
Where’s Waldo? Practical Searches for Stability in
iBGP

Ashley Flavel∗ Matthew Roughan∗ Nigel Bean∗ Aman Shaikh†
∗School of Mathematical Sciences, University of Adelaide †AT&T Labs — Research

Abstract—What does a child’s search of a large, complex
cartoon for the eponymous character (Waldo) have to do with In-
ternet routing? Network operators also search complex datasets,
but Waldo is the least of their worries. Routing oscillation is a
much greater concern. Networks can be designed to avoid routing
oscillation, but the approaches so far proposed unnecessarily
reduce the configuration flexibility. More importantly, apparently
minor changes to a configuration can lead to instability. Verifi-
cation of network stability is therefore an important task, but
unlike the child’s search, this problem is NP hard. Until now, no
practical method was available for large networks. In this paper,
we present an efficient algorithm for proving stability of iBGP,
or finding the potential oscillatory modes, and demonstrate its
efficacy by applying it to the iBGP configuration of a large Tier-2
AS.

I. INTRODUCTION

BGP routing oscillation degrades network performance, but
is surprisingly difficult to diagnose. With the appropriate
measurement infrastructure, and given sufficient time, we
can detect oscillations that have been occurring, but this is
unsatisfactory. For a start, detection doesn’t tell you how to fix
the problem. More importantly, performance degradation will
have already occurred by the time the problem is detected (if
it ever is, given the infrastructure and analysis requirements).
Inside a network, where an operator has complete control
over BGP routing, oscillation should never occur. Oscillation
should be prevented, not fixed after the fact.

Until now, the only viable approach to prevention was
to follow a set of guidelines proposed by Griffin and Wil-
fong [1]. These guidelines specify sufficient, but not necessary
conditions for iBGP (BGP used within a network) stability.
Therefore, they unnecessarily restrict configuration flexibility,
and in practice are violated often. Even when they are not
intentionally violated, configuration changes or failures can
lead to violations, resulting in oscillations and instability.

When the guidelines for preventing oscillations are violated,
further analysis is required. However, the search for potential
oscillations is NP-hard [1] which makes it extremely difficult
to analyze large service provider networks due to scale and
dynamism involved. In this paper, we present an algorithm
to detect potential BGP route oscillations inside a network
based on iBGP and IGP configurations. The algorithm creates
a directed graph of routers based on the notion of a “reliance”.
A router is said to be reliant on another when the latter’s BGP
route selection can impact the former’s selection. When more
than one router in a reliance graph form a strongly connected
component [2], the routers’ decisions in this component are

dependent on one-another and consequently there is the pos-
sibility for route oscillation. In large networks, where route-
reflection [3] is often used, the reliance graph allows us to
prove that such strongly connected components can only be
present in a subset of route-reflectors. We then use an algebraic
approach [4] to prove or disprove the oscillatory properties of
each strongly connected component.

Our approach leads to a significant reduction in the number
of routers that require further analysis since the number of
route-reflectors tend to be much less compared to the overall
size of a network. This in turn makes the algorithm extremely
scalable, allowing an operator to not only detect potential
oscillations in a network design and proposed changes to it,
but also perform detection as the network undergoes changes.
We demonstrate the efficacy of our algorithm by employing it
on a topology derived from a large Tier 2 provider. When an
oscillation is actually detected, our algorithm also pinpoints
the exact set of routers that cause the problem, allowing an
operator to more easily fix it. Finally, the algorithm leads us
to recommend a change in the BGP route selection process
that can eliminate the potential for oscillations altogether.

The remainder of the paper is organized as follows. We
provide background information in Section II. In Section III,
we formalize the notion of stability. In Sections IV and V,
we present the reliance graph theory for detection of potential
oscillations and the subset of routers where they are likely
to occur. Section VI then uses the algebraic approach to
prove if an oscillation will actually occur. Through most of
the paper we assume the final tie-breaking step in the BGP
route selection process is based on router-ID. This step is
directly incorporated into our reliance graph theory. However,
BGP also allows the use of the “oldest-route” as the tie-
break. Unfortunately, route selection becomes dependent on
the timing of messages in BGP, leading to more complicated
stability problems. We present a modified algebra in Sec-
tion VII to show that despite this complication, the oldest-route
tie-break is more appealing because it reduces the likelihood
of oscillations. In Section VIII, we demonstrate the efficacy
of our algorithm in the Tier 2 AS. Finally, we present related
work in Section IX, and conclude in Section X.

II. BACKGROUND

A. Border Gateway Protocol (BGP)

The Border Gateway Protocol (BGP) [5] is the de-facto stan-
dard used in the Internet to exchange reachability information
between Autonomous Systems (ASes). Each router learns of
available routes from neighboring routers and independently

selects its best route by considering attributes attached to
routes (see Fig. 1). Only the selected route is propagated
to neighboring routers. Inbound and outbound filters are also
applied to routes to enforce a local policy (see [6] for details).

1. Highest Local Preference
2. Shortest AS Path Length
3. Lowest Origin Type
4. Lowest MED (Multi-Exit Discriminator)
5. Prefer Closest Egress (Lowest IGP Distance)
6. Tie Breaking (Lowest-Neighbor-ID)

Fig. 1. Summarized BGP Decision Process [5], omitting vendor dependent
steps.

After a router learns a route from a neighboring AS,
Internal BGP (iBGP) is used to propagate routes to all other
routers within the AS. The router which learns the route
directly from a neighboring AS is the egress router (for
traffic). It was originally conceived that iBGP would connect
all routers in a full mesh. However, scalability concerns
resulted in the introduction of a hierarchical configuration
known as route-reflection [3]. Although route-reflection can
have multiple hierarchical levels, in this paper we consider the
commonly used two-level hierarchy (though our ideas can be
extended to the more complex general case [7]). All routers
are either route-reflectors (RRs) or clients of RRs. Clients
propagate external routes (learned directly from neighboring
ASes) to their parent RR(s). RRs select the best route and
‘reflect’ routes differently depending on who they are learned
from. A RR’s best route is reflected as follows:

Source Reflect to:
another RR all clients
a client all iBGP neighbors

Scalability is achieved because the number of iBGP sessions
is reduced. This comes at a price: routers now learn only a
subset of potentially available routes. It has been shown that
this resection has more serious consequences than suboptimal
routing. It can also lead to persistent oscillation as a result
of the MED attribute [8] or purely as a result of the internal
topology [1]. The MED attribute is set by neighboring ASes,
so an AS has no control over its values, but an operator
can configure routers such that MEDs have no effect, and
hence avoid MED oscillation. Although our techniques are
extensible [7], in this paper we ignore MEDs and focus on
the oscillation resulting from an AS’s topology.

B. Best Path Selection

Routes learned externally which are discounted by steps 1-
4 of the BGP decision process are never chosen as the final
best route by any router in the network [9]. Therefore, we only
need to consider the routes that survive as equally good routes
after step 4. However, a router may not learn all of the globally
available routes. A change in the locally available routes can
result in a router changing its decision, and hence advertising
different routes to neighbors, changing their locally available
routes and so on. This is the crux of the oscillation issue we
are examining.

At each router, two local decision steps determine which
of the available routes are selected. Firstly, the route with the
lowest IGP distance to the egress router is selected. If multiple
routes have equal IGP distances, the tie is broken by selecting
the route with the lowest router-id (we consider the second tie-
break option of “oldest-route” later). Such decision steps are
topology based and are not timing dependent. Thus, given a
set of available routes, A, there is a strict preference of routes
a1 > a2 > a3 > ... > an. We define a ranking function λu for a
router u, such that if ak is preferred over a j at router u, then
λu(ak) > λu(a j).

C. Interior Gateway Protocol

Step 5 of the BGP decision process is to prefer the closest
border router, where shortest-path “distances” (these need
not be geographic distances) are calculated by the Interior
Gateway Protocol (IGP) — used for routing inside an AS.
The key issue is that IGP distances are often unrelated to the
iBGP topology. BGP sessions are routed, and so may extend
over multiple physical hops. A RR’s client may not be “close”
to the RR. There are even good reasons (e.g., redundancy) why
another RR’s client may be closer!

The complicated interaction between iBGP and IGP requires
us to make clear distinctions between the underlying IGP
network topology (which we term the physical topology) and
the logical iBGP signaling topology. In this paper we will
use Griffin and Wilfong’s terminology [1] in which an iBGP
configuration C is a pair C = (GP,GS) where GP is the physical
graph and GS is the signaling graph.

D. Physical Graph

The physical graph represents the physical topology of the
network. It is defined by the quartet GP = (V,B,EP, d). Each
node u ∈ V represents a router in the network. B ⊆ V is the
set of border (or egress) routers with physical connectivity to
external networks. The set of uni-directional edges between
routers is Ep, and d(e) is the IGP distance administratively
assigned to edge e = (u, v) ∈ EP. A path P is a sequence of
edges P = e1e2...en. The length of P is the sum of the distances
d(e) for all edges e of P, and the IGP is used to compute the
shortest paths.

E. Signaling Graph

The directed signaling graph GS = (V,AS) represents the
propagation of BGP routes between routers within V. An arc
in GS represents an iBGP session between two routers and is
overlaid on some path in GP.

The set of arcs AS is partitioned into three sets over, up,
and down. An arc (u, v) ∈ over represents a vanilla iBGP
session from router u to v. If (u, v) ∈ over, then (v,u) ∈ over.
An arc (u, v) ∈ down represents an arc from a RR u to one
of its clients v. Inversely, an arc (u, v) ∈ up represents an arc
from a client u to its RR v. An arc (u, v) ∈ down if and only
if (v,u) ∈ up. Arcs in up are acyclic — consistent with a
hierarchy rather than an arbitrary network design.

A valid signaling path S satisfies the following properties.
The path S can be split into sub paths S = PQR where P is
either empty or consists of a single arc p ∈ up, R is either

empty or consists of a single arc r ∈ down and Q is either
empty or consists of a single arc q ∈ over.

F. Egress Instance

An egress instance [1] I = (C,X) can be defined as a pair
of configuration C and a set of border routers X ⊆ B. The
routers in X represent border routers each of which learns an
external BGP route to a particular prefix. Implicitly [9], X
represents routers that learn routes which are equally good for
the first four steps of the BGP decision process (i.e., all of the
steps before choosing closest egress). All other routes will be
eliminated by earlier steps in the decision process.

Note that although a border router may learn multiple
routes (to a prefix) it will only advertise its best route to
neighbors. It is irrelevant which route is advertised (assuming
we have already passed steps 1-4). Hence, there is a one-to-one
mapping from border routers X to available routes. We will
refer to a border router and its available route interchangeably.

III. DEFINING STABILITY

Griffin and Wilfong define an egress instance to be signaling
correct [1] if it is guaranteed to deterministically arrive at
a unique (predictable) routing. However, we need additional
terminology to describe all of the possible behaviors of egress
instances, and we do so by drawing on the dynamic systems
literature. We say a system is in equilibrium when it is in
a single-state, or it cycles through a subset of states such
that the cycle persists indefinitely in the absence of external
influences. We call a single-state equilibrium stable, and a
cycle oscillatory, by analogy to previous works (although in
dynamic systems stability would be otherwise defined). An
egress instance may have more than one possible equilibrium
cycles/states, and we characterize an egress instance as signal-
ing unstable if there is at least one oscillatory equilibrium, or
as signaling stable if only stable equilibria exist. A signaling
correct egress instance must be signaling stable, but if there
is more than one possible equilibrium, then the equilibrium
we reach for a particular egress instance is non-deterministic
and so a signaling stable instance is not necessarily signaling
correct.

Any configuration may have 2|B|−1 possible egress instances
(though in practice all of these will not occur). If all possible
egress instances are signaling correct/stable, then the configu-
ration C is signaling correct/stable.

A. Complexity of Determining Signaling Correctness

Griffin and Wilfong [1] construct a generalized configu-
ration G and demonstrate that determining if it is signaling
correct is NP-hard. However, they outline a sufficient condition
to ensure signaling correctness: A RR’s clients should be
closer (IGP distance wise) than all non-client routers. This
is a sufficient condition, not a necessary condition. Networks
violating this condition may be signaling stable or even
signaling correct.

IV. ROUTER RELIANCE GRAPH

A router can easily select its best route from a set of routes
A that it learns. In a RR topology, the set A is dynamic
and relies on other routers’ decisions. However, there are
many possible routes that the router would never choose in
equilibrium. For instance, a router that learns a route directly
from a neighboring AS will always have this route in A, and so
will never select any route that is worse. We can use this simple
fact to reduce the complexity of our problem dramatically. We
do so through the use of a router reliance graph that captures
only those reliances (or dependencies) that can influence the
decision of a router.

The reliance graph is calculated per egress instance I. The
vertices of the graph are routers, and if a router’s decision
is dependent on another router, then we say it is reliant and
create a directed edge in the reliance graph. In other words,
if ui is reliant on u j, we write ui f u j. The reliance graph
contains only a subset of arcs from the signaling graph AS.

Note that the arrow direction in figures and the notation
used for reliance parallels the information flow in the signaling
graph.

A. Reliance Rules for a Route Reflector Topology
In a two-level RR hierarchy the rules for constructing a

reliance graph for an egress instance I = (C,X) are:
1) a router in X, that is with a direct egress, will always

choose this egress, and so is not reliant on any other
router’s decisions;

2) a client router without a direct egress is reliant on the
decisions made by its parent RR(s); and

3) a route reflector u is reliant on
• its “best” client router
• any other RR v whose best client router is better

than u’s best client, from u’s perspective.
The recommendation of Griffin and Wilfong [1] amounts to
configuring one’s network such that a RR’s own clients (where
there is at least one) are always its best choice.

Formally, we define the best client egress router for RR
u < X as Λ(u) ∈ X, where best is with respect to rules 5 and
6 of the BGP decision process. If a RR u has no client in
X, then for convenience we define λv(Λ(u)) = −∞ ∀ v ∈ V
(recall V is the set of all routers). Now, there are three classes
of directed edges in the signaling graph and they all lead to
potential directed edges in the router reliance graph. Consider
the three cases for an arc (u, v):

1) up: a client u is reliant on its RR v iff u < X.
2) down: a RR u is reliant on its best client egress router

Λ(u) ∈ X, and on no other client.
3) over:

a) a RR u is reliant on another RR v iff

λu(Λ(v)) > λu(Λ(u)).

b) A client u with an over connection to another client
v is reliant on v iff u < X and v ∈ X.

Griffin and Wilfong’s condition is that for all u such that
λu(Λ(u)) > −∞ and for all v , u we need

λu(Λ(u)) > λu(Λ(v)).

(a) λ3(1) > λ3(2), λ4(2) > λ4(1) (b) λ3(1) < λ3(2), λ4(2) > λ4(1) (c) λ3(1) < λ3(2), λ4(2) < λ4(1)

Fig. 2. A simple egress instance. The direct egress set X = {1, 2}, is indicated by large arrows. Black nodes are RRs, white nodes are client routers, dashed
lines represent iBGP sessions with no corresponding reliance, and solid lines indicate a reliance. Dash-dot lines indicate preferred clients, where these are not
direct clients. Dotted ellipses indicate co-reliance groups.

B. Co-reliance Groups

Oscillation in a network occurs when two routers ri and r j
alter their decision in response to each other’s change. Con-
sequently, by the design of the reliance graph, for oscillation
to occur there must be a path in the reliance graph from ri
to r j and from r j to ri. Formally, ri and r j must be strongly
connected1. We define a co-reliance group Dk to be a strongly
connected component of the reliance graph, and we denote
D(I) as the set of all co-reliance groups of an egress instance
I. According to graph theory, the co-reliance groups form a
partition of the routers [2], that is, each router is in exactly
one co-reliance group.

Let us consider an example RR topology — one satisfying
the sufficient condition of Griffin and Wilfong. Fig. 2(a) shows
such a RR hierarchy, black nodes denote RRs, and white nodes
denote client routers.

Suppose two egress routers (1 and 2) have equally good
routes through step 4 of the BGP decision process, and hence
1, 2 ∈ X. These routers will always egress via the direct
egress. Hence they do not rely on any other router decisions.
RRs 3, 4 < X, and hence rely on the decisions of 1 and 2,
respectively. This reliance is illustrated by an arrow in Fig.
2(a). RRs 5 and 6 rely only on the decisions made by 3 and 4,
and client routers 7 and 8 rely on RRs 5 and 6 respectively. In
this simple example, each router is part of its own co-reliance
group and thus there is a unique solution for router decisions
— hence the system is signaling correct.

In Fig. 2(a) we assumed that IGP distances are such that
λ3(1) > λ3(2) , i.e., that the RR 3’s client router 1 is preferred
over router 2. Likewise we assumed λ4(2) > λ4(1). Now
suppose that λ3(1) < λ3(2) (violating the sufficient condition
of Griffin and Wilfong). In this case, the decision at RR 3
is dependent on the decision made by RR 4. If RR 3 learns
of router 2, via RR 4, then it will prefer this egress point.
Otherwise it will prefer its client. Hence, there is an additional

1For any two vertices u and v in a strongly connected component of a
directed graph there exists a path from u to v, and the component is the
maximal such set containing these vertices.

reliance of 3 on 4, as shown in Fig. 2(b). However, each co-
reliance group still contains exactly one router and there is a
unique solution, so the system is again signaling correct.

If we further change the network (see Fig. 2(c)) such that
RRs 3 and 4 both prefer each others client router. That is,
λ3(1) < λ3(2) and λ4(2) < λ4(1), then this introduces a further
reliance between 4 and 3, and these two then form a single
co-reliance group D3. In this case, the equilibrium choice of
routes will depend on the timing of messages inside the co-
reliance class D3. As multiple solutions are possible, it is not
signaling correct. However, we will show that this system will
not oscillate and hence is signaling stable.

V. WHERE CAN AN OSCILLATION OCCUR?

Routing oscillations can only occur when the configuration
instance C is not signaling stable, and only within a co-reliance
group. So our search for an oscillation can be reduced to a
search for co-reliance groups. We can reduce this search still
further by eliminating singleton co-reliance groups. Note the
sufficient condition of Griffin and Wilfong ensures no routers
are strongly connected and hence all co-reliance groups are
singleton. Let us now examine where in a general RR topology
a non-singleton co-reliance group can occur. In the following
we define the downstream egress set E ⊆ V, as the union of
X and the parent RRs of X (thus X ⊆ E), and we use E to
denote its complement.

Theorem 5.1: For all u ∈ E and v ∈ E, ufY v.
Proof: Assume there exists a router u ∈ E and a router v ∈ E,
such that uf v. Consider the formal reliance rules for route-
reflection in Section IV-A:

1) If (u, v) ∈ over, then rule 3 applies. Since v has no
downstream egresses, ufY v.

2) (u, v) < up, since u ∈ E and v ∈ E.
3) If (u, v) ∈ down then as v < X, rule 2 implies ufY v.

Thus our assumption is false. �

Corollary 5.2: A co-reliance group cannot have routers in
both E and E.

Theorem 5.3: A non-singleton co-reliance group D does
not exist in E.
Proof: Assume a co-reliance group D has routers
u1, ...,un ∈ E. Then there must exist a ui, u j, uk ∈ D
and ui , u j, u j , uk (ui,uk need not be distinct) such that
ui f u j and u j f uk. Once again we must consider when
reliances between these routers can exist.

1) If (ui,u j) ∈ over, since ui,u j ∈ E, rule 3 implies that
ui,u j have no reliance.

2) If (ui,u j) ∈ down, then as u j < X, rule 2 implies ui f
Y u j.

3) If (ui,u j) ∈ up, then rule 1 implies that ui f u j since
ui < X.

a) If (u j,uk) ∈ over, then by 1), u j and uk have no
reliance.

b) If (u j,uk) ∈ down, then by 2) u j fY uk.
c) (u j,uk) < up, as we have a two level hierarchy.

Thus our assumption is false. �

Corollary 5.4: A non-singleton co-reliance group D must
be a subset of E.

These theorems show that non-singleton co-reliance groups
can only occur in the downstream egress set E. The direct
egress set X will typically have only a few routers in it. Even
a large network might only peer at a few dozen locations,
creating on the order of a few dozen routers in X. Each such
border router might have two RRs (for redundancy), but rarely
would they have substantially more. So E is likely to be much
smaller than the complete network. Hence we need to search
only a small portion of a network for potential oscillation. We
can restrict our search even further due to the following result.

Theorem 5.5: A non-singleton co-reliance group D con-
tains only RRs in E. So D ⊆ E\X.
Proof: By Corollary 5.4 all non-singleton co-reliance groups
are in E. All border routers in E are also in X and select their
direct external route. Hence they do not rely on any other
router. �

In any network the number of RRs must be an order of
magnitude smaller than the total number of routers (otherwise
there is little point to having a RR hierarchy). In addition, the
number of RRs in the downstream egress set is generally a
fraction of the total number of RRs (as all must have clients
with equally good routes through step 4). Thus the search
space for co-reliance groups can be dramatically reduced. To
locate strongly connected components there are standard graph
algorithms, and given the size of the problems (a few tens
of nodes) there are no performance problems on reasonably
designed networks. The actual size of these groups in practice
is very small — it is quite hard to construct reasonable network
designs for which the group size is larger than three.

A non-singleton co-reliance group is necessary for oscilla-
tion, but not sufficient — we need to perform further analysis
to classify the behavior of these groups, which we do in the
following sections.

VI. ALGEBRAIC DESCRIPTION OF CO-RELIANCE GROUPS

We have shown that an oscillation can only occur within a
co-reliance group, and non-singleton co-reliance groups will
only ever exist between the parent RRs of direct egress routers
X. Consequently, every arc in the co-reliance group is an over
edge, and every node in the co-reliance group will know a
route learned from a client. A reliance on another RR implies
that the route learned from the RR is better than the client
route. Thus, if available, the route learned indirectly from
another RR is selected. By the rules of iBGP, if a RR learns
a route from another RR, it will not tell another RR about
this route. Given this, we can use an algebraic abstraction of
routing along the lines of [4], [10] to characterize this set
of rules, and analyze the behavior of co-reliance groups. We
create a set of labels for edges and nodes in the graph, though
we describe them with reference to nodes as the description
is simpler:
• direct (d): A node selects its direct downstream route.
• indirect (i): A node selects a route learned from another

node.
• null route (φ): No route is selected.
The null route, φ, is used for completeness. However, as

every node in the co-reliance group will have a downstream
egress, no equilibrium solution will ever include φ after a finite
time. We use these labels in a routing algebra in the same vain
as Sobrinho [4]. We define the labeling set of possible route
selections as defined above:

Σ = {d, i, φ},

with the preference relation:

i � d � φ,

that is, any route is always preferred over no route, and
the indirect route is preferred over a direct route because
of the construction of the co-reliance group. A node’s route
decision is made by applying this preference to the labels of
its incoming reliance arcs.

The other element of the algebra is a mapping function
⊕ which is applied when exporting a router’s best route to
neighboring routers. In iBGP, routes are exported to iBGP
neighbors, but we need not consider the whole signaling graph.
We only need to consider the information flow along the arcs
of the reliance graph, as these are the only information flows
that can affect a router’s decisions. We label outgoing arcs on
the reliance graph by applying the operator

⊕ =

d → i
i → φ
φ → φ

that is, a router won’t propagate an indirect route (so it uses
the null label φ), and a direct route becomes indirect after
propagation. A stable labeling is one in which no node has a
better available route than the current chosen route. However,
multiple stable labelings are possible.

As an example, consider the two node co-reliance group
(D3) shown in the example of Fig. 2(c). We represent the
two solutions of the co-reliance group in Fig. 3. Both nodes

43

φ

43

φi

i

d

d

i

d d d

di

Fig. 3. Solutions for a two node co-reliance group, showing algebraic labels
on edges and nodes. In addition to the co-reliance group, we also explicitly
show the arcs from the direct egress set X, though in subsequent examples
we will omit these because every node in the co-reliance group implicitly has
such an edge available.

have direct routes available via clients, however, if they ever
learn of the other RR’s route, they will select this indirect
route. Message timing determines which solution is realized,
however, the system is guaranteed to settle to a solution and
hence will not persistently oscillate2.

We can use an algebraic representation to characterize
the behavior of a co-reliance group, for instance by simply
enumerating states. Most co-reliance groups will be small,
and so this is computationally tractable, but it is sometimes
useful, for larger groups, to be able to reduce it to a smaller
group with identical oscillatory properties, and hence reduce
the computational complexity.

A. Reducing the Size of Co-reliance Groups

We will discover that the complexity of oscillation detection
in an n-node co-reliance group is 2n. Hence a reduction in n
can significantly affect the computation time. We now present
one such reduction.

Theorem 6.1: An acyclic component can be reduced to
a single component with a multiple input/multiple output
(MIMO) function.
Proof: The decision of each node in an acyclic component will
be reliant only on its parents, and so will be a deterministic
function of their decisions. Repeat this process back up to the
input. Hence, the output of the acyclic component will be a
MIMO function of the inputs. �

More importantly, there is a simple algorithm (a breadth
first traversal) for computing the MIMO function for a given
input. This algorithm is linear in the number nodes n, so the
complexity for computing the full behavior of this component
will be 2m when there are m input edges, rather than 2n.

Consider the example shown in Fig. 4. Here the original
acyclic component consists of a single input/single output
three node configuration. We can replace the original com-
ponent by a function that flips the input edge label. Note that
we can represent the function by a node equivalent component
(a single node in this example).

As we prove the stability of co-reliance groups in turn,
we can imagine storing their reduced form in a library. Any
new co-reliance group that can be reduced to a form already
stored in the library does not require further enumeration. For

2We assume there is enough jitter in the system such that the probability
of nodes simultaneously changing decisions is small.

Fig. 4. A three node path is able to be replaced by a function (Output =
Input) or equivalently a single node.

Group Name State Machine
Graph Properties

Good No cycles

Asymptotically Good
• No oscillatory modes
• At least one cycle
• At least one sink

Naughty • At least one oscillatory mode
• At least one sink

Bad No sinks

Fig. 5. Properties of Oscillation Classes.

example, any odd-node path can be reduced to a single node
path as shown in Fig. 4.

B. Oscillation Detection

For a co-reliance group with no prior knowledge in the
library with or without reduction, we use a state-machine to
determine its oscillatory properties. Each state is a labeling
of nodes in the reliance graph. For example, idi represents
one possible labeling of three nodes (Node 0: i, Node 1: d,
Node 2: i). Each transition in the state machine represents a
node altering its decision as it has a better available route than
currently selected. Recall we assume there is enough jitter in
the system such that the probability of nodes simultaneously
changing decisions is small. The actual transition depends on
the timing of messages and any transition from a state has
a positive probability of occurring. As we are now dealing
with two graph structures, we refer to states and transitions
when considering the state-machine, and nodes and edges
when referring to the reliance graph.

There are two possible equilibria for the state machine. First,
a stable state is such that all nodes have selected their best
currently available route. Such a state is a sink in the state-
machine graph. Second, an oscillatory mode is a subset of
communicating states with no sink and no transitions out of
the subset. If we enter such a mode, then the state machine
oscillates persistently.

C. Oscillation Classes

We can partition co-reliance groups into four disjoint
categories describing their oscillation characteristics: Good,
Asymptotically Good, Naughty and Bad. Each class is
summarized in Fig. 5 and their relationship to signaling

Asymptotically
Good

Naughty Bad

Signaling
Correct

Good

Stable Oscillatory

Signaling Stable Signaling Unstable

Fig. 6. Oscillation classes Venn diagram. More stable classes are to the left
and more oscillatory classes are to the right.

Fig. 7. Four node ‘Good’ state machine. Black states represent stable sink
states. White nodes represent transient states.

stable, correct and unstable is shown in Fig. 6. An egress
instance/configuration is classified as the most oscillatory class
across all its co-reliance groups.

A Good co-reliance group is one where every state can be
visited at most once. Thus, there must exist at least one sink
state which by definition is stable. By default, all singleton co-
reliance groups are classified as ‘Good’. A more interesting
example is a co-reliance group with four nodes {0, 1, 2, 3}.
We arrange them such that n is reliant on node n + 1 mod 4
(each node has exactly one inbound and outbound reliance). In
practice, this four node single cycle co-reliance group would
be reduced to its equivalent two node representation, however,
for demonstration purposes we examine it unreduced. In Fig. 7
we show the state-machine. It has 16 states. The state-machine
is acyclic with two sinks (didi and idid). This configuration
has similar properties to the Good Gadget [11], although it
is not signaling correct as multiple sinks exist and we cannot
determine which one of them the state machine will reach.

No sink nodes exist in a Bad co-reliance group. An infinite
number of transitions will occur given any message ordering.
An example of a ‘Bad’ co-reliance group is the three node
single cycle shown in Fig. 9(a). Fig. 8 shows all possible
labelings in the three node configuration and the transitions
between labelings. As there are outbound transitions from
every state, no state is stable and hence the configuration is
oscillatory with a cycle consisting of (idi, idd, iid, did, dii, ddi).
This configuration is similar to the Bad Gadget [11].

A Naughty co-reliance group has at least one sink.
However, it also has an oscillatory mode. The five
node configuration shown in Fig. 9(b) demonstrates an

Fig. 8. Three node ‘Bad’ state machine. No stable sink states.

example (state-machine omitted). There exists a sta-
ble state (ididi), however, there also exists a cycle
(diiid, ddiid, idiid, iddid, iidid, didid, diiid) from which exit is
impossible. Consequently, depending on the starting state and
the ordering of messages, the configuration may be oscillatory.
This configuration has similar properties to the Naughty Gad-
get [11]. This simple example demonstrates that if a network
is currently stable, it may not remain stable in the future!

An Asymptotically Good co-reliance group will settle on
a stable labeling after a finite time. Such a co-reliance group
has a state machine with a cycle in it. However, every cycle is
unlocked in that it has an ‘exit’ such that a sink is reachable.
For example, the co-reliance group in Fig. 9(c) (state-machine
omitted) has a cycle (diii, ddii, idii, iddi, iidi, didi). However,
there is a transition (diii, diid) which results in it eventually
escaping the cycle and reaching the sink (idid).

D. Reliances between Co-reliance Groups

So far we have investigated co-reliance groups in isolation.
However, co-reliance groups can be reliant on other co-reliance
groups containing RRs. By definition, if a co-reliance group
is affected by another co-reliance group the reverse cannot be
true. Hence any inbound edge to a co-reliance group is fixed.

An inbound edge from another RR can only be labeled φ
or i by the definition of the algebra. When an inbound edge
is labeled φ, no additional information is available in the
co-reliance group and thus is equivalent to the group being
considered in isolation. However, when it is labeled i, the
reliant node in the co-reliance group is fixed to be i. This
makes a number of states in the state machine inaccessible.
Let us now look at the impact on the oscillation classes of
co-reliance groups.

Theorem 6.2: If an inbound edge to a co-reliance group is
labeled i, then its state machine is a sub-graph of its state
machine when considered in isolation.
Proof: If an inbound reliance edge is connected to node u j
and is labeled i, node u j is fixed to select i (as no route can
be better than i). Consequently, only states in the isolated co-
reliance group state machine with u j labeled i are feasible.
Also, no new transitions between states are possible. Hence,
the state machine of the co-reliance group is a subgraph of
the isolated co-reliance group state machine. �

Corollary 6.3: If a co-reliance group is classified ‘Good’ in
isolation, then it will be classified as ‘Good’ with any inbound
edges.

(a) ’Bad’ co-reliance group (b) ‘Naughty’ co-reliance group (c) ‘Asymptotically Good’ co-reliance group

Fig. 9. Example co-reliance groups for oscillation classes.

Proof: Suppose a node in a ‘Good’ co-reliance group (classi-
fied in isolation) has a reliance on a RR outside the co-reliance
group. If the inbound edge is φ, no additional information
enters the co-reliance group and is equivalent to the isolated
co-reliance group. If the inbound edge is i, by Theorem 6.2
the state machine of the new co-reliance group is a subgraph
of the state machine of the isolated co-reliance group. Since
no cycles exist in the original state machine, no cycles can
exist in the subgraph. Hence, it is also ‘Good’.�

The same cannot be said for other oscillation classes. A
subgraph of the state machine can result in an unlocked cycle
becoming an oscillatory mode or becoming acyclic, both of
which will alter the oscillation class. For example, an inbound
edge labeled i to node 3 in Fig. 9(c) will fix 3 to be labeled
i. The unlocked cycle in the figure now becomes locked.

Given an egress instance, we can now determine its oscil-
latory properties. If an egress instance contains all singleton
co-reliance groups, or all non-singleton co-reliance groups are
signaling stable, then the egress instance is signaling stable.
If all feasible egress instances in an iBGP configuration are
signaling stable, then the configuration is signaling stable.

VII. OLDEST-ROUTE TIE-BREAKER

The benefit often associated with the lowest-router-id tie-
breaker is the determinism associated with it. However, as we
have seen, even with the lowest-router id, an egress instance
can be non-deterministic. The solution the system will settle
on depends on message timing. For instance, for a two-node
co-reliance, that is, two RRs who each prefer the other’s client,
the stable states are di and id (see Fig. 3), and the solution that
is eventually chosen typically depends on which RR learns of
the other’s client first. In contrast, the oldest-route tie-breaker
was designed to restrict oscillation. We show here that this
indeed is the case.

All of the reliances we have currently considered are strong
reliances. That is, if a RR learns a route from one of its
reliances on another RR, it will select that route. This is
reflected in the algebra, i.e., i � d. However, when the oldest-
route tie-breaker is used, this is not always the case. Strong
reliances still exist when the IGP distance “breaks the tie”.
However, if the IGP distance is equal for multiple routes and
the oldest-route is the tie-breaker then the reliance is weak.
That is, if a route is learned from another node the weak
reliance implies the node may select the route learned from this
node. Such a configuration is not as simple to describe as the

Fig. 10. The state machine of the single cycle three node co-reliance group
with all ‘weak’ reliances. Four states are now stable.

Reliance
Node Label Weak Strong
d iw is
i∗ φ φ
φ φ φ

Fig. 11. Table showing the result of ⊕ for weak and strong reliances.

preference is now dependent on message timings. However,
when a reliance is weak, if a node ever selects its direct route,
it will never change its selection (as it is always available and
is the oldest).

Fig. 10 shows the state-machine for the three node oscil-
latory configuration from Fig. 9(a) with the new tie-break
rule such that all reliances are now weak. The state-machine
is dramatically simplified, as compared to the state-machine
shown in Fig. 8. Many of the state transitions have been
removed because they will never occur under the new tie-
break rule. The result is a state machine that now has four
stable sink states.

The new tie break rule still allows for strong reliances where
there is no tie in the IGP distances. Our approach to model
this new case is to introduce an extended algebra with strong
(is) and weak (iw) indirect routes. That is Σ = {d, is, iw, φ} with
the preference relation:

is � iw ' d � φ,

where under the ' operator, the oldest route is chosen. It would
perhaps be more elegant to include timing into the algebra
directly to resolve the ' preference, but this complicates it
substantially, and we do not need this for the proof to follow.
The arcs in the reliance graph are now labeled weak or strong
and the mapping function ⊕ now depends on this labeling as
shown in Fig. 11.

Theorem 7.1: A single cycle consisting of at least one weak
reliance will never oscillate.
Proof: Consider a single cycle of reliances r1 f r2 f · · ·f
rn f r1 such that at least one of these reliances is weak, that
is, ri

w
f ri+1. At some point in time the information available

to ri will lead to a decision about its state, and that state
x ∈ {d, iw} because of the weak reliance. If the state x = d,
then by construction the direct route is always available, so ri
will continue to use x = d (as it will from now on be the oldest
available route). As soon as one node is fixed, it breaks the
cyclic dependence, and removes the possibility of oscillation.

If x = iw, then ri will transmit φ to ri−1, who will therefore
choose its direct route d, and subsequently ri−2 will receive is
or iw, and make the appropriate decision, again transmitting
this to its upstream neighbor. This will continue around the
cycle until we return to ri. When the cycle returns to ri there
are only two possibilities. Either ri receives iw, in which case,
the current state is stable, or ri receives φ, in which case it
changes it choice to d, and the situation reverts to the case
discussed above. �

It follows that a cycle of strong reliances is required for a co-
reliance group to oscillate. Consequently, we can essentially
discard all weak reliances in a co-reliance group to analyze
oscillatory properties! However, such weak reliances may
provide inbound edge labels with the same properties as in
Section VI-D.

Thus, if a co-reliance group contains no strong cycles, it is
signaling stable. Hence, in general the oldest-path tie-breaker,
although possibly less deterministic (as there are more stable
states), is likely to be less oscillatory than the lowest-router-id
tie-breaker.

VIII. DISCUSSION

We must remember we are trying to solve an NP-hard
problem. In the worst case, the problem is still exponential
in the number of routers. However, in practice, for most cases
the actual number of nodes we need to include in our analysis
is much smaller, and so the exponential complexity of the
problem becomes more manageable.

First, we do not need to calculate the entire reliance
graph for an egress instance; only the reliance graph of the
downstream egress set (from Corollary 5.4). We then restrict
our attention to individual co-reliance groups. These are often
smaller than the egress set because RRs are typically close
to their clients (with respect to IGP distances). The result
is that the sufficient condition of Griffin and Wilfong will
be true for many routers, and these routers will not belong
to a non-singleton co-reliance group. We can further reduce
the size of non-singleton groups by replacing common acyclic
components with a reduced component. Finally, we enumerate
the state-machine of the reduced component using standard
graph algorithms to detect sinks, and oscillatory modes.

Second, a large network has many potential egress instances,
|I| = 2|B| − 1, where |B| is the number of border routers, and
in principle we would need to analyze all of them to prove
network stability. However, we can restrict this enumeration

substantially by considering how networks are designed: im-
port policies on border routers prevent a number of egresses
ever being used in combination. For instance, an AS would
ignore routes learned from peers to its own customers. Also,
the structure of the network will lead to identical reliance
graphs for multiple egress instances.

We have implemented our reliance graph analysis on an
adapted3 topology of a large (about 500 routers) Tier 2 AS. We
found all current egress instances used over a 2 hour interval
(954 unique egress instances). The maximum number of bor-
der routers in an egress instance was 17. All combinations of
current egresses were analyzed. That is, if border routers A, B
and C were in an egress instance, then all 7 non-empty subsets
were also analyzed. This raised the number of egress instances
requiring analysis to 204, 621. We found the reliance graph
(of the downstream egress set) for all egress instances and
found 60, 304 egress instances violated the sufficient condition
of Griffin and Wilfong [1]. That is, there were reliances
between route-reflectors in the downstream egress set — all
such reliances were a result of equal IGP distances and the
lowest-router-id tie-break. However, none of these reliances
resulted in a non-singleton co-reliance group — hence the
current set of egress instances would not oscillate (even when
the sufficient condition of Griffin and Wilfong was violated).
This analysis took under 15 minutes to carry out. We leave
the complete results of this application including analyzing all
possible egress instances (based on import policies) to future
work due to space restrictions.

A. Dealing with Network Dynamics

Networks are dynamic systems changing on a regular basis.
However, such changes typically involve incremental changes
to the current network. The approach we present is highly
amenable to an incremental implementation that analyses only
those portions of the network that have changed. For instance,
a change to the IGP distance between a RR and client only
affects a subset of egress instances — those in which the client
has an external route. Further, many IGP changes will not
affect the reliance graph representation of the egress instance
and hence no re-evaluation is required. If the properties of
reliance graphs are stored in a library similar to that used to
keep co-reliance group properties, many new reliance graphs
need not be evaluated. Note that only the structure of the
reliance graph and its oscillatory nature is retained in the
library. The actual egress instance and the distances between
routers is irrelevant.

These features of our reliance graph representation make it
applicable to an online tool to detect oscillatory properties
in a network. Further, our technique pinpoints the exact
location of oscillation providing the network operator with
the ability to fix the problem quickly (and test their fixes do
not introduce further oscillation prior to implementation). The
same technique could be used for ‘what-if’ purposes such as
failure analysis or planned configuration changes.

3The route-reflector topology of the examined network had three levels and
used the oldest-route tie-break. We compressed the topology to two levels and
used the lowest-router-id tie-break for this analysis.

B. Preventing Oscillation

The above approach — stability by design — allows net-
work operators great flexibility while ensuring stability. A
simple alternative highlighted through the algebraic approach
above would be to introduce an extension to the BGP protocol
by adding this rule prior to step 5: “a RR prefers its clients”.
This would shift the burden of ensuring stability onto the BGP
decision process from network design and configuration. It
may result in sub-optimal routing on some occasions, but so
does the RR hierarchy itself.

IX. RELATED WORK

iBGP has been shown to oscillate with ([8], [12], [13]) and
without ([1]) the MED attribute affecting the BGP decision
process. The oscillation resulting from the MED attribute
was first described by McPherson et al. [8]. This prompted
substantial investigation into its causes and conditions to avoid
it [11], [14]–[20]. However, even with the MED attribute
filtered, or compared AS-wide, it is possible that an iBGP
configuration can oscillate [1], but even where MEDs are
present, our techniques can be extended, by modifying the
reliance rules and extending the algebra [4].

Varadhan et al. [21] investigated the abstract preferences of
routes, finding that certain combinations of preferences across
ASes result in oscillation. They developed a concept of return
graphs with similar motivation to our reliance graph. However,
their work was focused on the abstract problem of stability
in path-vector protocols, while our work is focused on the
practical issue of determining iBGP stability.

Griffin and Sobrinho [10] outlined an algebraic representa-
tion of BGP between ASes. This work, together with earlier
work by Sobrinho [4] that described an algebraic represen-
tation of iBGP, prove general properties of the BGP. We do
not attempt to design an algebraic representation of iBGP as
a whole. Instead, as we are interested in oscillation, we use
a much simpler algebraic representation that captures exactly
what is needed to prove oscillatory properties of a co-reliance
group – and thus a configuration – without the complexities
of protocol idiosynchrocies.

Griffin and Wilfong [1] introduced a sufficient condition
to ensure stability of iBGP. This condition was algebraically
proven by Sobrinho [4]. Feamster and Rexford [9] demon-
strated how to find the selected routes given this sufficient
condition. In this paper, we consider the consequences when
the condition is violated. Although many networks are de-
signed to satisfy this condition, link failures, configuration
errors, the addition/deletion of routers or iBGP sessions can
increase the likelihood that the sufficient condition is violated.
Moreover, as this is not a necessary condition, our techniques
allow an operator to deviate from it. Our approach can discover
if a configuration will result in a signaling correct (or a
less restrictive definition of signaling stable) configuration and
hence stable routing, and can point to locations in the network
that are the causes of oscillation.

X. CONCLUSION AND FUTURE WORK

The interaction between IGP and iBGP is complex. In
this paper we have abstracted away the complex details,

analyzed the properties of the resulting reliance graph and
discovered locations where the unwanted network property
– an oscillation – can occur. The approach uses careful
algebraic modeling of the problem to reduce the computational
complexity dramatically.

For the purposes of this paper, we have analyzed the
oscillatory properties of an iBGP configuration. Further, we
believe our model of iBGP can be used for applications such
as determining the decisions of routers when the sufficient
condition for stability does not hold, identifying the influence
of route announcements from neighboring ASes, and other
what-if analyses within an AS [7]. Similar concepts might
also be extended to inter-AS relationships to predict the
propagation of routes. We plan to look at these in the future.

ACKNOWLEDGMENT

Matthew Roughan and Nigel Bean were supported by
Australian Research Council grant DP0557066. Ashley Flavel
would also like to acknowledge the generous support of the
ARC Communications Research Network.

REFERENCES

[1] T. Griffin and G. Wilfong, “On the Correctness of IBGP Configuration,”
in Proc. ACM SIGCOMM, 2002.

[2] J. A. Storer, An Introduction to Data Structures and Algorithms.
Springer, 2002.

[3] T. Bates, R. Chandra, and E. Chen, “BGP Route Reflection - An
Alternative to Full Mesh IBGP,” RFC 2796, 2000.

[4] J. Sobrinho, “An Algebraic Theory of Dynamic Network Routing,”
IEEE/ACM Trans. Netw., vol. 13, no. 5, October 2005.

[5] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4,” RFC
4271, January 2006.

[6] J. W. Stewart, BGP4. Inter-Domain Routing in the Internet. Addison
Wesley, 1999.

[7] A. Flavel, “PhD Thesis, University of Adelaide,” 2008.
[8] D. McPherson, V. Gill, D. Walton, and A. Retana, “Border Gateway

Protocol (BGP) Persistent Route Oscillation Condition,” RFC 3345,
2002.

[9] N. Feamster and J. Rexford, “Network-Wide Prediction of BGP Routes,”
IEEE/ACM Trans. Netw., vol. 15, no. 2, pp. 253–266, 2007.

[10] T. Griffin and J. Sobrinho, “Metarouting,” in Proc. ACM SIGCOMM,
2005.

[11] T. Griffin, F. B. Shepherd, and G. Wilfong, “The Stable Paths Problem
and Interdomain Routing,” IEEE/ACM Trans. Netw., vol. 10, no. 2, pp.
232–243, 2002.

[12] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and G. Wilfong,
“Route Oscillations in I-BGP with Route Reflection,” in Proc. ACM
SIGCOMM, 2002.

[13] T. Griffin and G. Wilfong, “Analysis of the MED Oscillation Problem
in BGP,” in Proc. ICNP, 2002.

[14] T. Griffin and G. Wilfong, “An Analysis of BGP Convergence Proper-
ties,” in Proc. ACM SIGCOMM, 1999.

[15] T. Griffin, F. B. Shepherd, and G. Wilfong, “Policy Disputes in Path
Vector Protocols,” in Proc. ICNP, 1999.

[16] L. Gao and J. Rexford, “Stable Internet Routing Without Global Coor-
dination,” IEEE/ACM Trans. Netw., pp. 681–692, 2001.

[17] T. Griffin and G. Wilfong, “A Safe Path Vector Protocol,” in Proc. IEEE
INFOCOM, 2000.

[18] L. Gao, T. Griffin, and J. Rexford, “Inherently Safe Backup Routing
with BGP,” in Proc. IEEE INFOCOM, 2001.

[19] M. Vutukuru, P. Valiant, S. Kopparty, and H. Balakrishnan, “How
to Construct a Correct and Scalable iBGP Configuration,” in IEEE
INFOCOM, Barcelona, Spain, April 2006.

[20] N. Feamster and H. Balakrishnan, “Correctness Properties for Internet
Routing,” in Proc. Forty-third Allerton Conference on Communication,
Control, and Computing, 2005.

[21] K. Varadhan, R. Govindan, and D. Estrin, “Persistent Route Oscillations
in Inter-Domain Routing,” Computer Networks, 2000.

