

Bigfoot, Sasguatch, and the **Yeti: The Missing Links** What we don't know about the AS graph MATTHEW ROUGHAN, JONATHON TUKE, OLAF MAENNEL <matthew.roughan@adelaide.edu.au> <simon.tuke@adelaide.edu.au> <olaf@maennel.net>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

Apparently we have found the Yeti

http:

//www.canberratimes.com.au/news/local/news/
general/yeti-truth-a-hairs-breadth-away/
1227921.aspx
What about the other missing links?

Graph Theory and the Internet Strall

- The Internet is made up of a bunch of connected devices
 - devices = nodes or vertices
 - connections = links or edges
- Represent as a graph $G = (\mathcal{N}, \mathcal{E})$
 - set of nodes \mathcal{N}
 - set of edges \mathcal{F}
- e.g. AS-graph
 - nodes are Autonomous Systems (ASs)
 - edges mean two ASs are connected by a "link"
 a link can actually represent multiple connections

 $\mathcal{N} = \{1, 2, 3, 4, 5, 6\}$ $\mathcal{E} = \{ (1,2),$ (1,3),(2,6),3 (3, 4),2 (3,5),(3, 6),(4, 6),(5,6)

Measuring Graphs

We often want to measure a graph

- structure of graph can tell us something
- graph might be used later (e.g. to predict paths)
- Measurements in the Internet
 - tomography
 - traceroute
 - route monitors
- All measurements have problems
 - we'll focus on route monitors here
 - provide the most up to date information
 - can see dynamics

Route monitors

- Install our own "node"
 - listens for routing messages
 - can infer some of the routes in the network
 - each route tells us about some links
- Problem
 - missing links
 - a single viewpoint only sees a subset of links
 - multiple viewpoints increase coverage
 - how many are enough?
 - how do we know what we are missing?

Monitor 1

Monitor 2

Both monitors

Missing links

Capture-recapture

How many fish are there in the lake?

Standard biological approach

capture a group of fish, tag them, and release

some time later

capture another group of fish

note how many are tagged

Petersen's formula

$$\hat{E} = \frac{E_1 E_2}{E_{12}}$$

where

- E_1 = the number of "fish" seen in capture 1
- E_2 = the number of "fish" seen in capture 2
- E_{12} = the number of tagged "fish" seen in capture 2
 - $\hat{E} =$ the estimated number of "fish" in the pond

- Capture-recapture Assumptions
 - No change in population over time
 - Tags don't fall off
 - Homogeneity: all fish are the same
 - Independence between experiments
- In our case we want to estimate links
 - number of links = number of fish
 - don't perform successive experiments
 - each monitor is a separate measurement
 don't need tags because links have unique ID
 we have K ~ 40 monitors

But it doesn't work!

- Produces inaccurate estimates
 - below a lower bound
- Assumptions of Petersen aren't valid:
 - links in AS-graph aren't homogeneous
 - P2P and C-P links have different visibility
- propose a stratified model
 - C different classes of links
 - **probability of class** j is w_j
 - observation probability of class j is p_j

New model

- New model is called a Binomial Mixture Model
- We actually observe a truncated version of this model.
- We have a new EM algorithm for estimating the parameters w_j and p_j for a given number of classes.

Simulations

Parameters, C = 7

	Parameter		
Class	p_j	Wj	
1	0.010906	0.248714	
2	0.140579	0.052389	
3	0.345960	0.036864	
4	0.557597	0.049963	
5	0.758552	0.060776	
6	0.917098	0.068741	
7	0.998352	0.482553	

Simulated performance:

Akaike's Information Criteria = $n[\ln(2\pi RSS/n) + 1] + 2C$,

Workload

Paper	label	date	Ê
Zhang et al. [1]	Updates(1M)	2004-10-24	55,388
He et al. [2]	All	2005-05-12	59,500
Mühlbauer et al. [3]	N/A	2005-11-13	58,903

References

- B. Zhang, R. Liu, D. Massey, and L. Zhang, "Collecting the Internet AS-level topology," ACM SIGCOMM Computer Communication Review (CCR) special issue on Internet Vital Statistics, January 2005.
- [2] Y. He, G. Siganos, M. Faloutsos, and S. V. Krishnamurthy, "A systematic framework for unearthing the missing links: Measurements and impact," in USENIX/SIGCOMM NSDI, (Cambridge, MA, USA), April 2007.
- [3] W. Mühlbauer, A. Feldmann, M. R. O. Maennel, and S. Uhlig, "Building an AS-topology model that captures route diversity," in *ACM SIGCOMM*, (Pisa, Italy), 2006.

Results: C = 7

Monthly data since January 2004.

Conclusion

Method for estimating how much we don't know

- Used it to study the AS graph
 - Potential improvements
 account for monitor dependencies
 account for heterogeneity amongst monitors
- There still might be something missing what about a class of links that we never observe?
- Much wider applicability
 - Social networks?
 - Network Dynamics

Using same assumptions as Petersen's the number of observations k of a link will follow a Binomial distribution

$$\mathsf{prob}\{k\} = \binom{K}{k} p^k (1-p)^{(K-k)}$$

However, we only observe a link if k > 0, so we observe the conditional distribution

$$\mathsf{prob}\{k|k>0\} = \binom{K}{k} \frac{p^k (1-p)^{(K-k)}}{1-(1-p)^K}$$

which is a truncated Binomial distribution.

Estimator

MLE (Maximum Likelihood Estimator) \hat{p} has to satisfy

$$E_{\rm obs}K\hat{p} = [1 - (1 - \hat{p})^K] \sum_{i=1}^{E_{\rm obs}} k_i$$

where

- K = the number of monitors
- $E_{\rm obs}$ = the number of observed links (via all monitors)
 - k_i = the number of observations of the *i*th link
 - \hat{p} = the MLE estimator of the observation probability p

Estimator

MLE (Maximum Likelihood Estimator) \hat{p} has to satisfy

$$E_{\text{obs}}Kp = [1 - (1 - p)^K] \sum_{i=1}^{E_{\text{obs}}} k_i$$

Solution by repeated substitution

$$\hat{p}_{0} = \frac{\sum_{i=1}^{E_{obs}} k_{i}}{E_{obs} K}$$
$$\hat{p}_{i+1} = \frac{\sum_{i=1}^{E_{obs}} k_{i}}{E_{obs} K} [1 - (1 - \hat{p}_{i})^{K}]$$

Can prove that this converges to a fixed point of the above equation.

Variance of \hat{p}

Estimator \hat{E}

Once we know p, then MLE for E is

$$\hat{E} = \frac{E_{\text{obs}}}{1 - (1 - \hat{p})^K}$$

Binomial mixture model

probability of class j is w_j

Binomial distribution $B(K, p_j)$ for each class

Distribution function

$$\operatorname{prob}\{k\} = \sum_{j=1}^{C} w_j \binom{K}{k} p_j^k (1-p_j)^{(K-k)}$$

Of course, we observe a truncated version of this.

EM Algorithm


```
While (not converged 1) do
  E step:
    estimate c_i^{(i)}
      c_i^{(i)} \leftarrow \hat{w}_i P\{k_i | K, \hat{p}_i\}
  M step:
    for j=1 to C
       While (not converged 2) do
        \hat{p}_j \leftarrow \frac{\sum_i k_i c_j^{(i)}}{K \sum_i c_j^{(i)}} \left[1 - (1 - \hat{p}_j)^K\right]
       end while 2
      \hat{w_j} \leftarrow \sum_i c_i^{(i)} / (E(1 - (1 - \hat{p_j})^K))
    end for
end while 1
```

Systematic choice of C

The Missing Links – p.29/29