
Experiencein Measuring BackboneTraffic Variability:
Models,Metrics, Measurementsand Meaning

Matthew Roughan,Albert Greenberg, CharlesKalmanek,MichaelRumsewicz,
JenniferYatesandYin Zhang

Abstract—Understanding the variability of Inter net traffic in backbone
networks is essentialto better plan and manageexisting networks, aswell
asto designnext generationnetworks. However, most traffic analysesthat
might be used to approach this problem are basedon detailed packet or
flow level measurements,which areusually not available thr oughouta large
network. As a result there is a poor understandingof backbonetraffic vari-
ability , and its impact on network operations(e.g. on capacity planning or
traffic engineering).

This paper intr oducesa metric for measuringbackbonetraffic variabil-
ity that is grounded on simple but powerful traffic theory. What setsthis
metric apart, however, is that we presenta method for making practical
measurementsof the metric using widely available SNMP traffic measure-
ments. Furthermor e, we usea novel method to overcomethe major limi-
tation of SNMP measurements– that they only provide link statistics. The
method,basedon a “gra vity model”, derivesan approximate traffic matrix
fr om the SNMP data. In addition to simulations,weusemore than 1 year’s
worth of SNMP data fr om an operational IP network of about 1000nodes
to test our methods. We alsodelve into the degreeand sourcesof variabil-
ity in real backbonetraffic, providing insight into the true nature of traffic
variability .

Despitea significantamountof researchaddressingIn-
ternettraffic models[1], [2], [3], [4], thereis notyetwide-
spreadagreementaboutthecharacteristicsof backboneIn-
ternettraffic. This problemis exacerbatedby exaggerated
reportson Internettraffic growth andvariability [5], [6],
by thechallengesassociatedwith Internettraffic measure-
ments[7], anda lack of understandingof theapplicability
of resultssuchas the discovery of self-similarity in traf-
fic [1], [2], [3]. For instance,in [5], dire claimsaremade
onthebasisof thenotionthatlargevolumesof traffic slosh
aroundtheInternetin ahighly irregularway.

Obtainingthedatanecessaryto developanaccurateand
currentview of backbonetraffic requiressignificantinvest-
mentin measurementinfrastructure.Nonetheless,under-
standingInternetbackbonetraffic is crucial for evolving
the Internetarchitecture,doing capacityplanning,traffic
engineering,andmeetingservicelevel agreements.In par-
ticular, our investigationwasspecificallymotivatedby the
question:to whatextentdoestraffic variability justify the
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needfor a re-configurableoptical network below the IP
layer to provide bandwidthmanagement.Suchanoptical
network would allow IP routersequippedwith theappro-
priateinterfacesto requestadditionalpoint-to-pointcapac-
ity whenneeded,andto reconfigureexisting capacitybe-
tweenrouters[8], [9], [10]. Routersmightneedadditional
capacitydueto congestionresultingfrom any of a num-
ber of causes:major events(September11th), re-routing
eventstriggeredby failures,transientoverloadsdueto De-
nial of Service(DoS) attacksor flash crowds, or exter-
nally inducedtraffic shifts from peernetworks. Alterna-
tively, we canview this problemthroughthelensof over-
provisioning,namelyto whatextentdoestheIP layerneed
to beover-provisionedto meetits servicelayeragreements
with high reliability.

We addressthe problemof backbonetraffic variability
by lookingat aggregatelink statisticscollectedvia SNMP
on a large ISP backbone.From thesestatisticsit is clear
thatthetraffic hasbothdaily andweeklyperiodiccompo-
nents,aswell asalonger-termtrend.Superimposedontop
of thesecomponentsareshortertimescalestochasticvari-
ations. Given thesecharacteristics,we develop a simple,
but powerful stochasticmodelfor backbonetraffic (based
on theNorrosmodel[11]), andthenusethatmodelto de-
riveanempiricalmetricreferredto hereasthepeakedness
parameter, thatprovidesameasureof thetraffic variability.
Webelievethatthismetricwill beusefulto network opera-
torsin botharchitectureevolutionandtraffic management,
e.g.,allowing network operatorsto determinewhether(or
when)it makessenseto layerIP overare-configurableop-
tical network, assistingin provisioningbackbonecapacity,
tuning OSPFlinks weights,etc. An importantfeatureof
this modelis parsimony – only oneparameteris required
to describethe most importantfeaturesof the stochastic
variationin thetraffic, andthisparametercanbeestimated
from standardSNMPtraffic measurements.

Weapplythisstochastictraffic modelin thecontext of a
largebackbonenetwork. Ideally, we would obtaina back-
bonetraffic matrix usingdetailedflow measurementson
network accessrouters,asin [7], andfit the traffic to the
stochasticmodel.However, asmentionedin [7], many ac-
cessroutersarenot currentlyableto continuouslycollect



flow statistics.A numberof innovativemethodshavebeen
proposedfor deriving traffic matrices[12], [13], [14], [15],
but the limitationsof SNMPdata,andthesizeof thenet-
work make thesequitedifficult to applyhere.

Instead,we usea gravity model to analyzethe SNMP
aggregatelink statisticsto derive a backboneregion to re-
gion traffic matrix. Gravity models, taking their name
from Newton’s law of gravitation, arecommonlyusedby
socialscientiststo modelthemovementof people,goods
or informationbetweengeographicareas.In a geographic
gravity modelfor cities,for example,therelative strength
of theinteractionbetweentwo citiesis proportionalto the
productof thepopulationsdividedby thedistancesquared.
Such modelsprovide surprisingly accurateestimatesof
telephonetraffic exchangedbetweenareascodes(see[16]
andthereferencestherein).In ourgravity modelfor back-
bonetraffic, we computethe fraction of the total traffic
entering(leaving) the backboneto (from) eachregion or
Point-of-Presence(PoP).For eachPoP, we thentake this
fractionto bethefractionof traffic sourced(sinked) from
every otherPoPto thatPoP. This givesanapproximation
of the traffic matrix. While the gravity model doesnot
capturedetailsof theactualtraffic demands,theimpactof
peeringpolicieson traffic flow, etc.,it is relatively simple
to computeandis surprisinglyaccurate.

A major insight of this paperis that traffic is predomi-
nantly regular andpredictable,thoughit doeshave a sig-
nificant stochasticcomponent.The resultsshow that al-
thoughbackbonetraffic is highly non-stationary, showing
significantdaily andweeklyvariations.Thisperiodicvari-
ationshowsthattraffic engineeringbasedonlongtermav-
eragesis not sufficient. A key insightof this paperis that
largedeviationsfrom traffic predictionsarerare. Theob-
servedcasesaredueto large,transientevents,suchasflash
crowds,network failures,andnaturaldisasters.Most nor-
malvariationhaspeakednessparameter� in therange0.5-
3.0Mbs for 5 minuteSNMPmeasurements.Thisvalueof

� appearsto representrelatively stabletraffic, howeverwe
note that � canbe significantly larger even whenwe ex-
cludeobvious transientevents.At thevery leastthis pro-
videsa realisticsetof parametervaluesfor simulationsof
backbonetraffic.

This paperalsodemonstratesthat gravity modelsarea
naturalandpowerful startingpoint for deriving traffic ma-
tricesfrom link statistics.Given today’s difficulty in ob-
taining flow-level measurementdataat every edgerouter
in a largebackbone,we believe thatgravity modelsarea
pragmatictool for providing traffic matricesuntil we have
more reliable sourcesof detaileddata. We are pursuing
generalizationsof the gravity modelthat will allow us to
differentiatetraffic with finer graineddetail. We alsoplan

refinementsof the traffic matrix by combiningthe grav-
ity modelapproachwith flow level measurementswhere
available.

Our original motivationfor this work wasto look at the
potentialbenefitsof building IP backboneson top of a re-
configurableoptical network. Thoughthe diurnal varia-
tions in traffic are significant, theseare tightly coupled
acrosstheNorthAmericancontinent,andsodonotpresent
an opportunityfor temporalsharingof capacity. Further-
more, the stability of the stochasticcomponentof back-
bone traffic suggeststhat the casefor a re-configurable
opticalnetwork layerbasedsolelyon IP traffic variations
is weak. However, it may still make senseto usea re-
configurableopticalnetwork todealwith traffic loadchanges
resultingfrom IP layerre-routingdueto failures[17]. This
is asubjectof on-goingwork.
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