
Tutorial T4Tutorial T4

TCP Congestion Controls: Algorithms and ModelsTCP Congestion Controls: Algorithms and Models

Steven Low (Caltech)Steven Low (Caltech)
Matthew Roughan (AT&T Labs Matthew Roughan (AT&T Labs -- Research)Research)

Sunday, 22 April, 2001 Sunday, 22 April, 2001 -- Full DayFull Day

TCP Congestion Controls

Steven Low
CS & EE Depts, Caltech

netlab.caltech.edu

Matthew Roughan
AT&T Labs - Research

roughan@research.att.com

INFOCOM 2001, April 2001

Copyright, 1996 © Dale Carnegie & Associates, In

Acknowledgments

�S. Athuraliya, D. Lapsley, V. Li, Q. Yin
(UMelb)

�J. Doyle (Caltech), F. Paganini (UCLA)
�Darryl Veitch, D. Hayes, Ericsson-

Melbourne University Lab (EMULab),
Australia

�Ashok Erramilli (QNetworx)

TCP/IP

Primary protocols used in the Internet
�IP (Internet Protocol)

�network layer
�TCP (Transmission Control Protocol)

�transport layer
�flow controlled

�TCP/IP refers to more than just TCP & IP
�UDP: transport layer, not flow controlled
�control & application protocols: ICMP, ARP,

HTTP, …

Why Flow Control?

�October 1986 Internet had its first
congestion collapse

�Link LBL to UC Berkeley
�400 yards, 3 hops, 32 Kbps
�throughput dropped to 40 bps
�factor of ~1000 drop!

�1988, Van Jacobson proposed TCP flow
control

Outline

�Introduction
�TCP algorithms

�Window flow control
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP models
�Renewal model
�Duality model
�Feedback control model

Schedule

9:00 – 10:45 Introduction & TCP algorithms
10:45 – 11:00 Break
11:00 – 12:00 TCP Algorithms (Vegas, RED, …)

12:00 – 1:00 Lunch
1:00 – 2:00 TCP models (1/sqrt(p) law, fixed point)

2:00 – 2:20 Break
2:20 – 3:20 TCP models (duality)

3:20 – 3:40 Break
3:40 – 4:40 TCP models (dynamics)

4:40 – 5:00 Discussion Steven
Matthew

Part 0
Introduction

IP

�Packet switched
�Datagram service

�Unreliable (best effort)
�Simple, robust

�Heterogeneous
�Dumb network, intelligent terminals

Compared with PSTN

TCP

�Packet switched
�End-to-end (like a virtual circuit service)

�Reliable, in order delivery of a byte stream
�Reliability through ACKs
�Multiplexing

�Flow control: use bandwidth efficiently
�Robustness Principle

be conservative in what you do,
be liberal in what you accept from others

Success of IP

Applications

IP

Transmission

Simple/Robust
� Robustness against failure
� Robustness against technological

evolutions
� Provides a service to applications

�Doesn’t tell applications what to do

Quality of Service
� Can we provide QoS with simplicity?
� Not with current TCP…
� … but we can fix it!

WWW, Email, Napster, FTP, …

Ethernet, ATM, POS, WDM, …

IETF

� Internet Engineering Task Force
� Standards organisation for Internet
� Publishes RFCs - Requests For Comment

� standards track: proposed, draft, Internet

�non-standards track: experimental, informational
�best current practice
�poetry/humour (RFC 1149: Standard for the

transmission of IP datagrams on avian carriers)
�TCP should obey RFC

�no means of enforcement
� some versions have not followed RFC

� http://www.ietf.org/index.html

http://www.ietf.org/index.html

RFCs of note

�RFC 791: Internet Protocol
�RFC 793: Transmission Control Protocol
�RFC 1180: A TCP/IP Tutorial
�RFC 2581: TCP Congestion Control
�RFC 2525: Known TCP Implementation

Problems
�RFC 1323: TCP Extensions for High

Performance
�RFC 2026: Internet standards process

Other Key References

�W. Stevens (and Wright), “TCP/IP
Illustrated”, Vol. 1-2
Addison-Wesley, 1994

�Vern Paxson, “Measurements and Analysis
of End-to-End Internet Dynamics”
PhD Thesis

�Van Jacobson, “Congestion Avoidance and
Control”
SIGCOMM’88

TCP/IP Protocol Stack

Applications (e.g. Telnet, HTTP)

TCP UDP ICMP
ARPIP

Link Layer (e.g. Ethernet, ATM)

Physical Layer (e.g. Ethernet, SONET)

Packet Terminology

Application Message

TCP hdr

MSS
TCP Segment

TCP data

IP hdr
IP Packet 20 bytes

IP data

Ethernet dataEthernet
Ethernet Frame 20 bytes

4 bytesMTU 1500 bytes14 bytes

IP Header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Vers(4)

Flags

H len Type of Service Total Length (16 bits)

Fragment OffsetIdentification

Header Checksum
Protocol
(TCP=6)Time to Live

Source IP Address

Destination IP Address

Options Padding

IP data

TCP Header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0 1 2 3

Source Port Destination Port

Sequence Number (32 bits)

Checksum

Options Padding

Acknowledgement Number (32 bits)

Urgent Pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Data
Offset Reserved Receive Window (16 bits)

TCP data

TCP versions

�TCP is not perfectly homogenous (200+)
4.2 BSD first widely available release of TCP/IP (1983)

4.3 BSD (1986)
Windows 95

Windows NT

4.3 BSD Tahoe (1988)

4.3 BSD Reno (1990)

Vegas (1994)

SunOS 4.1.3,4.1.4

4.4 BSD (1993)HP/UX

Solaris 2.3,2.4
Digital OSF Linux 1.0IRIX

.....
NewReno (1999)

Simulation
� ns-2: http://www.isi.edu/nsnam/ns/index.html

�Wide variety of protocols
�Widely used/tested

� SSFNET: http://www.ssfnet.org/homePage.html

� Scalable to very large networks

� Care should be taken in simulations!
�Multiple independent simulations

� confidence intervals
� transient analysis – make sure simulations are long enough

�Wide parameter ranges

� All simulations involve approximation

http://www.isi.edu/nsnam/ns/index.html
http://www.ssfnet.org/homePage.html

Other Tools

�tcpdump

�Get packet headers from real network traffic
�tcpanaly (V.Paxson, 1997)

�Analysis of TCP sessions from tcpdump

�traceroute

�Find routing of packets

�RFC 2398
�http://www.caida.org/tools/

Part I
Algorithms

Outline

�Introduction
�TCP Algorithms

�Window flow control
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model
�Feedback control model

Early TCP

�Pre-1988
�Go-back-N ARQ

�Detects loss from timeout
�Retransmits from lost packet onward

�Receiver window flow control
�Prevent overflows at receive buffer

�Flow control: self-clocking

Why Flow Control?

�October 1986, Internet had its first
congestion collapse

�Link LBL to UC Berkeley
�400 yards, 3 hops, 32 Kbps
�throughput dropped to 40 bps
�factor of ~1000 drop!

�1988, Van Jacobson proposed TCP flow
control

Flow Control Issues

TCP (Reno)
reasonable (big buffers)

“yes”

reasonable (after packets lost)

no

no

distributed
end-to-end

� Efficiency
� Stability
� Convergence

� Responsiveness
� Smoothness

� Fairness
� Distribution

� Centralized/distributed
� End-to-end/network

Window Flow Control

�~ W packets per RTT
�Lost packet detected by missing ACK

1 2 W

1 2 W

1 2 W

data ACKs

1 2 W

RTT

Source
time

Destination
time

Source Rate

�Limit the number of packets in the network
to window W

�Source rate = bps

�If W too small then rate « capacity
If W too big then rate > capacity

=> congestion

RTT
MSSW ×

Effect of Congestion
� Packet loss
� Retransmission
� Reduced throughput
� Congestion collapse due to

� Unnecessarily retransmitted packets
� Undelivered or unusable packets

� Congestion may continue after the overload!
throughput

load

Congestion Control

�TCP seeks to
�Achieve high utilization
�Avoid congestion
�Share bandwidth

�Window flow control
�Source rate = packets/sec

�Adapt W to network (and conditions)
W = BW x RTT

RTT
W

Example Networks

Network Bandwidth RTT BW x delay

56k dial up 56 kbps 100 ms 700 B

10baseT Ethernet 10 Mbps 3 ms 3,750 B

T1 (satellite) 1.54 Mbps 500 ms 96 kB

OC48 (point-to-point) 2.5 Gbps 20 ms 6 MB

OC192
(transcontinental)

 10 Gbps 60 ms 75 MB

 Range covers 8 orders of magnitude

TCP Window Flow Controls

� Receiver flow control
� Avoid overloading receiver
� Set by receiver
� awnd: receiver (advertised) window

� Network flow control
� Avoid overloading network
� Set by sender
� Infer available network capacity
� cwnd: congestion window

� Set W = min (cwnd, awnd)

Receiver Flow Control

�Receiver advertises awnd with each ACK
�Window awnd

�closed when data is received and ack’d
�opened when data is read

�Size of awnd can be the performance limit
(e.g. on a LAN)
�sensible default ~16kB

Network Flow Control

�Source calculates cwnd from indication of
network congestion

�Congestion indications
�Losses
�Delay
�Marks

�Algorithms to calculate cwnd
�Tahoe, Reno, Vegas, RED, REM …

Outline

�Introduction
�TCP Algorithms

�Window flow control
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model
�Feedback control model

TCP Congestion Controls
� Tahoe (Jacobson 1988)

� Slow Start
� Congestion Avoidance
� Fast Retransmit

� Reno (Jacobson 1990)
� Fast Recovery

� Vegas (Brakmo & Peterson 1994)
�New Congestion Avoidance

� RED (Floyd & Jacobson 1993)
� Probabilistic marking

� REM (Athuraliya & Low 2000)
� Clear buffer, match rate

Variants

�Tahoe & Reno
�NewReno
�SACK
�Rate-halving
�Mod.s for high performance

�AQM
�RED, ARED, FRED, SRED
�BLUE, SFB
�REM

TCP Congestion Control

�Has four main parts
�Slow Start (SS)
�Congestion Avoidance (CA)
�Fast Retransmit
�Fast Recovery

�ssthresh: slow start threshold determines
whether to use SS or CA

�Assume packet losses are caused by
congestion

Tahoe
Reno

TCP Tahoe (Jacobson 1988)

window

time
SS CA

SS: Slow Start
CA: Congestion Avoidance

Slow Start

�Start with cwnd = 1 (slow start)
�On each successful ACK increment cwnd

cwnd ← cnwd + 1
�Exponential growth of cwnd

each RTT: cwnd ← 2 x cwnd
�Enter CA when cwnd >= ssthresh

Slow Start

data packet

ACK

receiversender

1 RTT

cwnd
1

2

3
4

5
6
7
8

cwnd ← cwnd + 1 (for each ACK)

Congestion Avoidance

�Starts when cwnd ≥ ssthresh
�On each successful ACK:

cwnd ← cwnd + 1/cwnd
�Linear growth of cwnd

each RTT: cwnd ← cwnd + 1

Congestion Avoidance

cwnd
1

2

2.5

3.8

data packet

ACK

2.9

3.2
3.6

cwnd ← cwnd + 1/cwnd (for each ACK)

receiversender

1 RTT

Congestion Avoidance

cwnd
1

2

3

4

data packet

ACK

cwnd ← cwnd + 1 (for each cwnd ACKS)

receiversender

1 RTT

Packet Loss

�Assumption: loss indicates congestion
�Packet loss detected by

�Retransmission TimeOuts (RTO timer)
�Duplicate ACKs (at least 3)

1 2 3 4 5 6

1 2 3

Packets

Acknowledgements

3 3

7

3

Timeout

ssthresh ← cwnd/2

cwnd = 1

Fast Retransmit

�Wait for a timeout is quite long
�Immediately retransmits after 3 dupACKs

without waiting for timeout
�Adjusts ssthresh

flightsize = min(awnd, cwnd)
ssthresh ← max(flightsize/2, 2)

�Enter Slow Start (cwnd = 1)

Successive Timeouts

�When there is a timeout, double the RTO
�Keep doing so for each lost retransmission

� Exponential back-off
�Max 64 seconds1

�Max 12 restransmits1

1 - Net/3 BSD

Summary: Tahoe

� Basic ideas
�Gently probe network for spare capacity
�Drastically reduce rate on congestion
�Windowing: self-clocking
�Other functions: round trip time estimation, error

recovery
for every ACK {

if (W < ssthresh) then W++ (SS)

else W += 1/W (CA)

}

for every loss {

ssthresh = W/2

W = 1

}

TCP Tahoe

TCP Reno (Jacobson 1990)

CASS

Fast retransmission/fast recovery

Fast recovery
� Motivation: prevent `pipe’ from emptying after

fast retransmit
� Idea: each dupACK represents a packet having

left the pipe (successfully received)
� Enter FR/FR after 3 dupACKs

� Set ssthresh ← max(flightsize/2, 2)
� Retransmit lost packet
� Set cwnd ← ssthresh + ndup (window inflation)
�Wait till W=min(awnd, cwnd) is large enough;

transmit new packet(s)
�On non-dup ACK (1 RTT later), set cwnd ← ssthresh

(window deflation)
� Enter CA

Example: FR/FR

�Fast retransmit
�Retransmit on 3 dupACKs

�Fast recovery
�Inflate window while repairing loss to fill pipe

time

time

3 4 5 6 87 1

0 0 0

7

0 0

9

9

0 0

0 1

11

Exit FR/FR

RTT

8

21S

D

Summary: Reno

�Basic ideas
�Fast recovery avoids slow start
�dupACKs: fast retransmit + fast recovery
�Timeout: fast retransmit + slow start

slow start retransmit

congestion
avoidance FR/FR

dupACKs

timeout

RTO Calculation

�An accurate RTT measure is required to
judge timeouts

�We can measure RTT by measuring the
time to receive a packets ACK

�Use a smoothed RTT, SRTT and the
smoothed mean deviation DRTT

RTO = SRTT + 4 DRTT
�Initial RTT should be > 3 seconds

�Avoid spurious retransmission

Round Trip Time Estimation

� RTT is not known
� From <1 ms up to >1 second

� Need to know RTT to calculate RTO
� The measurement of RTT

SRTT = SRTT + g (MRTT-SRTT)
DRTT = DRTT + h (|MRTT-SRTT| - DRTT)

� Need to minimize processing requirements
�Only 1 counter (regardless of how many packets are

extant)
� Counter granularity is typically 500 ms

� Measurement equations have gain

Timers on a Packet Loss

�Ignore RTT for retransmitted packets
(Karn)

�If a timeout occurs, double the RTO and
retransmit the lost packet
�results in exponential back-off
�recalculate SRTT only when a packet gets

through

�RTT is lost if several packets are lost

Delayed Acknowledgements

� ACKs may be delayed to ‘piggy-back’ on
returning data packets
� by no more than 500ms, typically 200ms
�Out of order segments are ACK’d immediately
� Segments which fill a gap are ACK’d immediately

� While waiting
�More data packets may arrive
� A delayed ACK may ack. up to 2 MSS packets

� SS and CA increment cwnd per ACK
�Not per ACK’d packet
�Window size increases more slowly

TCP Options for High-Perf.

�In high performance networks the
counters may wrap
�max sequence number is 232 –1 ≅ 4 GB
�The maximum awnd is 216 –1 = 65,535 B
�Protection Against Wrapped Sequence

Numbers (PAWS) (RFC 1323)
�Window scaling (RFC 1323)

�Timestamps (RFC 1323)

�Larger initial window (RFC 2414, 2415, 2416)

Implementation Dependence

� ssthresh initialisation (not standardised)
� Reno ssthreshinit = ∞
� Solaris ssthreshinit = 8
� Linux ssthreshinit = 1

� algorithm for incrementing cwnd in CA
� 1990 Reno had CA window increase

�∆W = MSS2/cwnd + MSS/8
� Sharing between TCP sessions (RFC 2140)

�Over time (temporal) – caching window values
� Between sessions (ensemble) – better RTT estimation

�Many possible bugs! (RFC 2525)

NewReno: Motivation

� On 3 dupACKs, receiver has packets 2, 4, 6, 8, cwnd=8,
retransmits pkt 1, enter FR/FR

� Next dupACK increment cwnd to 9
� After a RTT, ACK arrives for pkts 1 & 2, exit FR/FR,

cwnd=5, 8 unack’ed pkts
� No more ACK, sender must wait for timeout

1 2
timeS 1

8

FR/FR

0 0 0 0 0

9

8 unack’d pkts

2

5

3

timeout

3 4 5 6 7 8 9 0

D time

NewReno Fall & Floyd ‘96, (RFC 2583)

� Motivation: multiple losses within a window
� Partial ACK acknowledges some but not all packets

outstanding at start of FR
� Partial ACK takes Reno out of FR, deflates window
� Sender may have to wait for timeout before proceeding

� Idea: partial ACK indicates lost packets
� Stays in FR/FR and retransmits immediately
� Retransmits 1 lost packet per RTT until all lost packets

from that window are retransmitted
� Eliminates timeout

SACK Mathis, Mahdavi, Floyd, Romanow ’96 (RFC 2018, RFC 2883)

� Motivation: Reno & NewReno retransmit at most
1 lost packet per RTT
� Pipe can be emptied during FR/FR with multiple losses

� Idea: SACK provides better estimate of packets
in pipe
� SACK TCP option describes received packets
�On 3 dupACKs: retransmits, halves window, enters FR
�Updates pipe = packets in pipe

� Increment when lost or new packets sent
�Decrement when dupACK received

� Transmits a (lost or new) packet when pipe < cwnd
� Exit FR when all packets outstanding when FR was

entered are acknowledged

Variant: Rate-halving
� Motivation: in and after FR, cwnd packets sent in second

half of RTT

time

time

Source

Destination

RTT FR/FR

W0/2+3

W0

W0/2

� Idea: send 1 packet every 2 ACKs for 1 RTT
� Smooth burst
� Reduce chance of timeout

Outline

�Introduction
�TCP Algorithms

�Window flow control
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model
�Feedback control model

TCP Vegas (Brakmo & Peterson 1994)

window

� Reno with a new congestion avoidance algorithm
� Converges (provided buffer is large) !

SS CA
time

Congestion avoidance

�Each source estimates number of its own
packets in pipe from RTT

�Adjusts window to maintain estimate
between αd and βd

for every RTT

{

if W/RTTmin – W/RTT < α RTTmin then W ++

if W/RTTmin – W/RTT > β RTTmin then W --

}

for every loss

W := W/2

Implications

�Congestion measure = end-to-end queueing
delay

�At equilibrium
�Zero loss
�Stable window at full utilization
�Approximately weighted proportional fairness
�Nonzero queue, larger for more sources

�Convergence to equilibrium
�Converges if sufficient network buffer
�Oscillates like Reno otherwise

Outline

�Introduction
�TCP Algorithms

�Window flow control
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model
�Feedback control model

RED (Floyd & Jacobson 1993)

� Idea: warn sources of incipient congestion by
probabilistically marking/dropping packets

� Link algorithm to work with source algorithm
(Reno)

� Bonus: desynchronization
� Prevent bursty loss with buffer overflows

window

B
Avg queue

marking

1

router

time

host

RED

�Implementation
�Probabilistically drop packets
�Probabilistically mark packets
�Marking requires ECN bit (RFC 2481)

�Performance
�Desynchronization works well
�Extremely sensitive to parameter setting
�Fail to prevent buffer overflow as #sources

increases

Variant: ARED (Feng, Kandlur, Saha, Shin 1999)

�Motivation: RED extremely sensitive to
#sources

�Idea: adapt maxp to load
�If avg. queue < minth, decrease maxp
�If avg. queue > maxth, increase maxp

�No per-flow information needed

Variant: FRED (Ling & Morris 1997)

� Motivation: marking packets in proportion to flow
rate is unfair (e.g., adaptive vs unadaptive flows)

� Idea
� A flow can buffer up to minq packets without being

marked
� A flow that frequently buffers more than maxq packets

gets penalized
� All flows with backlogs in between are marked according

to RED
�No flow can buffer more than avgcq packets persistently

� Need per-active-flow accounting

Variant: SRED (Ott, Lakshman & Wong 1999)

�Motivation: wild oscillation of queue in RED
when load changes

�Idea:
�Estimate number N of active flows

�An arrival packet is compared with a randomly
chosen active flows

�N ~ prob(Hit)-1

�cwnd~p-1/2 and Np-1/2 = Q0 implies p = (N/Q0)2

�Marking prob = m(q) min(1, p)

�No per-flow information needed

Variant: BLUE (Feng, Kandlur, Saha, Shin 1999)

�Motivation: wild oscillation of RED leads to
cyclic overflow & underutilization

�Algorithm
�On buffer overflow, increment marking prob
�On link idle, decrement marking prob

Variant: SFB
� Motivation: protection against nonadaptive flows
� Algorithm

� L hash functions map a packet to L bins (out of NxL)
�Marking probability associated with each bin is

� Incremented if bin occupancy exceeds threshold
�Decremented if bin occupancy is 0

� Packets marked with min {p1, …, pL}
h1 h2 hL-1 hL

1

1

1 1
nonadaptive

adaptive

Variant: SFB

�Idea
�A nonadaptive flow drives marking prob to 1

at all L bins it is mapped to
�An adaptive flow may share some of its L bins

with nonadaptive flows
�Nonadaptive flows can be identified and

penalized

REM Athuraliya & Low 2000

�Main ideas
�Marking probability exponential in `price’
�Price adjusted to match rate and clear buffer
�`Congestion’ = `demand>supply’
�… but performance remains good!

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

L in k c o n g e s t io n m e a s u re

Li
nk

 m
ar

ki
ng

 p
ro

ba
bi

lit
y

REM RED

1

Avg queue

Part II
Models

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model

� law
�Fixed-point models
�Finite source models

�Duality model
� Feedback control model

p1

Law p1

� Equilibrium window size

� Equilibrium rate

� Empirically constant a ~ 1
� Verified extensively through simulations and on

Internet
� References

�T.J.Ott, J.H.B. Kemperman and M.Mathis (1996)
�M.Mathis, J.Semke, J.Mahdavi, T.Ott (1997)
�T.V.Lakshman and U.Mahdow (1997)
� J.Padhye, V.Firoin, D.Towsley, J.Kurose (1998)
� J.Padhye, V.Firoin, D.Towsley (1999)

p
aws =

pD
ax

s

s =

Implications

�Applicability
�Additive increase multiplicative decrease (Reno)
�Congestion avoidance dominates
�No timeouts, e.g., SACK+RH
�Small losses
�Persistent, greedy sources
�Receiver not bottleneck

�Implications
�Reno equalizes window
�Reno discriminates against long connections

Derivation (I)
window

Area = 2w2/3

t

2w/3

w = (4w/3+2w/3)/2

4w/3

2w/3

� Each cycle delivers 2w2/3 packets
� Assume: each cycle delivers 1/p packets

�Delivers 1/p packets followed by a drop
� Loss probability = p/(1+p) ~ p if p is small.

� Hence pw 2/3=

Derivation (II)

� Assume: loss occurs as Bernoulli process rate p
� Assume: spend most time in CA
� Assume: p is small
� wn is the window size after nth RTT

−+
=+))1((prob.lost ispacket no if,1

) (prob.lost ispacket a if,2/
1

nn

nn
n pww

pww
w

pw
pw

wpwwpww

2
2

)1)(1(
2

2

≈
≈

−++=

Simulations

Refinement (Padhye, Firoin, Towsley & Kurose 1998)

� Renewal model including
� FR/FR with Delayed ACKs (b packets per ACK)
� Timeouts
� Receiver awnd limitation

� Source rate

� When p is small and Wr is large, reduces to

pD
ax

s

s =

+

+

=
)321(

8
33,1min

3
2

1 ,min
2ppbpTbpD

D
Wx

os
s

r
s

Further Refinements

�Further refinements of previous formula
�Padhye, Firoin, Towsley and Kurose (1999)

�Other loss models
�E.Altman, K.Avrachenkov and C.Barakat

(Sigcomm 2000)
�Square root p still appears!

�Dynamic models of TCP
�E.G. RTT evolves as window increases

Dynamic model (Bonald 1998)

� Single source model
� Single link
� Ignore slow start
� Instantaneous loss detection
� RTT D(t) = max {d, w(t)/c }

ws(t)
c

d

� Key: window process (CA) increases at rate 1/D(t)

Wtwtwtw

Wtwcd
tw

ctw

cdtw
d

tw

==

<<=

≤=

+)(if),()(

)(if,
)(

)(

)(if,1)(

γ

&

&

Dynamic Model

�Periodic solution (single source)

)(tws

W

d
t

ct2

Wγ

cd

t

Application (TCP Over Wireless)

�TCP uses loss as a congestion indication
�In wireless, packet loss may occur due to

�Fading
�Interference
�Handover

� law provides a quick method for
estimating the effect of wireless losses

�Some method is required to avoid
performance degradation (see RFC 2757
and the references therein)

p1

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model

� law
�Fixed-point models
�Finite source models

�Duality model
� Feedback control model

p1

Calculating Performance

�Single link, capacity C, buffer B
�Window size : w = f(p)
�Loss rate: p = g(w; C,B)
�Find w*: w* = f(g(w*; C,B))

�Example:
�Window size:
�Loss rate from bufferless approx.

pw 1=

2
42

* ++= CCw

[]
w
Cwp

+−=

Fixed Point Models

� Mean field theory
� Solve for a particular source given the mean field
�Use single source to approximate the mean field

� Generalize previous example
�Multiple sources
�Network

�various routes, RTTs, capacities, …

� Arbitrary functions f, and g

� Solve using
� Repeated substitution
�Newton-Raphson

Repeated Substitution

x

f(x)
unstable case

x1 x2x3x*

x* = f(x*)

x0

xn+1 = f(xn)

stable case

x

f(x)

x*

x* = f(x*)

x0x1 x2

|f’(x)|>1|f’(x)|<1

Newton-Raphson

x=f(x) becomes F(x)=f(x)-x=0
use the slope F’ to form a tangent

xn+1 = xn – F(xn)/F’(xn)

x0x1

Network Formulation
� N links, R routes
� Capacity c = {cj} j=1,..,N
� Propagation time t = {tj} j=1,..,N
� Routing matrix A = {aij} j=1,..,N, i=1,..,R

aij = 1, if link j is in route i
aij = 0, if link j isn’t in route j

� Sources per route n = {ni} i=1,..,R
� MSS per route m = {mj} i=1,..,R
� Route send rate s = {sj} i=1,..,R
� Link loss rate q = {di} j=1,..,N
� Route loss rate p = {pi} i=1,..,R

Example Network

=
110001000
001100010
000011111

A

route 1

route 2 route 3
10 1.5

10 10 10 10
101.5 1.5

c = (10, 1.5, 1.5, 1.5, 10, 10, 10, 10, 10)t

�N congested bottlenecks (e.g. 2)

1 2 3 4 5

6 7 8 9

ε δ
ε ε ε ε

εδ δ

t = (ε, δ, δ, δ, ε, ε, ε, ε, ε)t

Solution
� Estimate RTT delay from propagation time

d = 2At (can use queueing delays)

� Route send rates
x(w) = (w .* n .* m) ./ d

� Link rates
b(w) = Atx

� Link loss rate
q(w;c) = [b – c]+./b (can use queueing losses)

� Route loss rate
p(w;c) = 1 – eAln(1-q(w;c))

� Window size
W2 p(w;c) – a = 0 (could use refined model,

or a transient model)

Numerical Example

�Send rates

simulation

queueing delays
correct RTT

prop. delays

Numerical Example

�Window sizes

simulation

queueing delays
correct RTT

prop. delays

Numerical Example

�Loss rates

simulation

queueing delays
correct RTT

prop. delays

Unfairness in TCP

�Rates along either route are skewed
�TCP Tahoe/Reno are inherently unfair

�biased against long RTT
�biased against multiply congested paths

(S.Floyd, 1991)

�TCP Vegas is proportionally fair (see later)

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model

� law
�Fixed-point models
�Finite source models

�Duality model
� Feedback control model

p1

Importance of Finite Sources

�Infinite sources are unrealistic
�WWW traffic has median response size 3-4kB

�Infinite sources lead to possibly spurious
conclusions
�Synchronization
�LRD (Veres and Boda, Infocom 2000)

�Performance of finite sources is
profoundly different
�SS rather than CA

Finite Source Models

�Processor sharing models
�D.P. Heyman and T.V. Lakshman and A. Neidhardt, “A

New Method for Analysing Feedback-Based Protocols
with Applications to Engineering Web Traffic over the
Internet”, SIGMETRICS 1997.

� others
� E.G. M/G/1 with processor sharing

� Assumes: TCP sessions arrive as Poisson process
� Assumes: some file transfer size distribution G (heavy-tail)

� Assumes: TCP sources share bandwidth evenly
� These types of model are not quite good enough

�Don’t take dynamics of TCP into account

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model
�Duality model (F, G, U)

�Queue management G : RED, REM
�TCP G and U : Reno, Vegas
�Performance of REM

� Feedback control model

Flow control

�Interaction of source rates xs(t) and
congestion measures pl(t)

�Duality theory
� They are primal and dual variables
� Flow control is optimization process

�Example congestion measure
� Loss (Reno)
� Queueing delay (Vegas)
� Queue length (RED)
� Price (REM)

Model
Sources s

L(s) - links used by source s
Us(xs) - utility if source rate = xs

� Network
� Links l of capacities cl

c1 c2

x1

x2
x3

121 cxx ≤+ 231 cxx ≤+

Primal problem

Llcx

xU

l

l

s
ss

xs

∈∀≤

∑
≥

 , subject to

)(max
0

Assumptions
Strictly concave increasing Us

� Unique optimal rates xs exist
� Direct solution impractical

Prior Work

� Formulation
� Kelly 1997

� Penalty function approach
� Kelly, Maulloo and Tan 1998
� Kunniyur and Srikant 2000

� Duality approach
� Low and Lapsley 1999
� Athuraliya and Low 2000, Low 2000

� Extensions
�Mo & Walrand 1998
� La & Anantharam 2000

Prior Work

� Formulation
� Kelly 1997

� Penalty function approach
� Kelly, Maulloo and Tan 1998
� Kunniyur and Srikant 2000

� Duality approach
� Low and Lapsley 1999
� Athuraliya and Low 2000, Low 2000

� Extensions
�Mo & Walrand 1998
� La & Anantharam 2000

Duality Approach

 −+=

∈∀≤

∑∑

∑

≥≥

≥

)()(max)(min

 , subject to)(max

00

0

:Dual

:Primal

l
l

l
l

s
ss

xp

l
l

s
ss

x

xcpxUpD

LlcxxU

s

s

))(),(()1(
))(),(()1(
txtpGtp
txtpFtx

=+
=+

Primal-dual algorithm:

Duality Model of TCP

� Source algorithm iterates on rates
� Link algorithm iterates on prices
� With different utility functions

))(),(()1(
))(),(()1(
txtpGtp
txtpFtx

=+
=+

Primal-dual algorithm:

Reno, Vegas

DropTail, RED, REM

Example

� Basic algorithm
))(()1(: source 1' tpUtx s

ss

−=+
+−+=+)])(()([)1(:link l

l

ll ctxtptp γ

Theorem (ToN’99)

Converge to optimal rates in asynchronous
environment

TCP schemes are smoothed versions of source
algorithm …

Summary

Llcx

xU

l

l

s
ss

xs

∈∀≤

∑
≥

 , subject to

)(max
0

� Flow control problem

� Primal-dual algorithm

))(),(()1(
))(),(()1(
txtpGtp
txtpFtx

=+
=+

� Major TCP schemes
�Maximize aggregate source utility
�With different utility functions

Summary

�What are the (F, G, U) ?

�Derivation
�Derive (F, G) from protocol description
�Fix point (x, p) = (F, G) gives equilibrium
�Derive U

�regard fixed point as Kuhn-Tucker condition

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model
�Duality model (F, G, U)

�Queue management G : RED, REM
�TCP G and U : Reno, Vegas
�Performance of REM

� Feedback control model

Active queue management

�Idea: provide congestion information by
probabilistically marking packets

�Issues
�How to measure congestion (p and G)?
�How to embed congestion measure?
�How to feed back congestion info?

x(t+1) = F(p(t), x(t))
p(t+1) = G(p(t), x(t))

Reno, Vegas

DropTail, RED, REM

RED (Floyd & Jacobson 1993)

� Congestion measure: average queue length
pl(t+1) = [pl(t) + xl(t) - cl]+

� Embedding: p-linear probability function

� Feedback: dropping or ECN marking

Avg queue

marking

1

REM (Athuraliya & Low 2000)

� Congestion measure: price
pl(t+1) = [pl(t) + γ(αl bl(t)+ xl (t) - cl)]+

� Embedding:

� Feedback: dropping or ECN marking

REM (Athuraliya & Low 2000)

� Congestion measure: price
pl(t+1) = [pl(t) + γ(αl bl(t)+ xl (t) - cl)]+

� Embedding: exponential probability function

� Feedback: dropping or ECN marking

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

L i n k c o n g e s t i o n m e a s u r e

Li
nk

 m
ar

ki
ng

 p
ro

ba
bi

lit
y

Key features

�Clear buffer and match rate

Match rateClear buffer

+−++=+)])(ˆ)(()([)1(l
l

llll ctxtbtptp αγ

)()(1 1 tptp s
l −− −⇒− φφ

Sum prices

Theorem (Paganini 2000)

Global asymptotic stability for general utility
function (in the absence of delay)

Active Queue Management

pl(t) G(p(t), x(t))
DropTail loss [1 - cl/xl (t)]+ (?)

RED queue [pl(t) + xl(t) - cl]+

Vegas delay [pl(t) + xl (t)/cl - 1]+

REM price [pl(t) + γ(αl bl(t)+ xl (t) - cl)]+

x(t+1) = F(p(t), x(t))
p(t+1) = G(p(t), x(t))

Reno, Vegas

DropTail, RED, REM

Congestion & performance

pl(t) G(p(t), x(t))
Reno loss [1 - cl/xl (t)]+ (?)

Reno/RED queue [pl(t) + xl(t) - cl]+

Reno/REM price [pl(t) + γ(αl bl(t)+ xl (t) - cl)]+

Vegas delay [pl(t) + xl (t)/cl - 1]+

� Decouple congestion & performance measure
� RED: `congestion’ = `bad performance’
� REM: `congestion’ = `demand exceeds supply’

But performance remains good!

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model
�Duality model (F, G, U)

�Queue management G : RED, REM
�TCP G and U : Reno, Vegas
�Performance of REM

� Feedback control model

Utility functions

� Reno

� Reno/RED

� Reno/REM

� Vegas, Vegas/REM

= −

2
tan2)(1 ss

s
s

reno
s

Dx
D

xU

+

+
=

−

−

small ,
2

tan2

large ,
2

tan2

)(
1

22

1
11

/

s
ss

s
s

s
ss

s
s

s
redreno

s

xDx
D

xb

xDx
D

xb
xU

ρ

ρ

+

+= −−

2
tan2221log)(log)(1

22
1/ ss

sss
s

remreno
s

Dx
DDx

xxU φ

ssss
vegas
s xdxU log)(α=

Reno: F
for every ack (ca)
{ W += 1/W }

for every loss

{ W := W/2 }

())()(
2

)())(1)((tptxtw
w

tptxtw s
s

s

s
s −−=∆

Primal-dual algorithm:

x(t+1) = F(p(t), x(t))
p(t+1) = G(p(t), x(t))

Reno, Vegas

DropTail, RED, REM

Reno: F
for every ack (ca)
{ W += 1/W }

for every loss

{ W := W/2 }

())()(
2

)())(1)((tptxtw
w

tptxtw s
s

s

s
s −−=∆

Primal-dual algorithm:

x(t+1) = F(p(t), x(t))
p(t+1) = G(p(t), x(t))

Reno, Vegas

DropTail, RED, REM

Reno: F
for every ack (ca)
{ W += 1/W }

for every loss

{ W := W/2 }

())()(
2

)())(1)((tptxtw
w

tptxtw s
s

s

s
s −−=∆

())(
2

)())(1()()(),(
2

2 tptx
D

tptxtxtpF s

s
ss −−+=

Primal-dual algorithm:

x(t+1) = F(p(t), x(t))
p(t+1) = G(p(t), x(t))

Reno, Vegas

DropTail, RED, REM

Reno: Utility Function

())(
2

)())(1()()(),(
2

2 tptx
D

tptxtxtpF s

s
ss −−+=

()xpFx ss , =

px
D

p s

s 2
)1(2

2 =−

= −

2
tan2)(1 ss

s
s

reno
s

Dx
D

xUp
Dx ss

2

2
22 =

+

Reno: summary

� Equilibrium characterization

Duality

� Congestion measure p = loss
� Implications

� Reno equalizes window w = Dsxs

� inversely proportional to delay Ds

� dependence for small p

p
Dx ss

2

2
22 =

+

)(s
reno
s xU⇒

p1

 2
pD

x
s

s ≈⇒

Validation - Reno

� 30 sources, 3 groups with RTT = 3, 5, 7ms + 6ms (queueing delay)
Link capacity = 64 Mbps, buffer = 50 kB

� Measured windows equalized, match well with theory (black line)

Reno/RED
� Algorithm model

RED

queue

1

()
+

 −+=

−−+=

∑
s

s

s

s
ss

ctxtptxtpG

tpmtx
D

tpmtxtxtpF

)()())(),((

))((
2

)()))((1()()(),(
2

2

Reno/RED
� Algorithm model

� Equilibrium characterization

Duality

� Congestion measure p = queue
� Queue increases with load

)(
2

2
22 pm

Dx ss

=
+

)(/
s

redreno
s xU⇒

RED

queue

1

()
+

 −+=

−−+=

∑
s

s

s

s
ss

ctxtptxtpG

tpmtx
D

tpmtxtxtpF

)()())(),((

))((
2

)()))((1()()(),(
2

2

Validation – Reno/RED

� 30 sources, 3 groups with RTT = 3, 5, 7 ms + 6 ms (queueing delay)
� Link capacity = 64 Mbps, buffer = 50 kB

Reno/REM
� Algorithm model

()
+

 −+−+=

−−+=

∑
s

s

s

s
ss

ctxbtbtptxtpG

tpmtx
D

tpmtxtxtpF

)())((()())(),((

))((
2

)()))((1()()(),(

*

2

2

αγ

Reno/REM
� Algorithm model

� Equilibrium characterization

Duality

� Congestion measure p = price
� Match queue and rate
� Sum prices

)(
2

2
22 pm

Dx ss

=
+

)(/
s

remreno
s xU⇒

()
+

 −+−+=

−−+=

∑
s

s

s

s
ss

ctxbtbtptxtpG

tpmtx
D

tpmtxtxtpF

)())((()())(),((

))((
2

)()))((1()()(),(

*

2

2

αγ

1
REM

price

Validation – Reno/REM

� 30 sources, 3 groups with RTT = 3, 5, 7 ms
� Link capacity = 64 Mbps, buffer = 50 kB
� Smaller window due to small RTT (~0 queueing delay)

Queue – Reno/DropTail

Queue close to full if
� many sources

If buffer capacity is small
� wild oscillation of queue

and windows

mean queue = 47 pkts
buffer capacity = 50 pkts

Queue – Reno/RED

Queue increases as
sources activate

RED parameters:
min_th = 10 pkts, max_th = 40 pkts, max_p = 0.1

Queue – Reno/REM

REM parameters: γ = 0.05, α = 0.4, φ = 1.15

Very small queue
mean = 1.5 pkts

Yet, utilization = 92%

Reno & Basic Algorithm

� Basic algorithm
))(()1(: source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …

Reno & Basic Algorithm

� Basic algorithm
))(()1(: source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …

� Reno/DropTail, Reno/RED, Reno/REM

()
+

 −+=+))()((
2

))(()(1 22 txtxtpmtxtx ssss

))((1' tpUs
−

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model
�Duality model (F, G, U)

�Queue management G : RED, REM
�TCP G and U : Reno, Vegas
�Performance of REM

� Feedback control model

Vegas model

queue size

for every RTT

{ if W/RTTmin – W/RTT < α then W ++

if W/RTTmin – W/RTT > α then W -- }

for every loss

W := W/2

() sssss
s

ss dtxdtw
D

txtx

<−+=+ α)()(if 1)(1 2

() else)(1 txtx ss =+

() sssss
s

ss dtxdtw
D

txtx

>−−=+ α)()(if 1)(1 2

F:

pl(t+1) = [pl(t) + xl (t)/cl - 1]+G:

Vegas Utility

�Equilibrium (x, p) = (F, G)

sssss dxdw α=−

ssss

reno

s xdxU log)(α=

Vegas & Basic Algorithm

� Basic algorithm
))(()1(: source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …

Vegas & Basic Algorithm

� Basic algorithm
))(()1(: source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …

� Vegas

))((1' tpUs
−

())()(if 1)(1 2 txtx
D

txtx ss
s

ss

<+=+

() else)(1 txtx ss =+

())()(if 1)(1 2 txtx
D

txtx ss
s

ss

>−=+

Implications

� Delay
� Congestion measures = end to end queueing delay

� Sets rate

� Equilibrium condition: Little’s Law

� Fairness
�Weighted proportional fairness

� Loss
�No loss if buffers are sufficiently large
�Otherwise: equilibrium not attainable, loss unavoidable

(revert to Reno)

l

c
tq)(

)(
)(

tq
dtx s

s
ss α=

l

Validation - Vegas

Source 1 Source 3 Source 5

RTT (ms) 17.1 (17) 21.9 (22) 41.9 (42)
Rate (pkts/s) 1205 (1200) 1228 (1200) 1161 (1200)
Window (pkts) 20.5 (20.4) 27 (26.4) 49.8 (50.4)
Avg backlog (pkts) 9.8 (10)

measured theory

Single link, capacity = 6 pkts/ms
5 sources with different propagation delays, αs = 2 pkts/RTT

Persistent congestion
� Vegas exploits buffer process to compute prices

(queueing delays)
� Persistent congestion due to

� Coupling of buffer & price
� Error in propagation delay estimation

� Consequences
� Excessive backlog
�Unfairness to older sources

Theorem
A relative error of εs in propagation delay estimation
distorts the utility function to

sssssssss xdxdxU εαε ++= log)1()(ˆ

Evidence

Without estimation error With estimation error

� Single link, capacity = 6 pkt/ms, αs = 2 pkts/ms, ds = 10 ms
� With finite buffer: Vegas reverts to Reno

Evidence

Source rates (pkts/ms)
src1 src2 src3 src4 src5
1 5.98 (6)
2 2.05 (2) 3.92 (4)
3 0.96 (0.94) 1.46 (1.49) 3.54 (3.57)
4 0.51 (0.50) 0.72 (0.73) 1.34 (1.35) 3.38 (3.39)
5 0.29 (0.29) 0.40 (0.40) 0.68 (0.67) 1.30 (1.30) 3.28 (3.34)

queue (pkts) baseRTT (ms)
1 19.8 (20) 10.18 (10.18)
2 59.0 (60) 13.36 (13.51)
3 127.3 (127) 20.17 (20.28)
4 237.5 (238) 31.50 (31.50)
5 416.3 (416) 49.86 (49.80)

Vegas/REM

� To preserve Vegas utility function & rates
s
s

p
d

ssx α =
end2end queueing delay

Vegas/REM

� To preserve Vegas utility function & rates

� REM
� Clear buffer : estimate of ds
� Sum prices : estimate of ps

s
s

p
d

ssx α =
end2end price

Vegas/REM

� To preserve Vegas utility function & rates

� REM
� Clear buffer : estimate of ds
� Sum prices : estimate of ps

� Vegas/REM

())(ˆ)(if 1)(1 2 txtx
D

txtx ss
s

ss

<+=+

() else)(1 txtx ss =+

())(ˆ)(if 1)(1 2 txtx
D

txtx ss
s

ss

>−=+

s
s

p
d

ssx α =
end2end price

Performance

Vegas

peak = 43 pkts
utilization : 90% - 96%

Vegas/REM

Conclusion

Duality model of TCP: (F, G, U)

))(),(()1(
))(),(()1(
txtpGtp
txtpFtx

=+
=+

Reno, Vegas
� Maximize aggregate utility
� With different utility functions

DropTail, RED, REM
� Decouple congestion & performance
� Match rate, clear buffer
� Sum prices

Food for thought

�How to tailor utility to application?
�Choosing congestion control automatically

fixes utility function
�Can use utility function to determine

congestion control

Outline

� Introduction
� TCP Algorithms

�Window flow control
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model
�Duality model (F, G, U)

�Queue management G : RED, REM
�TCP G and U : Reno, Vegas
�Performance of REM

� Feedback control model

REM (Athuraliya & Low 2000)

� Congestion measure: price
pl(t+1) = [pl(t) + γ(αl bl(t)+ xl (t) - cl)]+

� Embedding: exponential probability function

� Feedback: dropping or ECN marking

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

L i n k c o n g e s t i o n m e a s u r e

Li
nk

 m
ar

ki
ng

 p
ro

ba
bi

lit
y

Performance Comparison

�RED

B

1

High utilization
B

1

Low delay/loss

OR

REM
match rate

High utilization

clear buffer

Low delay/loss

AND

Comparison with RED

� Goodput

� Loss

� Queue

REM RED

Comparison with RED

� Goodput

� Loss

� Queue

REM RED

Application: Wireless TCP

�Reno uses loss as congestion measure
�In wireless, significant losses due to

�Fading
�Interference
�Handover
�Not buffer overflow (congestion)

�Halving window too drastic
�Small throughput, low utilization

Proposed solutions

�Ideas
�Hide from source noncongestion losses
�Inform source of noncongestion losses

�Approaches
�Link layer error control
�Split TCP
�Snoop agent
�SACK+ELN (Explicit Loss Notification)

Link layer protocols

�Interference suppression
�Reduces link error rate
�Power control, spreading gain control

�Forward error correction (FEC)
�Improves link reliability

�Link layer retransmission
�Hides loss from transport layer
�Source may timeout while BS retransmits

Split TCP

TCP

TCP

� Each TCP connection is split into two
� Between source and BS
� Between BS and mobile

� Disadvantages
� TCP not suitable for lossy link
�Overhead: packets TCP-processed twice at BS (vs. 0)
� Violates end-to-end semantics
� Per-flow information at BS complicates handover

Snoop protocol

� Snoop agent
�Monitors packets in both directions
�Detects loss by dupACKs or local timeout
� Retransmits lost packet
� Suppresses dupACKs

� Disadvantages
� Cannot shield all wireless losses
�One agent per TCP connection
� Source may timeout while BS retransmits

TCP
snooper

Explicit Loss Notification

�Noncongestion losses are marked in ACKs
�Source retransmits but do not reduce

window
�Effective in improving throughput
�Disadvantages

�Overhead (TCP option)
�May not be able to distinguish types of losses,

e.g., corrupted headers

Third approach

�Problem
�Reno uses loss as congestion measure
�Two types of losses

�Congestion loss: retransmit + reduce window
�Noncongestion loss: retransmit

�Previous approaches
�Hide noncongestion losses
�Indicate noncongestion losses

�Our approach
�Eliminates congestion losses (buffer overflows)

Third approach

� Router
�REM capable

� Host
�Do not use loss as congestion measure

Vegas

REM

� Idea
� REM clears buffer
�Only noncongestion losses
� Retransmits lost packets without reducing window

Performance

�Goodput

Performance

�Goodput

Food for thought

�How to tailor utility to application?
�Choosing congestion control automatically

fixes utility function
�Can use utility function to determine

congestion control

�Incremental deployment strategy?
�What if some, but not all, routers are ECN-

capable

Outline

�Introduction
�TCP Algorithms

�Window flow control
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model (F, G, U)
�Feedback control model

Motivation

�Duality model
�Equilibrium properties

�Rate, loss, queue, delay, fairness
�Optimality (utility function)
�Interaction, TCP-friendliness

�Dynamic model
�Stability & robustness
�Transient behavior

Strategy

�Start with duality model
�Linearize around equilibrium point

�Local stability & robustness

�Apply linear control & robustness theory
�Conclusions

�TCP stability does not scale
�How to scale

…… the rest are details

Model assumptions
� Small marking probabilities

� End to end marking probability

� Congestion avoidance dominates
� Receiver not limiting
� Decentralized

� TCP algorithm depends only on end-to-end measure
of congestion

� AQM algorithm depends only on local & aggregate
rate or queue

� Constant (equilibrium) RTT

∑∏ ≈−−
l

l
l

l pp)1(1

Model structure

Multi-link multi-source network

F1

FN

G1

GL

Rf(s)

Rb
’(s)

TCP Network AQM

Duality model - AIMD
AI MD

2
)()()(

)(
1))(1)((2

txtqtx
tx

tqtxx i
iii

ii
iiii τ

τ
τ −−−−=&

source rate e2e prob

∑ −=
l

b
lili tmtq)()(τ

Duality model - AIMD
AI

)(
1))(1)((2 tx

tqtx
ii

iii τ
τ −−

MD

2
)()()(txtqtx i

iii τ− xi −=&

)(1 2 tq
qτ

(t)xqxx i
ii

iiii −−=&

Linearize around equilibrium

)(11)(2 sq
qxsqτ

sx i
iiii

i +
−=

In Laplace domain

Duality model - AIMD
congestion
measure

marking
prob

))(()(
)(

tpmtm
ctyp

lll

lll

=
−=&

Duality model - AIMD

))(()(
)(

tpmtm
ctyp

lll

lll

=
−=&

Aggregate rate

∑ −=
i

f
iil txty)()(τ

(t)ypmm

(t)yp

llll

il

)('=

=
&

&

Linearize around equilibrium

(s)ypmsm llll)()('=
In Laplace domain

Loop function
Rf(s)

F1

FN

G1

GL

)()()()()(' sGsRsFsRsL bf=

Rb
’(s)

TCP Network AQM

Theorem
Closed loop system is stable if and only if

det (I + L(s)) = 0
for no s in closed RHP

Validation

0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 . 1 2 0 . 1 4
0 . 5

1

1 . 5

2

2 . 5

3

3 . 5
c r it ic a l fr e q u e n c y

q u e u e w e ig h t

H
z

n s - 2 s i m u l a t i o n

l i n e a r m o d e l

Single link

1

1
τ

Iτ
1

s
γx

11

1

as
b
+

−
τ

II

I

as
b
+

−
τ

sIe τ−

se 1τ−

RED

Reno

2

3 2

2()
2 2

sk c eP s
s N c s

N

τ

τ
τ −

=
 +

This control scheme is
unstable in many conditions,
particular for large c!

The lag introduced by Reno is
more of a problem than time
delay of network.

Robustness of AIMD

�Robustness = stability as network scales
�Unstable as

�Delay increases
�Capacity increase
�#sources decreases

�Stable when window size is small
�Unstable for future networks

…… is strong robustness possible?

The End

Discussion

Acronyms
QoS Quality of Service
RED Random Early Detection/Discard
RFC Request for Comment
RTT Round Trip Time
RTO Retransmission TimeOut
SACK Selective ACKnowledgement
SONET Synchronous Optical NETwork
SS Slow Start
SYN Synchronization Packet
TCP Transmission Control Protocol
UDP User Datagram Protocol
VQ Virtual Queue
WWW World Wide Web

ACK Acknowledgement
AQM Active Queue Management
ARP Address Resolution Protocol
ARQ Automatic Repeat reQuest
ATM Asynchronous Transfer Mode
BSD Berkeley Software Distribution
B Byte (or octet) = 8 bits
bps bits per second
CA Congestion Avoidance
ECN Explicit Congestion Notification
FIFO First In First Out
FTP File Transfer Protocol
HTTP Hyper Text Transfer Protocol
IAB Internet Architecture Board
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
ISOC Internet Society
MSS Maximum Segment Size
MTU Maximum Transmission Unit
POS Packet Over SONET

	TCP Congestion Controls
	Acknowledgments
	TCP/IP
	Why Flow Control?
	Outline
	Schedule
	Part 0Introduction
	IP
	TCP
	Success of IP
	IETF
	RFCs of note
	Other Key References
	TCP/IP Protocol Stack
	Packet Terminology
	IP Header
	TCP Header
	TCP versions
	Simulation
	Other Tools
	Part IAlgorithms
	Outline
	Early TCP
	Why Flow Control?
	Flow Control Issues
	Window Flow Control
	Source Rate
	Effect of Congestion
	Congestion Control
	Example Networks
	TCP Window Flow Controls
	Receiver Flow Control
	Network Flow Control
	Outline
	TCP Congestion Controls
	Variants
	TCP Congestion Control
	TCP Tahoe (Jacobson 1988)
	Slow Start
	Slow Start
	Congestion Avoidance
	Congestion Avoidance
	Congestion Avoidance
	Packet Loss
	Timeout
	Fast Retransmit
	Successive Timeouts
	Summary: Tahoe
	TCP Tahoe
	TCP Reno (Jacobson 1990)
	Fast recovery
	Example: FR/FR
	Summary: Reno
	RTO Calculation
	Round Trip Time Estimation
	Timers on a Packet Loss
	Delayed Acknowledgements
	TCP Options for High-Perf.
	Implementation Dependence
	NewReno: Motivation
	NewReno Fall & Floyd ‘96, (RFC 2583)
	SACK Mathis, Mahdavi, Floyd, Romanow ’96 (RFC 2018, RFC 2883)
	Variant: Rate-halving
	Outline
	TCP Vegas (Brakmo & Peterson 1994)
	Congestion avoidance
	Implications
	Outline
	RED (Floyd & Jacobson 1993)
	RED
	Variant: ARED (Feng, Kandlur, Saha, Shin 1999)
	Variant: FRED (Ling & Morris 1997)
	Variant: SRED (Ott, Lakshman & Wong 1999)
	Variant: BLUE (Feng, Kandlur, Saha, Shin 1999)
	Variant: SFB
	Variant: SFB
	REM Athuraliya & Low 2000
	Part IIModels
	Outline
	Law
	Implications
	Derivation (I)
	Derivation (II)
	Simulations
	Refinement (Padhye, Firoin, Towsley & Kurose 1998)
	Further Refinements
	Dynamic model (Bonald 1998)
	Dynamic Model
	Application (TCP Over Wireless)
	Outline
	Calculating Performance
	Fixed Point Models
	Repeated Substitution
	Newton-Raphson
	Network Formulation
	Example Network
	Solution
	Numerical Example
	Numerical Example
	Numerical Example
	Unfairness in TCP
	Outline
	Importance of Finite Sources
	Finite Source Models
	Outline
	Flow control
	Model
	Primal problem
	Prior Work
	Prior Work
	Duality Approach
	Duality Model of TCP
	Example
	Summary
	Summary
	Outline
	Active queue management
	RED (Floyd & Jacobson 1993)
	REM (Athuraliya & Low 2000)
	REM (Athuraliya & Low 2000)
	Key features
	Active Queue Management
	Congestion & performance
	Outline
	Utility functions
	Reno: F
	Reno: F
	Reno: F
	Reno: Utility Function
	Reno: summary
	Validation - Reno
	Reno/RED
	Reno/RED
	Validation – Reno/RED
	Reno/REM
	Reno/REM
	Validation – Reno/REM
	Queue – Reno/DropTail
	Queue – Reno/RED
	Queue – Reno/REM
	Reno & Basic Algorithm
	Reno & Basic Algorithm
	Outline
	Vegas model
	Vegas Utility
	Vegas & Basic Algorithm
	Vegas & Basic Algorithm
	Implications
	Validation - Vegas
	Persistent congestion
	Evidence
	Evidence
	Vegas/REM
	Vegas/REM
	Vegas/REM
	Performance
	Conclusion
	Food for thought
	Outline
	REM (Athuraliya & Low 2000)
	Performance Comparison
	Comparison with RED
	Comparison with RED
	Application: Wireless TCP
	Proposed solutions
	Link layer protocols
	Split TCP
	Snoop protocol
	Explicit Loss Notification
	Third approach
	Third approach
	Performance
	Performance
	Food for thought
	Outline
	Motivation
	Strategy
	Model assumptions
	Model structure
	Duality model - AIMD
	Duality model - AIMD
	Duality model - AIMD
	Duality model - AIMD
	Loop function
	Validation
	Single link
	Robustness of AIMD
	Discussion
	Acronyms

