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Abstract— Understanding the variability of Inter net traffic in backbone
networks is essentialto better plan and manageexisting networks, aswell
asto designnext generationnetworks. However, mosttraffic analysesthat
might be usedto approach this problem are basedon detailed packet or
flow level measurements,which are usually not available thr oughoutalarge
network. As aresultthereis a poor understanding of backbonetraffic vari-
ability, and its impact on network operations(e.g on capacity planning or
traffic engineering).

This paper intr oducesa metric for measuringbackbonetraffic variabil-
ity that is grounded on simple but powerful traffic theory. What setsthis
metric apart, however, is that we presenta method for making practical
measulementsof the metric using widely available SNMP traffic measure-
ments. Furthermor e, we usea novel method to overcomethe major limi-
tation of SNMP measurements— that they only provide link statistics. The
method, basedon a “gravity model”, derivesan approximate traffic matrix
from the SNMP data. In addition to simulations,we usemorethan 1 year’s
worth of SNMP data from an operational IP network of about 1000nodes
to testour methods. We alsodelve into the degreeand sourcesof variabil-
ity in real backbonetraffic, providing insight into the true nature of traffic
variability .

Despitea significantamountof researcraddressindn-
ternettraffic modeld[1], [2], [3], [4], thereis notyetwide-
spreadagreemenaboutthecharacteristicef backbondn-
ternettraffic. This problemis exacerbatedy exaggerated
reportson Internettraffic growth andvariability [5], [6],
by the challengesssociateavith Internettraffic measure-
ments[7], andalack of understandingf the applicability
of resultssuchasthe discovery of self-similarity in traf-
fic [1], [2], [3]. Forinstancejn [5], dire claimsaremade
onthebasisof thenotionthatlargevolumesof traffic slosh
aroundtheInternetin a highly irregularway.

Obtainingthedatanecessaryo developanaccurateand
currentview of backbonéraffic requiressignificantinvest-
mentin measuremeninfrastructure.Nonethelessyunder
standinglnternetbackbonetraffic is crucial for evolving
the Internetarchitecture doing capacityplanning, traffic
engineeringandmeetingservicelevel agreementdn par
ticular, our investigationwasspecificallymotivatedby the
guestion:to whatextentdoestraffic variability justify the
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needfor a re-configurableoptical network below the IP
layerto provide bandwidthmanagementSuchan optical
network would allow IP routersequippedwith the appro-
priateinterfacego requestdditionalpoint-to-pointcapac-
ity whenneededandto reconfigureexisting capacitybe-
tweenrouters[8], [9], [10]. Routersmight needadditional
capacitydueto congestiorresultingfrom ary of a num-
ber of causes:major events(Septembed 1th), re-routing
eventstriggeredby failures transienoverloadsdueto De-
nial of Service(DoS) attacksor flash crowds, or exter
nally inducedtraffic shifts from peernetworks. Alterna-
tively, we canview this problemthroughthe lensof over-
provisioning,namelyto whatextentdoesthelP layerneed
to beover-provisionedto meetits servicelayeragreements
with highreliability.

We addresshe problemof backbonetraffic variability
by looking ataggreyatelink statisticscollectedvia SNMP
on alarge ISP backbone.From thesestatisticsit is clear
thatthetraffic hasbothdaily andweekly periodiccompo-
nents aswell asalongertermtrend. Superimposedntop
of thesecomponentareshortertime scalestochastiovari-
ations. Giventhesecharacteristicsywe develop a simple,
but powerful stochastianodelfor backboneraffic (based
ontheNorrosmodel[11]), andthenusethatmodelto de-
rive anempiricalmetricreferredto hereasthe pealedness
parameterthatprovidesa measuref thetraffic variability.
We believe thatthis metricwill beusefulto network opera-
torsin botharchitectureevolution andtraffic management,
e.g.,allowing network operatorg¢o determinewvhether(or
when)it makessensdo layer|P overare-configurablep-
tical network, assistingn provisioningbackboneapacity
tuning OSPFlinks weights,etc. An importantfeatureof
this modelis parsimory — only oneparameteis required
to describethe mostimportantfeaturesof the stochastic
variationin thetraffic, andthis parametecanbeestimated
from standardcSNMPtraffic measurements.

We applythis stochastidraffic modelin thecontext of a
large backbonenetwork. Ideally, we would obtaina back-
bonetraffic matrix using detailedflow measurementsen
network accesgouters,asin [7], andfit thetraffic to the
stochastianodel. However, asmentionedn [7], mary ac-
cessroutersarenot currentlyableto continuouslycollect



flow statistics. A numberof innovative methodshave been
proposedor deriving traffic matriceq12], [13], [14], [15],

but the limitations of SNMP data,andthe size of the net-
work make thesequite difficult to applyhere.

Instead,we usea gravity model to analyzethe SNMP
aggrgatelink statisticsto derive abackboneegionto re-
gion traffic matrix. Gravity models,taking their name
from Newton’s law of gravitation, arecommonlyusedby
socialscientistsdo modelthe movementof people,goods
or informationbetweergeographiareas.In ageographic
gravity modelfor cities,for example,therelative strength
of theinteractionbetweenwo citiesis proportionalto the
productof the populationgdividedby thedistancesquared.
Such modelsprovide surprisingly accurateestimatesof
telephondraffic exchangedetweerareascodes(see[16]
andthereferencesherein).In our gravity modelfor back-
bonetraffic, we computethe fraction of the total traffic
entering(leaving) the backboneo (from) eachregion or
Point-of-Presencé@oP).For eachPoR we thentake this
fractionto bethefractionof traffic sourcedsinked) from
every otherPoPto that PoP This givesan approximation
of the traffic matrix. While the gravity model doesnot
capturedetailsof the actualtraffic demandstheimpactof
peeringpolicieson traffic flow, etc.,it is relatively simple
to computeandis surprisinglyaccurate.

A majorinsight of this paperis thattraffic is predomi-
nantly regular and predictable thoughit doeshave a sig-
nificant stochasticcomponent. The resultsshowv that al-
thoughbackbondraffic is highly non-stationaryshaving
significantdaily andweeklyvariations.This periodicvari-
ationshawvsthattraffic engineeringpasednlongtermav-
eragess not sufficient. A key insightof this paperis that
large deviationsfrom traffic predictionsarerare. The ob-
senedcasearedueto large,transienevents,suchasflash
crowds, network failures,andnaturaldisastersMost nor-
malvariationhaspealednesparameter in therange0.5-
3.0Mbsfor 5 minute SNMP measurementd.his valueof
a appearso representelatively stabletraffic, however we
notethat a canbe significantly larger even whenwe ex-
cludeobvioustransientevents. At the very leastthis pro-
videsarealisticsetof parameteraluesfor simulationsof
backbondraffic.

This paperalsodemonstratethat gravity modelsarea
naturalandpowerful startingpointfor deriving traffic ma-
tricesfrom link statistics. Giventoday’s difficulty in ob-
taining flow-level measuremerdataat every edgerouter
in alarge backbonewe believe thatgravity modelsarea
pragmaticool for providing traffic matricesuntil we have
more reliable sourcesof detaileddata. We are pursuing
generalization®f the gravity modelthatwill allow usto
differentiatetraffic with finer graineddetail. We alsoplan

refinementsof the traffic matrix by combiningthe grav-
ity modelapproachwith flow level measurementahere
available.

Our original motivationfor this work wasto look atthe
potentialbenefitsof building IP backbone®n top of are-
configurableoptical network. Thoughthe diurnal varia-
tions in traffic are significant, theseare tightly coupled
acrossheNorth Americancontinentandsodonotpresent
an opportunityfor temporalsharingof capacity Further
more, the stability of the stochasticcomponentof back-
bone traffic suggestghat the casefor a re-configurable
optical network layer basedsolely on IP traffic variations
is weak. However, it may still make senseto usea re-
configurableopticalnetwork to dealwith traffic loadchanges
resultingfrom IP layerre-routingdueto failures[17]. This
is a subjectof on-goingwork.
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