Bigfoot, Sasquatch, and the Yeti: The Missing Links

What we don't know about the AS graph
 Obis MABCIMB
matthew.roughan@adelaide.edu.au
<simon.tuke@adelaide.edu. au> olaf@maennel.net

Discipline of Applied Mathematics School of Mathematical Sciences

University of Adelaide

Apparently we have found the Yeti

http:
//www.canberratimes.com.au/news/local/news/ general/yeti-truth-a-hairs-breadth-away/
1227921.aspx

What about the other missing links?

Graph Theory and the Internet

- The Internet is made up of a bunch of connected devices
- devices = nodes or vertices
- connections = links or edges
- Represent as a graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$
- set of nodes \mathcal{X}
- set of edges E
- e.g. AS-graph
- nodes are Autonomous Systems (ASs)
- edges mean two ASs are connected by a "link"
- a link can actually represent multiple connections

Example

$$
\begin{aligned}
\mathcal{N}= & \{1,2,3,4,5,6\} \\
\mathcal{E}= & \{(1,2), \\
& (1,3), \\
& (2,6), \\
& (3,4), \\
& (3,5), \\
& (3,6), \\
& (4,6), \\
& (5,6)\}
\end{aligned}
$$

Measuring Graphs

- We often want to measure a graph
- structure of graph can tell us something
- graph might be used later (e.g. to predict paths)
- Measurements in the Internet
- tomography
- traceroute
- route monitors
- All measurements have problems
- we'll focus on route monitors here
- provide the most up to date information
- can see dynamics

Route monitors

- Install our own "node"
- listens for routing messages
- can infer some of the routes in the network
- each route tells us about some links
- Problem
- missing links
- a single viewpoint only sees a subset of links
- multiple viewpoints increase coverage
- how many are enough?
- how do we know what we are missing?

Example

Monitor 1

Example

Monitor 2

Example

Both monitors

Example

Missing links

Capture-recapture

How many fish are there in the lake?

Standard biological approach

- capture a group of fish, tag them, and release
- some time later
- capture another group of fish
- note how many are tagged

Petersen's formula

$$
\hat{E}=\frac{E_{1} E_{2}}{E_{12}}
$$

where
$E_{1}=$ the number of "fish" seen in capture 1
$E_{2}=$ the number of "fish" seen in capture 2
$E_{12}=$ the number of tagged "fish" seen in capture 2
$\hat{E}=$ the estimated number of "fish" in the pond

Links = fish

- Capture-recapture Assumptions
- No change in population over time
- Tags don't fall off
- Homogeneity: all fish are the same
- Independence between experiments
- In our case we want to estimate links
- number of links = number of fish
- don't perform successive experiments
- each monitor is a separate measurement
- don't need tags because links have unique ID
- we have $K \simeq 40$ monitors

But it doesn't work!

- Produces inaccurate estimates
- below a lower bound
- Assumptions of Petersen aren't valid:

■ links in AS-graph aren't homogeneous

- P2P and C-P links have different visibility
- propose a stratified model
- C different classes of links
- probability of class j is w_{j}
- observation probability of class j is p_{j}

New model

- New model is called a Binomial Mixture Model
- We actually observe a truncated version of this model.
- We have a new EM algorithm for estimating the parameters w_{j} and p_{j} for a given number of classes.

Simulations

Parameters, $C=7$

Class	Parameter	
	p_{j}	w_{j}
1	0.010906	0.248714
2	0.140579	0.052389
3	0.345960	0.036864
4	0.557597	0.049963
5	0.758552	0.060776
6	0.917098	0.068741
7	0.998352	0.482553

Performance of EM Algorithm

Simulated performance:

Choice of C

Need to choose C for real data

Choice of C

$$
C=2
$$

Choice of C

$$
C=3
$$

Choice of C

$C=4$

Choice of C

$C=5$

Choice of C

$$
C=6
$$

Choice of C

$C=7$

Choice of C

$C=8$

Systematic choice of C

Akaike's Information Criteria $=n[\ln (2 \pi \mathrm{RSS} / n)+1]+2 C$,

Workload

Paper	label	date	\hat{E}
Zhang et al. [1]	Updates(1M)	$2004-10-24$	55,388
He et al. [2]	All	$2005-05-12$	59,500
Mühlbauer et al. [3]	N/A	$2005-11-13$	58,903

References

[1] B. Zhang, R. Liu, D. Massey, and L. Zhang, "Collecting the Internet AS-level topology," ACM SIGCOMM Computer Communication Review (CCR) special issue on Internet Vital Statistics, January 2005.
[2] Y. He, G. Siganos, M. Faloutsos, and S. V. Krishnamurthy, "A systematic framework for unearthing the missing links: Measurements and impact," in USENIX/SIGCOMM NSDI, (Cambridge, MA, USA), April 2007.
[3] W. Mühlbauer, A. Feldmann, M. R. O. Maennel, and S. Uhlig, "Building an AS-topology model that captures route diversity," in ACM SIGCOMM, (Pisa, Italy), 2006.

Results: $C=7$

Monthly data since January 2004.

- Method for estimating how much we don't know
- Used it to study the AS graph
- Potential improvements
- account for monitor dependencies
- account for heterogeneity amongst monitors
- There still might be something missing - what about a class of links that we never observe?
- Much wider applicability

■ Social networks?

- Network Dynamics

Truncated binomial

Using same assumptions as Petersen's the number of observations k of a link will follow a Binomial distribution

$$
\operatorname{prob}\{k\}=\binom{K}{k} p^{k}(1-p)^{(K-k)}
$$

However, we only observe a link if $k>0$, so we observe the conditional distribution

$$
\operatorname{prob}\{k \mid k>0\}=\binom{K}{k} \frac{p^{k}(1-p)^{(K-k)}}{1-(1-p)^{K}}
$$

which is a truncated Binomial distribution.

Estimator

MLE (Maximum Likelihood Estimator) \hat{p} has to satisfy

$$
E_{\mathrm{obs}} K \hat{p}=\left[1-(1-\hat{p})^{K}\right] \sum_{i=1}^{E_{\text {obs }}} k_{i}
$$

where
$K=$ the number of monitors
$E_{\text {obs }}=$ the number of observed links (via all monitors)
$k_{i}=$ the number of observations of the ith link
$\hat{p}=$ the MLE estimator of the observation probability p

Estimator

MLE (Maximum Likelihood Estimator) \hat{p} has to satisfy

$$
E_{\mathrm{obs}} K p=\left[1-(1-p)^{K}\right] \sum_{i=1}^{E_{\text {obs }}} k_{i}
$$

Solution by repeated substitution

$$
\begin{aligned}
\hat{p}_{0} & =\frac{\sum_{i=1}^{E_{\text {obs }}} k_{i}}{E_{\text {obb }} K} \\
\hat{p}_{i+1} & =\frac{\sum_{i=1}^{E_{\text {obs }}} k_{i}}{E_{\text {obs }} K}\left[1-\left(1-\hat{p}_{i}\right)^{K}\right]
\end{aligned}
$$

Can prove that this converges to a fixed point of the above equation.

Simulated estimates \hat{p}

Variance of \hat{p}

mean number of observations, E

Estimator \hat{E}

Once we know p, then MLE for E is

$$
\hat{E}=\frac{E_{\mathrm{obs}}}{1-(1-\hat{p})^{K}}
$$

New model

Binomial mixture model

- probability of class j is w_{j}
- Binomial distribution $B\left(K, p_{j}\right)$ for each class

Distribution function

$$
\operatorname{prob}\{k\}=\sum_{j=1}^{C} w_{j}\binom{K}{k} p_{j}^{k}\left(1-p_{j}\right)^{(K-k)}
$$

Of course, we observe a truncated version of this.

EM Algorithm

While (not converged 1) do
E step:

$$
\begin{aligned}
& \text { estimate } c_{j}^{(i)} \\
& \qquad c_{j}^{(i)} \leftarrow \hat{w}_{j} P\left\{k_{i} \mid K, \hat{p}_{j}\right\}
\end{aligned}
$$

M step:
for $j=1$ to C
While (not converged 2) do
$\hat{p}_{j} \leftarrow \frac{\sum_{i} k_{i}^{(i)}}{K \sum_{i} c_{j}^{(i)}}\left[1-\left(1-\hat{p}_{j}\right)^{K}\right]$
end while 2
$\hat{w}_{j} \leftarrow \sum_{i} c_{j}^{(i)} /\left(E\left(1-\left(1-\hat{p}_{j}\right)^{K}\right)\right)$
end for
end while 1

Systematic choice of C

