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The YetiApparently we have found the Yeti
http:
//www.canberratimes.com.au/news/local/news/
general/yeti-truth-a-hairs-breadth-away/
1227921.aspxWhat about the other missing links?
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Graph Theory and the Internet

The Internet is made up of a bunh of onneteddeviesdevies = nodes or vertiesonnetions = links or edgesRepresent as a graph G = (N ,E)set of nodes Nset of edges Ee.g. AS-graphnodes are Autonomous Systems (ASs)edges mean two ASs are onneted by a �link�a link an atually represent multipleonnetions
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Example

N = {1,2,3,4,5,6}
E = { (1,2),

(1,3),

(2,6),

(3,4),

(3,5),

(3,6),

(4,6),

(5,6)}

1

2

3 4

5
6

The Missing Links – p.4/29



Measuring Graphs

We often want to measure a graphstruture of graph an tell us somethinggraph might be used later (e.g. to predit paths)Measurements in the Internettomographytraerouteroute monitorsAll measurements have problemswe'll fous on route monitors hereprovide the most up to date informationan see dynamis
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Route monitorsInstall our own �node�listens for routing messagesan infer some of the routes in the networkeah route tells us about some linksProblemmissing linksa single viewpoint only sees a subset of linksmultiple viewpoints inrease overagehow many are enough?how do we know what we are missing?

The Missing Links – p.6/29



Example
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Example
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Example
Both monitors
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Example
Missing links
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Capture-reapture

How many �sh are there in the lake?
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Standard biologial approah

apture a group of �sh, tag them, and releasesome time laterapture another group of �shnote how many are taggedPetersen's formula

Ê =
E1E2

E12where

E1 = the number of "�sh" seen in apture 1

E2 = the number of "�sh" seen in apture 2

E12 = the number of tagged "�sh" seen in apture 2

Ê = the estimated number of "�sh" in the pond
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Links = �shCapture-reapture AssumptionsNo hange in population over timeTags don't fall offHomogeneity: all �sh are the sameIndependene between experimentsIn our ase we want to estimate linksnumber of links = number of �shdon't perform suessive experimentseah monitor is a separate measurementdon't need tags beause links have unique IDwe have K ≃ 40monitors
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But it doesn't work!Produes inaurate estimatesbelow a lower boundAssumptions of Petersen aren't valid:links in AS-graph aren't homogeneousP2P and C-P links have different visibilitypropose a strati�ed model
C different lasses of linksprobability of lass j is w jobservation probability of lass j is p j
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New modelNew model is alled a Binomial Mixture ModelWe atually observe a trunated version of thismodel.We have a new EM algorithm for estimating theparameters w j and p j for a given number of lasses.
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SimulationsParameters, C = 7 ParameterClass p j w j1 0.010906 0.2487142 0.140579 0.0523893 0.345960 0.0368644 0.557597 0.0499635 0.758552 0.0607766 0.917098 0.0687417 0.998352 0.482553
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Performane of EM Algorithm

Simulated performane:
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Choie of CNeed to hoose C for real data
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Choie of C
C = 2
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Choie of C
C = 3
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Choie of C
C = 4
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Choie of C
C = 5
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Choie of C
C = 6
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Choie of C
C = 7

0 10 20 30
   

   

   

   

   

   

10
0

10
1

10
2

10
3

10
4

10
5

number of observations

nu
m

be
r 

of
 li

nk
s

The Missing Links – p.15/29



Choie of C
C = 8
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Systemati hoie of C

Akaike's Information Criteria = n[ln(2πRSS/n)+1]+2C,
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Workload
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Previous studies
Paper label date ÊZhang et al. [1℄ Updates(1M) 2004-10-24 55,388He et al. [2℄ All 2005-05-12 59,500Mühlbauer et al. [3℄ N/A 2005-11-13 58,903
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Results: C = 7Monthly data sine January 2004.
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ConlusionMethod for estimating how muh we don't knowUsed it to study the AS graphPotential improvementsaount for monitor dependeniesaount for heterogeneity amongst monitorsThere still might be something missing � what abouta lass of links that we never observe?Muh wider appliabilitySoial networks?Network Dynamis
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Trunated binomialUsing same assumptions as Petersen's the number ofobservations k of a link will follow a Binomial distribution

prob{k}=

(

K
k

)

pk(1− p)(K−k)

However, we only observe a link if k > 0, so we observethe onditional distribution

prob{k|k > 0}=

(

K
k

)

pk(1− p)(K−k)

1− (1− p)K

whih is a trunated Binomial distribution.
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EstimatorMLE (Maximum Likelihood Estimator) p̂ has to satisfy
EobsK p̂ = [1− (1− p̂)K]

Eobs

∑
i=1

ki

where

K = the number of monitors
Eobs = the number of observed links (via all monitors)

ki = the number of observations of the ith link

p̂ = the MLE estimator of the observation probability p
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EstimatorMLE (Maximum Likelihood Estimator) p̂ has to satisfy
EobsK p = [1− (1− p)K]

Eobs

∑
i=1

ki

Solution by repeated substitution
p̂0 =

∑Eobs
i=1 ki

EobsK

p̂i+1 =
∑Eobs

i=1 ki

EobsK
[1− (1− p̂i)

K]

Can prove that this onverges to a �xed point of theabove equation.
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Simulated estimates p̂
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Variane of p̂
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Estimator ÊOne we know p, then MLE for E is
Ê =

Eobs

1− (1− p̂)K
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New modelBinomial mixture modelprobability of lass j is w jBinomial distribution B(K, p j) for eah lassDistribution funtion
prob{k}=
C

∑
j=1

w j

(

K
k

)

pk
j(1− p j)

(K−k)

Of ourse, we observe a trunated version of this.
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EM Algorithm

While (not converged 1) do

E step:

estimate c(i)
j

c(i)
j ← ŵ jP{ki|K, p̂ j}

M step:

for j=1 to C

While (not converged 2) do

p̂ j←
∑i kic

(i)
j

K ∑i c(i)
j

[1− (1− p̂ j)
K]

end while 2

ŵ j← ∑i c
(i)
j /(E(1− (1− p̂ j)

K))

end for

end while 1
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Systemati hoie of C

RMSE
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