relative variation in inter-arrival times for the
flow. The feature we consider here is the average of this ratio for
a particular traffic aggregate. More precisely, take a set of flows� 7 W ) � [ , where flow ) � consists of � � packets arriving at times � � ,
for 1 7 � - �Y�Y� - � � . We compute the mean v � and standard deviation� � of a flow’s inter-arrival times using the standard estimators

v � 7 �������(>\�0� 6� � >�� - (1)

� C� 7 �� � >�� �	�
� 6�,5��6V� �o� � ,=4�6 >D� � , ��>\v ��� C�� (2)

Note in the above that we can only make computations of the vari-
ance of the inter-arrival times in a flow where that flow has at least
three packets. The ratio �f� is given by �� 7 � �#�v � , and the feature
of interest is the average ratio, given by

  � � � 7 �O y� � ��6 � � - (3)

where there are O flows during a given day. We shall refer to
  � � �as the inter-arrival variability metric.

In fact we needed to modify the above scheme slightly. We
found, in examining traces of streaming traffic that while the aver-
age behavior was fairly regular (most of the time), in many cases the
streaming traffic ended with a long (20-40 second) gap, followed by
a few (2-7) packets. Figure 5 shows two examples of packet traces
from streaming traffic (the data flow from server to client is shown
in the upper graphs, and the ACK flows from client to server are
shown in the lower graphs). The figures show dot-strip plots, first
used in [33], and more recently used to good effect to show packet
traces in [35]. The plot shows the time (in seconds) of a packet ar-
rival along the x-axis, and to make the timings of individual packets
more obvious, displays the milliseconds along the y-axis. One can
observe the regularity of the streaming traffic in the two cases dis-
played as regular patterns in the plots. These are not completely
regular, but vary at the individual packet level, and also in regions.
However, the point to note here is the large gap at the end of the
trace before the final few packets. This is a protocol related effect,
and so not of such interest here, and it can be easily ignored by re-
moving the final 10 packets from each flow. This has the impact of
preventing us from considering flows without 12 packets, but this is
not really an issue for the problem of distinguishing streaming from
bulk-data, because such short flows would generate highly variable
statistics in any case.

Figure 6 shows the results for Gigascope trace 3. The
a

-axis
shows the inter-arrival variability metric described above, and the¡ -axis shows the average packet size. In Figure 6 (a) we make no
attempt to distinguish flows of ACKs from data flows, whereas in
Figure 6 (b) we separate these, and only compute statistics for the
data flows (ACK packets will typically be very short and so reduce
the average packet size, most notably for ftp-data). We plot three

applications on this set of graphs: RealMedia, HTTP, and FTP-
data. The reason for including WWW traffic is that the FTP traffic
is almost all local traffic (either on our network, or to nearby net-
works) and so has very low RTTs, and concomitantly high through-
put rates, along with very low average packet inter-arrival times (of
the order of a few milliseconds). While this may be realistic in
some scenarios, it may not be representative of the statistics seen in
all networks. So we use WWW to see the impact of larger RTTs
— the average inter-arrival times for HTTP packets were almost
two orders of magnitude larger. Note also that we exclude days
where there were a very small number (less than 10) of streaming
flows because we cannot form accurate statistics with so few sam-
ples. Such days were all weekends, and weekdays had many more
streaming flows.

The results demonstrate several features. Firstly, the inter-arrival
variability metric appears to be a good method for distinguishing
data transfer applications from streaming. In both plots we can
see clear separation between the data applications (HTTP and FTP)
and the streaming application (RealMedia). Furthermore, despite
the very large difference in average inter-arrival time (and RTT) for
the HTTP and FTP traffic, their inter-arrival variability metrics are
very similar. Finally, notice that the values of the variability metric
are not particularly sensitive to whether we include ACK streams
or not. This is important because it reduces the accounting we need
to do to determine whether a given uni-direction flow corresponds
to an ACK stream or a data stream. It further allows us to make
measurements in places where the traffic routing is asymmetric, and
so we only see traffic from one direction of each connection.

Notice also that the packet size is another distinguishing factor.
However, as noted in the somewhat larger data sets, this feature
alone does not provide adequate separation between the bulk-data
and streaming traffic classes. Hence the need for an additional fea-
ture, although packet size is clearly a better discriminator when we
can distinguish ACK flows and discard these. Hence the results of
the previous sections should be seen as conservative bounds.

Figure 6 also shows LDA boundaries between the two classes.
It should be clear that, at least for the data available, it is easy to
form good boundaries between data sets, for both cases (including
and excluding ACK streams), though we do not have enough data
points in this data set to perform a good cross-validation.

Finally note, there are practical problems in collecting large, rep-
resentative packet traces for use in this analysis. Full packet header
traces take up considerable volumes of data, but are needed when
exploring features that might be of use (we considered several other
features in choosing the variability metric above). However, as
noted previously, the statistics of interest, once determined, can be
collected on-line, without the need to store the full packet header
trace. At the least, a daily trace could be collected, and statistics
for flows computed, and these stored. Hence, the limitations that
apply while we are the research phase (testing and choice of fea-
tures from a large possible set) do not apply when this method is
applied in practice – one can collect very large, representative data
sets, with minimal data storage requirements.

5.4 Temporal differences
We have shown a variety of classification results above, in order

to illustrate various aspects of our approach. In this section, we
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Figure 5: Two example dot-strip plots of the packet arrival times within two RealMedia flows. Note in particular the regular patterns
over the majority of the interval, and the long gap before the final few packet transmissions.
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(a) Including ACK streams.
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(b) Excluding ACK streams.

Figure 6: The inter-arrival variability metric for three applications: HTTP, FTP-data, and RealMedia.

present a test for which we have reserved the last set of data. The
last set of data (Gigascope trace 3) has not been used in any of the
training. In this test, we use data trained on Gigascope trace 2 to
classify flow aggregates from Gigascope trace 3. While both traces
were gathered from the same network, they were gathered at dif-
ferent times: trace 3 was gathered in late October, early November
2003, and trace 4 was gathered in April 2004, approximately six
months later. As we will see below, the statistical behavior of the
applications varies between the two time periods. Hence, this is a
strong test of how well the method could perform in practice, where
the training data may have been derived from an earlier period than
the network where QoS is being implemented.

Again we censor the last 10 packets of each flow to avoid the
problems documented above. As an obvious result, we exclude the

majority of transactional flows, biasing results if we use those that
remain. Hence, we will not try to classify transaction applications
in this example. Note that transaction flows were easily classified
earlier, because of the small packet size, and short duration. Thus
we use the three classes, bulk data, interactive, and streaming in
this test, as exemplified by ftp-data, telnet, and realmedia traffic,
respectively. We do not separate ACKs from data in any of these
tests.

Figure 7 shows scatter plots of the inter-arrival variability metric
and average packet size for the two data sets. We can see that the
three groups of applications are fairly distinct, but that the groups
do not remain in exactly the same location. The class boundaries
on both Figures 7 (a) and (b) were derived from the data in Fig-
ure 7 (a). We can see that these boundaries perfectly classify the

12



data in Figure 7 (a) (not unexpected for boundaries trained on the
same data). However, the interesting thing is that these boundaries
also work perfectly on the data from Gigascope trace 3, shown in
Figures 7 (b). Thus, the classification rules derived six months pre-
viously still work.

Figure 7 shows classification boundaries derived by LDA for
only two features: the average packet size, and the variability met-
ric. We can easily expand these results, to more than two features,
though it is then hard to illustrate the results, except through per-
centage errors. We test the various classification methods described
above using three features: in addition to the average packet size,
and the variability metric, we use the average flow duration. Once
again training on the earlier data set, and testing on the later data,
we get an 0.0% error rate for simple LDA, and a 9.5%, 2.4%, 0.0%,
0.0% and 0.0% error rate for NN, using 1, 3, 5, 7 or 15 neighbors,
respectively. A zero error rate given the differences in timing of the
training and test data sets seems to be quite a strong validation of
this approach.

5.5 Classification of a new application
One of our aims is to build a technique that can classify a new

application, for which we do not have any specific training data,
except from similar applications in the same class. In this sec-
tion we extend the previous test of training and testing on differ-
ent data sets to the classification of an unknown application. We
test this here, in one particular case: classification of the applica-
tion rsync, which is a protocol/software used to copy data, and
therefore in theory in the bulk-transport class. However, rsync is
clever enough to check files for changes, and only copy changed
files. Hence, rsync will have aspects of bulk-data transfer, but
will also, on many occasions not transfer large amounts of data,
but only small packets checking the differences between files. This
introduces some new characteristics into the application, that dif-
ferentiate it from simple ftp-data transactions.

We perform the test by training the classifier rules on Gigascope
dataset 2, using the applications ftp-data, telnet, and realmedia, and
the features: average flow duration, average packet size, and the
inter-arrival variability metric. We then perform the classification
on each days rsync data from Gigascope dataset 3. The correct
class is assumed to be bulk-data, and we found that the LDA classi-
fication was in error 57% of the time, and the errors for NN with 1,
3, 5, 7, and 15 neighbors were 57%, 14%, 14%, 21.5% and 28.6%
respectively. The large error for LDA suggests that care must be
taken in choice of algorithm used for classification, but we have
consistently found good performance for NN-3 and N-5 through-
out this paper, and likewise, here it results in a reasonable error.
Certainly, we might wish to reduce this level of error, but given
the demanding nature of this particular task (given both temporal
difference in the training and test data, and classification of a new
application), this is a very hopeful result.

6. CONCLUSION

QoS could provide substantial cost savings for network opera-
tors, while maintaining performance for critical applications, but it
has been held back by operational difficulties in provisioning. The
lack of scalable techniques for mapping traffic into classes acts to

inhibit adoption of QoS by even the most enthusiastic network op-
erators. Even the early adopters cannot reap the full benefits with-
out solving this problem. In this paper we presented a framework
and some results for classifying traffic into CoS based on measured
traffic characteristics.

The method is based on statistics of the traffic which result from
the way the application is used, and so can detect the typical use of
an application, which may differ from the preconceived notions of
how that application is used – for instance if HTTP were used for a
large amount of the streaming traffic in an organization, rather than
more traditional web browsing.

Evaluations using large traffic traces from different network lo-
cations indicate that the approach has relatively low error rates. The
results are encouraging, but much more work remains: for instance,
on alternative features, classes, and classification techniques. For
example, it is plausible that one could combine the techniques used
here with more ordinary port based classification to enhance the
results. Further, data-sets from different enterprise settings are re-
quired to extend this work to the context of interest.

With this paper we hopefully convince the reader that this prob-
lem important and interesting, but not insoluble. We therefore be-
lieve that these results will stimulate research on a new set of prob-
lems within the domain of traffic analysis.
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