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TCP/IP

Primary protocols used in the Internet
�IP (Internet Protocol)

�network layer
�TCP (Transmission Control Protocol)

�transport layer
�flow controlled

�TCP/IP refers to more than just TCP & IP 
�UDP: transport layer, not flow controlled
�control & application protocols: ICMP, ARP, 

HTTP, …



Why Flow Control?

�October 1986 Internet had its first 
congestion collapse

�Link LBL to UC Berkeley 
�400 yards, 3 hops, 32 Kbps
�throughput dropped to 40 bps
�factor of ~1000 drop!

�1988, Van Jacobson proposed TCP flow 
control



Outline

�Introduction
�TCP algorithms

�Window flow control 
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP models
�Renewal model
�Duality model
�Feedback control model



Schedule

9:00 – 10:45 Introduction & TCP algorithms
10:45 – 11:00 Break
11:00 – 12:00 TCP Algorithms (Vegas, RED, …)

12:00 – 1:00 Lunch
1:00 – 2:00 TCP models (1/sqrt(p) law, fixed point)

2:00 – 2:20 Break
2:20 – 3:20 TCP models (duality)

3:20 – 3:40 Break
3:40 – 4:40 TCP models (dynamics)

4:40 – 5:00 Discussion Steven
Matthew



Part 0
Introduction



IP

�Packet switched
�Datagram service

�Unreliable (best effort)
�Simple, robust 

�Heterogeneous
�Dumb network, intelligent terminals

Compared with PSTN



TCP

�Packet switched
�End-to-end (like a virtual circuit service)

�Reliable, in order delivery of a byte stream
�Reliability through ACKs
�Multiplexing

�Flow control: use bandwidth efficiently
�Robustness Principle

be conservative in what you do, 
be liberal in what you accept from others



Success of IP

Applications

IP

Transmission

Simple/Robust
� Robustness against failure
� Robustness against technological 

evolutions
� Provides a service to applications

�Doesn’t tell applications what to do

Quality of Service
� Can we provide QoS with simplicity?
� Not with current TCP…
� … but we can fix it!

WWW, Email, Napster, FTP, …

Ethernet, ATM, POS, WDM, …



IETF

� Internet Engineering Task Force
� Standards organisation for Internet
� Publishes RFCs - Requests For Comment

� standards track: proposed, draft, Internet

�non-standards track: experimental, informational
�best current practice
�poetry/humour (RFC 1149: Standard for the 

transmission of IP datagrams on avian carriers)
�TCP should obey RFC

�no means of enforcement
� some versions have not followed RFC

� http://www.ietf.org/index.html

http://www.ietf.org/index.html


RFCs of note

�RFC 791: Internet Protocol 
�RFC 793: Transmission Control Protocol 
�RFC 1180: A TCP/IP Tutorial
�RFC 2581: TCP Congestion Control
�RFC 2525: Known TCP Implementation 

Problems
�RFC 1323: TCP Extensions for High 

Performance
�RFC 2026: Internet standards process



Other Key References

�W. Stevens (and Wright), “TCP/IP 
Illustrated”, Vol. 1-2
Addison-Wesley, 1994

�Vern Paxson, “Measurements and Analysis 
of End-to-End Internet Dynamics”
PhD Thesis

�Van Jacobson, “Congestion Avoidance and 
Control”
SIGCOMM’88



TCP/IP Protocol Stack

Applications (e.g. Telnet, HTTP)

TCP UDP ICMP
ARPIP

Link Layer (e.g. Ethernet, ATM)

Physical Layer (e.g. Ethernet, SONET)



Packet Terminology

Application Message

TCP hdr

MSS
TCP Segment

TCP data

IP hdr
IP Packet 20 bytes

IP data

Ethernet dataEthernet
Ethernet Frame 20 bytes

4 bytesMTU 1500 bytes14 bytes



IP Header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0                           1                            2      3

Vers(4)

Flags

H len Type of Service Total Length (16 bits)

Fragment OffsetIdentification

Header Checksum
Protocol 
(TCP=6)Time to Live

Source IP Address

Destination IP Address

Options Padding

IP data



TCP Header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
0                           1                            2      3

Source Port Destination Port

Sequence Number (32 bits)

Checksum

Options Padding

Acknowledgement Number (32 bits)

Urgent Pointer

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Data 
Offset Reserved Receive Window (16 bits)

TCP data



TCP versions

�TCP is not perfectly homogenous (200+)
4.2 BSD first widely available release of TCP/IP (1983)

4.3 BSD (1986)
Windows 95

Windows NT

4.3 BSD Tahoe (1988)

4.3 BSD Reno (1990)

Vegas (1994)

SunOS 4.1.3,4.1.4

4.4 BSD (1993)HP/UX

Solaris 2.3,2.4
Digital OSF Linux 1.0IRIX

..... 
NewReno (1999)



Simulation
� ns-2: http://www.isi.edu/nsnam/ns/index.html

�Wide variety of protocols
�Widely used/tested

� SSFNET: http://www.ssfnet.org/homePage.html

� Scalable to very large networks

� Care should be taken in simulations!
�Multiple independent simulations 

� confidence intervals
� transient analysis – make sure simulations are long enough

�Wide parameter ranges

� All simulations involve approximation

http://www.isi.edu/nsnam/ns/index.html
http://www.ssfnet.org/homePage.html


Other Tools

�tcpdump

�Get packet headers from real network traffic
�tcpanaly (V.Paxson, 1997)

�Analysis of TCP sessions from tcpdump

�traceroute 

�Find routing of packets

�RFC 2398
�http://www.caida.org/tools/



Part I
Algorithms
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�Introduction
�TCP Algorithms

�Window flow control 
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model
�Feedback control model



Early TCP 

�Pre-1988
�Go-back-N ARQ

�Detects loss from timeout
�Retransmits from lost packet onward

�Receiver window flow control
�Prevent overflows at receive buffer

�Flow control: self-clocking



Why Flow Control?

�October 1986, Internet had its first 
congestion collapse

�Link LBL to UC Berkeley 
�400 yards, 3 hops, 32 Kbps
�throughput dropped to 40 bps
�factor of ~1000 drop!

�1988, Van Jacobson proposed TCP flow 
control



Flow Control Issues

TCP (Reno)
reasonable (big buffers)

“yes”

reasonable (after packets lost)

no

no

distributed
end-to-end

� Efficiency
� Stability
� Convergence

� Responsiveness
� Smoothness

� Fairness
� Distribution

� Centralized/distributed
� End-to-end/network



Window Flow Control

�~ W packets per RTT
�Lost packet detected by missing ACK

1 2 W

1 2 W

1 2 W

data ACKs

1 2 W

RTT

Source
time

Destination
time



Source Rate

�Limit the number of packets in the network 
to window W

�Source rate =                     bps

�If W too small then rate « capacity
If W too big then rate > capacity

=> congestion

RTT
MSSW ×



Effect of Congestion
� Packet loss
� Retransmission
� Reduced throughput
� Congestion collapse due to

� Unnecessarily retransmitted packets
� Undelivered or unusable packets

� Congestion may continue after the overload!
throughput

load



Congestion Control

�TCP seeks to
�Achieve high utilization
�Avoid congestion
�Share bandwidth

�Window flow control
�Source rate =          packets/sec

�Adapt W to network (and conditions)
W = BW x RTT

RTT
W



Example Networks

Network Bandwidth RTT BW x delay

56k dial up 56 kbps 100 ms 700 B 

10baseT Ethernet 10 Mbps    3 ms       3,750 B

T1 (satellite)  1.54 Mbps 500 ms     96 kB

OC48 (point-to-point)  2.5 Gbps   20 ms 6 MB

OC192 
(transcontinental) 

 10 Gbps   60 ms 75 MB

 

 Range covers 8 orders of magnitude



TCP Window Flow Controls

� Receiver flow control
� Avoid overloading receiver
� Set by receiver
� awnd: receiver (advertised) window 

� Network flow control
� Avoid overloading network
� Set by sender
� Infer available network capacity
� cwnd: congestion window

� Set W = min (cwnd, awnd)



Receiver Flow Control

�Receiver advertises awnd with each ACK
�Window awnd

�closed when data is received and ack’d
�opened when data is read

�Size of awnd can be the performance limit 
(e.g. on a LAN)
�sensible default ~16kB



Network Flow Control

�Source calculates cwnd from indication of 
network congestion

�Congestion indications
�Losses 
�Delay
�Marks 

�Algorithms to calculate cwnd
�Tahoe, Reno, Vegas, RED, REM …
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TCP Congestion Controls
� Tahoe (Jacobson 1988)

� Slow Start
� Congestion Avoidance
� Fast Retransmit

� Reno (Jacobson 1990)
� Fast Recovery

� Vegas (Brakmo & Peterson 1994)
�New Congestion Avoidance

� RED (Floyd & Jacobson 1993)
� Probabilistic marking

� REM (Athuraliya & Low 2000)
� Clear buffer, match rate



Variants

�Tahoe & Reno
�NewReno
�SACK
�Rate-halving
�Mod.s for high performance

�AQM
�RED, ARED, FRED, SRED
�BLUE, SFB
�REM



TCP Congestion Control

�Has four main parts
�Slow Start (SS)
�Congestion Avoidance (CA)
�Fast Retransmit
�Fast Recovery

�ssthresh: slow start threshold determines 
whether to use SS or CA

�Assume packet losses are caused by 
congestion

Tahoe
Reno



TCP Tahoe (Jacobson 1988)

window

time
SS CA

SS: Slow Start
CA: Congestion Avoidance



Slow Start 

�Start with cwnd = 1 (slow start)
�On each successful ACK increment cwnd

cwnd ← cnwd + 1
�Exponential growth of cwnd

each RTT: cwnd ← 2 x cwnd
�Enter CA when cwnd >= ssthresh



Slow Start

data packet

ACK

receiversender

1 RTT

cwnd
1

2

3
4

5
6
7
8

cwnd ← cwnd + 1 (for each ACK) 



Congestion Avoidance

�Starts when cwnd ≥ ssthresh
�On each successful ACK:

cwnd ← cwnd + 1/cwnd
�Linear growth of cwnd

each RTT: cwnd ← cwnd + 1



Congestion Avoidance

cwnd
1

2

2.5

3.8

data packet

ACK

2.9

3.2
3.6

cwnd ← cwnd + 1/cwnd (for each ACK) 

receiversender

1 RTT



Congestion Avoidance

cwnd
1

2

3

4

data packet

ACK

cwnd ← cwnd + 1 (for each cwnd ACKS)

receiversender

1 RTT



Packet Loss

�Assumption: loss indicates congestion
�Packet loss detected by

�Retransmission TimeOuts (RTO timer)
�Duplicate ACKs (at least 3)

1 2 3 4 5 6

1 2 3

Packets

Acknowledgements

3 3

7

3



Timeout

ssthresh ← cwnd/2

cwnd = 1



Fast Retransmit

�Wait for a timeout is quite long
�Immediately retransmits after 3 dupACKs

without waiting for timeout
�Adjusts ssthresh

flightsize = min(awnd, cwnd)
ssthresh ← max(flightsize/2, 2)

�Enter Slow Start (cwnd = 1)



Successive Timeouts

�When there is a timeout, double the RTO
�Keep doing so for each lost retransmission

� Exponential back-off
�Max 64 seconds1

�Max 12 restransmits1

1 - Net/3 BSD



Summary: Tahoe

� Basic ideas
�Gently probe network for spare capacity
�Drastically reduce rate on congestion
�Windowing: self-clocking
�Other functions: round trip time estimation, error 

recovery
for every ACK {

if (W < ssthresh) then W++ (SS)

else W += 1/W (CA)

}

for every loss {

ssthresh = W/2

W  = 1    

}



TCP Tahoe



TCP Reno (Jacobson 1990)

CASS

Fast retransmission/fast recovery



Fast recovery
� Motivation: prevent `pipe’ from emptying after 

fast retransmit
� Idea: each dupACK represents a packet having 

left the pipe (successfully received)
� Enter FR/FR after 3 dupACKs

� Set ssthresh ← max(flightsize/2, 2)
� Retransmit lost packet
� Set cwnd ← ssthresh + ndup (window inflation)
�Wait till W=min(awnd, cwnd) is large enough; 

transmit new packet(s)
�On non-dup ACK (1 RTT later), set cwnd ← ssthresh 

(window deflation)
� Enter CA



Example: FR/FR

�Fast retransmit
�Retransmit on 3 dupACKs

�Fast recovery
�Inflate window while repairing loss to fill pipe

time

time

3 4 5 6 87 1

0 0 0

7

0 0

9

9

0 0

0 1

11

Exit FR/FR

RTT

8

21S

D



Summary: Reno

�Basic ideas
�Fast recovery avoids slow start
�dupACKs: fast retransmit + fast recovery
�Timeout: fast retransmit + slow start

slow start retransmit

congestion 
avoidance FR/FR 

dupACKs

timeout



RTO Calculation

�An accurate RTT measure is required to 
judge timeouts

�We can measure RTT by measuring the 
time to receive a packets ACK

�Use a smoothed RTT, SRTT and the 
smoothed mean deviation DRTT

RTO = SRTT + 4 DRTT
�Initial RTT should be > 3 seconds

�Avoid spurious retransmission



Round Trip Time Estimation

� RTT is not known
� From <1 ms up to >1 second

� Need to know RTT to calculate RTO
� The measurement of RTT 

SRTT = SRTT + g (MRTT-SRTT)
DRTT = DRTT + h ( |MRTT-SRTT| - DRTT)

� Need to minimize processing requirements
�Only 1 counter (regardless of how many packets are 

extant)
� Counter granularity is typically 500 ms

� Measurement equations have gain



Timers on a Packet Loss

�Ignore RTT for retransmitted packets 
(Karn)

�If a timeout occurs, double the RTO and 
retransmit the lost packet
�results in exponential back-off
�recalculate SRTT only when a packet gets 

through

�RTT is lost if several packets are lost



Delayed Acknowledgements

� ACKs may be delayed to ‘piggy-back’ on 
returning data packets 
� by no more than 500ms, typically 200ms
�Out of order segments are ACK’d immediately
� Segments which fill a gap are ACK’d immediately

� While waiting
�More data packets may arrive
� A delayed ACK may ack. up to 2 MSS packets

� SS and CA increment cwnd per ACK
�Not per ACK’d packet
�Window size increases more slowly



TCP Options for High-Perf.

�In high performance networks the 
counters may wrap
�max sequence number is 232 –1 ≅ 4 GB
�The maximum awnd is 216 –1 = 65,535 B
�Protection Against Wrapped Sequence 

Numbers (PAWS) (RFC 1323)
�Window scaling (RFC 1323)

�Timestamps (RFC 1323)

�Larger initial window (RFC 2414, 2415, 2416)



Implementation Dependence

� ssthresh initialisation (not standardised)
� Reno ssthreshinit = ∞
� Solaris ssthreshinit = 8
� Linux ssthreshinit = 1

� algorithm for incrementing cwnd in CA
� 1990 Reno had CA window increase

�∆W = MSS2/cwnd + MSS/8
� Sharing between TCP sessions (RFC 2140)

�Over time (temporal) – caching window values
� Between sessions (ensemble) – better RTT estimation

�Many possible bugs! (RFC 2525)



NewReno: Motivation

� On 3 dupACKs, receiver has packets 2, 4, 6, 8, cwnd=8, 
retransmits pkt 1, enter FR/FR

� Next dupACK increment cwnd to 9
� After a RTT, ACK arrives for pkts 1 & 2, exit FR/FR, 

cwnd=5, 8 unack’ed pkts
� No more ACK, sender must wait for timeout

1 2
timeS 1

8

FR/FR

0 0 0 0 0

9

8 unack’d pkts

2

5

3

timeout

3 4 5 6 7 8 9 0

D time



NewReno Fall & Floyd ‘96, (RFC 2583)

� Motivation: multiple losses within a window
� Partial ACK acknowledges some but not all packets 

outstanding at start of FR
� Partial ACK takes Reno out of FR, deflates window
� Sender may have to wait for timeout before proceeding

� Idea: partial ACK indicates lost packets
� Stays in FR/FR and retransmits immediately
� Retransmits 1 lost packet per RTT until all lost packets 

from that window are retransmitted
� Eliminates timeout



SACK Mathis, Mahdavi, Floyd, Romanow ’96 (RFC 2018, RFC 2883)

� Motivation: Reno & NewReno retransmit at most 
1 lost packet per RTT
� Pipe can be emptied during FR/FR with multiple losses

� Idea: SACK provides better estimate of packets 
in pipe
� SACK TCP option describes received packets
�On 3 dupACKs: retransmits, halves window, enters FR
�Updates pipe = packets in pipe

� Increment when lost or new packets sent
�Decrement when dupACK received

� Transmits a (lost or new) packet when pipe < cwnd
� Exit FR when all packets outstanding when FR was 

entered are acknowledged



Variant: Rate-halving
� Motivation: in and after FR, cwnd packets sent in second 

half of RTT 

time

time

Source

Destination

RTT FR/FR

W0/2+3

W0

W0/2

� Idea: send 1 packet every 2 ACKs for 1 RTT
� Smooth burst
� Reduce chance of timeout
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TCP Vegas (Brakmo & Peterson 1994)

window

� Reno with a new congestion avoidance algorithm
� Converges (provided buffer is large) !

SS CA
time



Congestion avoidance

�Each source estimates number of its own 
packets in pipe from RTT

�Adjusts window to maintain estimate 
between αd and βd

for every RTT

{   

if W/RTTmin – W/RTT < α RTTmin then W ++   

if W/RTTmin – W/RTT > β RTTmin then W --

}

for every loss

W := W/2



Implications

�Congestion measure = end-to-end queueing
delay

�At equilibrium
�Zero loss
�Stable window at full utilization
�Approximately weighted proportional fairness
�Nonzero queue, larger for more sources

�Convergence to equilibrium
�Converges if sufficient network buffer
�Oscillates like Reno otherwise
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RED   (Floyd & Jacobson 1993)

� Idea: warn sources of incipient congestion by 
probabilistically marking/dropping packets

� Link algorithm to work with source algorithm 
(Reno)

� Bonus: desynchronization 
� Prevent bursty loss with buffer overflows

window

B
Avg queue

marking

1

router

time

host



RED

�Implementation
�Probabilistically drop packets
�Probabilistically mark packets
�Marking requires ECN bit (RFC 2481)

�Performance
�Desynchronization works well
�Extremely sensitive to parameter setting
�Fail to prevent buffer overflow as #sources 

increases



Variant: ARED (Feng, Kandlur, Saha, Shin 1999)

�Motivation: RED extremely sensitive to 
#sources

�Idea: adapt maxp to load
�If avg. queue < minth, decrease maxp
�If avg. queue > maxth, increase maxp

�No per-flow information needed



Variant: FRED  (Ling & Morris 1997)

� Motivation: marking packets in proportion to flow 
rate is unfair (e.g., adaptive vs unadaptive flows)

� Idea
� A flow can buffer up to minq packets without being 

marked
� A flow that frequently buffers more than maxq packets 

gets penalized
� All flows with backlogs in between are marked according 

to RED
�No flow can buffer more than avgcq packets persistently

� Need per-active-flow accounting



Variant: SRED  (Ott, Lakshman & Wong 1999)

�Motivation: wild oscillation of queue in RED 
when load changes

�Idea:
�Estimate number N of active flows

�An arrival packet is compared with a randomly 
chosen active flows

�N ~ prob(Hit)-1

�cwnd~p-1/2 and Np-1/2 = Q0 implies p = (N/Q0)2

�Marking prob = m(q) min(1, p)

�No per-flow information needed



Variant: BLUE (Feng, Kandlur, Saha, Shin 1999)

�Motivation: wild oscillation of RED leads to 
cyclic overflow & underutilization

�Algorithm
�On buffer overflow, increment marking prob
�On link idle, decrement marking prob



Variant: SFB
� Motivation: protection against nonadaptive flows 
� Algorithm

� L hash functions map a packet to L bins (out of NxL )
�Marking probability associated with each bin is 

� Incremented if bin occupancy exceeds threshold
�Decremented if bin occupancy is 0

� Packets marked with min {p1, …, pL}
h1 h2 hL-1 hL

1

1

1 1
nonadaptive

adaptive   



Variant: SFB

�Idea
�A nonadaptive flow drives marking prob to 1 

at all L bins it is mapped to
�An adaptive flow may share some of its L bins 

with nonadaptive flows
�Nonadaptive flows can be identified and 

penalized



REM Athuraliya & Low 2000

�Main ideas
�Marking probability exponential in `price’ 
�Price adjusted to match rate and clear buffer
�`Congestion’ = `demand>supply’
�… but performance remains good!

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0
0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

L in k  c o n g e s t io n  m e a s u re

Li
nk

 m
ar

ki
ng

 p
ro

ba
bi

lit
y

REM RED

1

Avg queue



Part II
Models



Outline

� Introduction
� TCP Algorithms

�Window flow control 
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model

� law
�Fixed-point models
�Finite source models

�Duality model
� Feedback control model

p1



Law p1

� Equilibrium window size

� Equilibrium rate

� Empirically constant a ~ 1
� Verified extensively through simulations and on 

Internet
� References

�T.J.Ott, J.H.B. Kemperman and M.Mathis (1996)
�M.Mathis, J.Semke, J.Mahdavi, T.Ott (1997)
�T.V.Lakshman and U.Mahdow (1997)
� J.Padhye, V.Firoin, D.Towsley, J.Kurose (1998)
� J.Padhye, V.Firoin, D.Towsley (1999)

p
aws =

pD
ax

s

s =



Implications

�Applicability
�Additive increase multiplicative decrease (Reno)
�Congestion avoidance dominates
�No timeouts, e.g., SACK+RH
�Small losses
�Persistent, greedy sources
�Receiver not bottleneck

�Implications
�Reno equalizes window
�Reno discriminates against long connections



Derivation (I)
window

Area = 2w2/3

t

2w/3

w = (4w/3+2w/3)/2

4w/3

2w/3

� Each cycle delivers 2w2/3 packets
� Assume: each cycle delivers 1/p packets

�Delivers 1/p packets followed by a drop
� Loss probability = p/(1+p) ~ p if p is small.

� Hence pw 2/3=



Derivation (II)

� Assume: loss occurs as Bernoulli process rate p
� Assume: spend most time in CA
� Assume: p is small
� wn is the window size after nth RTT
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Simulations



Refinement (Padhye, Firoin, Towsley & Kurose 1998)

� Renewal model including
� FR/FR with Delayed ACKs (b packets per ACK)
� Timeouts
� Receiver awnd limitation

� Source rate

� When p is small and Wr is large, reduces to 
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Further Refinements

�Further refinements of previous formula
�Padhye, Firoin, Towsley and Kurose (1999)

�Other loss models
�E.Altman, K.Avrachenkov and C.Barakat 

(Sigcomm 2000)
�Square root p still appears!

�Dynamic models of TCP
�E.G. RTT evolves as window increases 



Dynamic model   (Bonald 1998)

� Single source model
� Single link
� Ignore slow start
� Instantaneous loss detection
� RTT D(t) =  max {d,  w(t)/c }

ws(t)
c

d

� Key: window process (CA) increases at rate 1/D(t)
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Dynamic Model

�Periodic solution (single source)

)(tws

W

d
t

ct2

Wγ
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Application (TCP Over Wireless)

�TCP uses loss as a congestion indication
�In wireless, packet loss may occur due to

�Fading 
�Interference
�Handover 

� law provides a quick method for 
estimating the effect of wireless losses

�Some method is required to avoid 
performance degradation (see RFC 2757 
and the references therein)

p1
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Calculating Performance 

�Single link, capacity C, buffer B
�Window size : w = f(p)
�Loss rate: p = g(w; C,B)
�Find w*: w* = f(g(w*; C,B))

�Example:
�Window size: 
�Loss rate from bufferless approx.

pw 1=

2
42

* ++= CCw

[ ]
w
Cwp

+−=



Fixed Point Models

� Mean field theory
� Solve for a particular source given the mean field
�Use single source to approximate the mean field

� Generalize previous example
�Multiple sources
�Network

�various routes, RTTs, capacities, …

� Arbitrary functions f, and g

� Solve using
� Repeated substitution 
�Newton-Raphson



Repeated Substitution

x

f(x)
unstable case

x1 x2x3x*

x* = f(x*)

x0

xn+1 = f(xn)

stable case

x

f(x)

x*

x* = f(x*)

x0x1 x2

|f’(x)|>1|f’(x)|<1



Newton-Raphson

x=f(x)  becomes F(x)=f(x)-x=0   
use the slope F’ to form a tangent

xn+1 = xn – F(xn)/F’(xn)

x0x1



Network Formulation
� N links, R routes
� Capacity c = {cj} j=1,..,N
� Propagation time t = {tj} j=1,..,N
� Routing matrix A = {aij} j=1,..,N, i=1,..,R

aij = 1,  if link j is in route i
aij = 0,  if link j isn’t in route j

� Sources per route n = {ni} i=1,..,R
� MSS per route m = {mj} i=1,..,R
� Route send rate s = {sj} i=1,..,R
� Link loss rate q = {di} j=1,..,N
� Route loss rate p = {pi} i=1,..,R



Example Network

















=
110001000
001100010
000011111

A

route 1

route 2 route 3
10 1.5

10 10 10 10
101.5 1.5

c = (10, 1.5, 1.5, 1.5, 10, 10, 10, 10, 10)t

�N congested bottlenecks (e.g. 2)

1 2 3 4 5

6 7 8 9

ε δ
ε ε ε ε

εδ δ

t = (ε,  δ,   δ,   δ,   ε,   ε,  ε,  ε,   ε)t



Solution
� Estimate RTT delay from propagation time

d = 2At (can use queueing delays)

� Route send rates
x(w) = (w .* n .* m) ./ d

� Link rates
b(w) = Atx

� Link loss rate
q(w;c) = [b – c]+./b (can use queueing losses)

� Route loss rate
p(w;c) = 1 – eAln(1-q(w;c))

� Window size 
W2 p(w;c) – a = 0 (could use refined model, 

or a transient model)



Numerical Example

�Send rates

simulation

queueing delays
correct RTT

prop. delays



Numerical Example

�Window sizes

simulation

queueing delays
correct RTT

prop. delays



Numerical Example

�Loss rates

simulation

queueing delays
correct RTT

prop. delays



Unfairness in TCP

�Rates along either route are skewed
�TCP Tahoe/Reno are inherently unfair

�biased against long RTT
�biased against multiply congested paths 

(S.Floyd, 1991)

�TCP Vegas is proportionally fair (see later)
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Importance of Finite Sources

�Infinite sources are unrealistic
�WWW traffic has median response size 3-4kB

�Infinite sources lead to possibly spurious 
conclusions
�Synchronization
�LRD (Veres and Boda, Infocom 2000)

�Performance of finite sources is 
profoundly different
�SS rather than CA



Finite Source Models

�Processor sharing models
�D.P. Heyman and T.V. Lakshman and A. Neidhardt, “A 

New Method for Analysing Feedback-Based Protocols 
with Applications to Engineering Web Traffic over the 
Internet”, SIGMETRICS 1997.

� others
� E.G. M/G/1 with processor sharing

� Assumes: TCP sessions arrive as Poisson process
� Assumes: some file transfer size distribution G (heavy-tail)

� Assumes: TCP sources share bandwidth evenly
� These types of model are not quite good enough

�Don’t take dynamics of TCP into account 
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Flow control 

�Interaction of source rates xs(t) and 
congestion measures pl(t)

�Duality theory
� They are primal and dual variables 
� Flow control is optimization process

�Example congestion measure
� Loss (Reno)
� Queueing delay (Vegas)
� Queue length (RED)
� Price (REM)



Model
Sources s

L(s) - links used by source s
Us(xs) - utility if source rate = xs

� Network
� Links l of capacities cl

c1 c2

x1

x2
x3

121 cxx ≤+ 231 cxx ≤+



Primal problem

Llcx

xU

l

l

s
ss

xs

∈∀≤

∑
≥

       ,       subject to

)(                max
0

Assumptions
Strictly concave increasing Us

� Unique optimal rates xs exist
� Direct solution impractical
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�Mo & Walrand 1998
� La & Anantharam 2000
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Duality Approach
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Primal-dual algorithm:



Duality Model of TCP

� Source algorithm iterates on rates
� Link algorithm iterates on prices
� With different utility functions

))(  ),((       )1(
))(  ),((       )1(
txtpGtp
txtpFtx

=+
=+

Primal-dual algorithm:

Reno, Vegas

DropTail, RED, REM



Example

� Basic algorithm
))((  )1(        :  source 1' tpUtx s

ss

−=+
+−+=+ )])(()([  )1(            :link l

l

ll ctxtptp γ

Theorem (ToN’99)

Converge to optimal rates in asynchronous
environment

TCP schemes are smoothed versions of source
algorithm …



Summary

Llcx

xU

l

l

s
ss

xs

∈∀≤

∑
≥

       ,       subject to

)(               max
0

� Flow control problem

� Primal-dual algorithm

))(  ),((       )1(
))(  ),((       )1(
txtpGtp
txtpFtx

=+
=+

� Major TCP schemes 
�Maximize aggregate source utility
�With different utility functions



Summary

�What are the (F, G, U) ?

�Derivation
�Derive (F, G) from protocol description
�Fix point (x, p) = (F, G) gives equilibrium
�Derive U

�regard fixed point as Kuhn-Tucker condition
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Active queue management

�Idea: provide congestion information by 
probabilistically marking packets

�Issues
�How to measure congestion (p and G)?
�How to embed congestion measure? 
�How to feed back congestion info?

x(t+1)  =  F( p(t), x(t) )
p(t+1)  =  G( p(t), x(t) )

Reno, Vegas

DropTail, RED, REM



RED   (Floyd & Jacobson 1993)

� Congestion measure: average queue length
pl(t+1)   =  [pl(t) + xl(t) - cl]+

� Embedding: p-linear probability function

� Feedback: dropping or ECN marking

Avg queue

marking

1



REM   (Athuraliya & Low 2000)

� Congestion measure: price
pl(t+1)   =  [pl(t) + γ(αl bl(t)+ xl (t) - cl )]+

� Embedding: 

� Feedback: dropping or ECN marking



REM   (Athuraliya & Low 2000)

� Congestion measure: price
pl(t+1)   =  [pl(t) + γ(αl bl(t)+ xl (t) - cl )]+

� Embedding: exponential probability function

� Feedback: dropping or ECN marking
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Key features

�Clear buffer and match rate

Match rateClear buffer

+−++=+ )]  )(ˆ    )(  ()([    )1( l
l

llll ctxtbtptp αγ

)()( 1      1 tptp s
l −− −⇒− φφ

Sum prices

Theorem (Paganini 2000)

Global asymptotic stability for general utility 
function (in the absence of delay)



Active Queue Management

pl(t) G(p(t), x(t))
DropTail loss [1 - cl/xl (t)]+  (?)

RED queue [pl(t) + xl(t) - cl]+

Vegas delay [pl(t) + xl (t)/cl - 1]+

REM price [pl(t) + γ(αl bl(t)+ xl (t) - cl )]+

x(t+1)  =  F( p(t), x(t) )
p(t+1)  =  G( p(t), x(t) )

Reno, Vegas

DropTail, RED, REM



Congestion & performance

pl(t) G(p(t), x(t))
Reno loss [1 - cl/xl (t)]+  (?) 

Reno/RED queue [pl(t) + xl(t) - cl]+

Reno/REM price [pl(t) + γ(αl bl(t)+ xl (t) - cl )]+

Vegas delay [pl(t) + xl (t)/cl - 1]+

� Decouple congestion & performance measure
� RED: `congestion’ = `bad performance’
� REM: `congestion’ = `demand exceeds supply’

But performance remains good!



Outline

� Introduction
� TCP Algorithms

�Window flow control 
� Source algorithm: Tahoe, Reno, Vegas
� Link algorithm: RED, REM, variants

� TCP Models
� Renewal model
�Duality model (F, G, U)

�Queue management G : RED, REM
�TCP G and U : Reno, Vegas
�Performance of REM

� Feedback control model



Utility functions

� Reno

� Reno/RED

� Reno/REM

� Vegas, Vegas/REM
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Reno: F
for every ack (ca)
{ W += 1/W   }

for every loss

{ W := W/2   }

( ) )()(
2
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w
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s

s

s
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Primal-dual algorithm:

x(t+1)  =  F( p(t), x(t) )
p(t+1)  =  G( p(t), x(t) )

Reno, Vegas

DropTail, RED, REM



Reno: F
for every ack (ca)
{ W += 1/W   }

for every loss

{ W := W/2   }
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Primal-dual algorithm:

x(t+1)  =  F( p(t), x(t) )
p(t+1)  =  G( p(t), x(t) )

Reno, Vegas

DropTail, RED, REM



Reno: F
for every ack (ca)
{ W += 1/W   }

for every loss

{ W := W/2   }

( ) )()(
2

)(      ))(1)((       tptxtw
w

tptxtw s
s

s

s
s −−=∆

( ) )(
2

)(  ))(1(    )()(),(
2

2 tptx
D

tptxtxtpF s

s
ss −−+=

Primal-dual algorithm:

x(t+1)  =  F( p(t), x(t) )
p(t+1)  =  G( p(t), x(t) )

Reno, Vegas

DropTail, RED, REM



Reno: Utility Function
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Reno: summary

� Equilibrium characterization

Duality

� Congestion measure p = loss
� Implications

� Reno equalizes window w = Dsxs

� inversely proportional to delay Ds

� dependence for small p

p
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Validation - Reno

� 30 sources, 3 groups with RTT = 3, 5, 7ms + 6ms (queueing delay) 
Link capacity = 64 Mbps, buffer = 50 kB

� Measured windows equalized, match well with theory (black line)



Reno/RED
� Algorithm model
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Reno/RED
� Algorithm model

� Equilibrium characterization

Duality

� Congestion measure p = queue
� Queue increases with load
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Validation – Reno/RED

� 30 sources, 3 groups with RTT = 3, 5, 7 ms + 6 ms (queueing delay)
� Link capacity = 64 Mbps, buffer = 50 kB



Reno/REM
� Algorithm model
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Reno/REM
� Algorithm model

� Equilibrium characterization

Duality

� Congestion measure p = price
� Match queue and rate
� Sum prices
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Validation – Reno/REM

� 30 sources, 3 groups with RTT = 3, 5, 7 ms
� Link capacity = 64 Mbps, buffer = 50 kB
� Smaller window due to small RTT (~0 queueing delay)



Queue – Reno/DropTail

Queue close to full if
� many sources

If buffer capacity is small
� wild oscillation of queue 

and windows

mean queue = 47 pkts 
buffer capacity = 50 pkts



Queue – Reno/RED

Queue increases as 
sources activate

RED parameters: 
min_th = 10 pkts, max_th = 40 pkts, max_p  = 0.1



Queue – Reno/REM

REM parameters: γ = 0.05, α = 0.4, φ = 1.15

Very small queue
mean = 1.5 pkts

Yet, utilization = 92%



Reno & Basic Algorithm

� Basic algorithm
))((    )1(        :  source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …



Reno & Basic Algorithm

� Basic algorithm
))((    )1(        :  source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …

� Reno/DropTail, Reno/RED, Reno/REM
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Vegas model

queue size

for every RTT

{   if W/RTTmin – W/RTT < α   then W ++

if W/RTTmin – W/RTT > α   then W -- }

for every loss

W := W/2

( ) sssss
s

ss dtxdtw
D

txtx




<−+=+ α)()(   if             1 )(1 2

( ) else                       )(1 txtx ss =+

( ) sssss
s

ss dtxdtw
D

txtx




>−−=+ α)()(   if             1 )(1 2

F:

pl(t+1) =  [pl(t) + xl (t)/cl - 1]+G:



Vegas Utility

�Equilibrium (x, p) = (F, G)
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Vegas & Basic Algorithm

� Basic algorithm
))((    )1(        :  source 1' tpUtx ss

−=+

� TCP smoothed version of Basic Algorithm …



Vegas & Basic Algorithm

� Basic algorithm
))((    )1(        :  source 1' tpUtx ss
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� TCP smoothed version of Basic Algorithm …

� Vegas
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Implications

� Delay
� Congestion measures       = end to end queueing delay

� Sets rate 

� Equilibrium condition: Little’s Law

� Fairness
�Weighted proportional fairness

� Loss
�No loss if buffers are sufficiently large
�Otherwise: equilibrium not attainable, loss unavoidable 

(revert to Reno)
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Validation - Vegas

Source 1 Source 3        Source 5

RTT (ms)    17.1 (17)         21.9 (22)         41.9 (42) 
Rate (pkts/s) 1205 (1200)    1228 (1200)    1161 (1200)
Window (pkts) 20.5 (20.4)        27 (26.4)      49.8 (50.4)
Avg backlog (pkts) 9.8 (10)

measured theory

Single link, capacity = 6 pkts/ms
5 sources with different propagation delays, αs = 2 pkts/RTT



Persistent congestion
� Vegas exploits buffer process to compute prices 

(queueing delays)
� Persistent congestion due to

� Coupling of buffer & price
� Error in propagation delay estimation

� Consequences
� Excessive backlog
�Unfairness to older sources

Theorem
A relative error of εs in propagation delay estimation 
distorts the utility function to 

sssssssss xdxdxU εαε ++= log)1()(ˆ



Evidence

Without estimation error With estimation error

� Single link, capacity = 6 pkt/ms, αs = 2 pkts/ms, ds = 10 ms
� With finite buffer: Vegas reverts to Reno



Evidence

Source rates (pkts/ms)
# src1 src2              src3           src4            src5
1 5.98 (6)
2 2.05 (2) 3.92 (4)
3 0.96 (0.94) 1.46 (1.49) 3.54 (3.57)
4 0.51 (0.50) 0.72 (0.73) 1.34 (1.35) 3.38 (3.39)
5 0.29 (0.29) 0.40 (0.40) 0.68 (0.67) 1.30 (1.30) 3.28 (3.34)

# queue (pkts) baseRTT (ms)
1 19.8  (20) 10.18 (10.18)
2 59.0  (60) 13.36 (13.51)
3 127.3 (127) 20.17 (20.28)
4 237.5 (238) 31.50 (31.50)
5 416.3 (416) 49.86 (49.80)



Vegas/REM

� To preserve Vegas utility function & rates
s
s

p
d

ssx α    =
end2end queueing delay



Vegas/REM

� To preserve Vegas utility function & rates

� REM
� Clear buffer : estimate of ds
� Sum prices : estimate of ps

s
s

p
d

ssx α    =
end2end price



Vegas/REM

� To preserve Vegas utility function & rates

� REM
� Clear buffer : estimate of ds
� Sum prices : estimate of ps

� Vegas/REM
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Performance

Vegas

peak = 43 pkts
utilization : 90% - 96%

Vegas/REM



Conclusion

Duality model of TCP: (F, G, U)
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Reno, Vegas
� Maximize aggregate utility
� With different utility functions

DropTail, RED, REM
� Decouple congestion & performance
� Match rate, clear buffer
� Sum prices



Food for thought

�How to tailor utility to application?
�Choosing congestion control automatically 

fixes utility function
�Can use utility function to determine 

congestion control
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REM   (Athuraliya & Low 2000)

� Congestion measure: price
pl(t+1)   =  [pl(t) + γ(αl bl(t)+ xl (t) - cl )]+

� Embedding: exponential probability function

� Feedback: dropping or ECN marking
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Performance Comparison

�RED

B

1

High utilization
B

1

Low delay/loss

OR

REM
match rate

High utilization

clear buffer

Low delay/loss

AND



Comparison with RED

� Goodput

� Loss

� Queue

REM RED



Comparison with RED

� Goodput

� Loss

� Queue

REM RED



Application: Wireless TCP

�Reno uses loss as congestion measure
�In wireless, significant losses due to

�Fading
�Interference
�Handover
�Not buffer overflow (congestion)

�Halving window too drastic
�Small throughput, low utilization



Proposed solutions

�Ideas
�Hide from source noncongestion losses
�Inform source of noncongestion losses

�Approaches
�Link layer error control
�Split TCP
�Snoop agent
�SACK+ELN (Explicit Loss Notification)



Link layer protocols

�Interference suppression
�Reduces link error rate
�Power control, spreading gain control

�Forward error correction (FEC)
�Improves link reliability

�Link layer retransmission
�Hides loss from transport layer
�Source may timeout while BS retransmits



Split TCP

TCP

TCP

� Each TCP connection is split into two
� Between source and BS
� Between BS and mobile

� Disadvantages
� TCP not suitable for lossy link
�Overhead: packets TCP-processed twice at BS (vs. 0)
� Violates end-to-end semantics
� Per-flow information at BS complicates handover



Snoop protocol

� Snoop agent 
�Monitors packets in both directions
�Detects loss by dupACKs or local timeout
� Retransmits lost packet
� Suppresses dupACKs

� Disadvantages
� Cannot shield all wireless losses
�One agent per TCP connection
� Source may timeout while BS retransmits

TCP
snooper



Explicit Loss Notification

�Noncongestion losses are marked in ACKs
�Source retransmits but do not reduce 

window
�Effective in improving throughput
�Disadvantages

�Overhead (TCP option)
�May not be able to distinguish types of losses, 

e.g., corrupted headers



Third approach

�Problem
�Reno uses loss as congestion measure
�Two types of losses

�Congestion loss: retransmit + reduce window
�Noncongestion loss: retransmit

�Previous approaches
�Hide noncongestion losses
�Indicate noncongestion losses

�Our approach
�Eliminates congestion losses (buffer overflows)



Third approach

� Router
�REM capable

� Host
�Do not use loss as congestion measure

Vegas

REM

� Idea
� REM clears buffer
�Only noncongestion losses 
� Retransmits lost packets without reducing window



Performance

�Goodput



Performance

�Goodput



Food for thought

�How to tailor utility to application?
�Choosing congestion control automatically 

fixes utility function
�Can use utility function to determine 

congestion control

�Incremental deployment strategy?
�What if some, but not all, routers are ECN-

capable



Outline

�Introduction
�TCP Algorithms

�Window flow control 
�Source algorithm: Tahoe, Reno, Vegas
�Link algorithm: RED, REM, variants

�TCP Models
�Renewal model
�Duality model (F, G, U)
�Feedback control model



Motivation

�Duality model
�Equilibrium properties

�Rate, loss, queue, delay, fairness
�Optimality (utility function)
�Interaction, TCP-friendliness

�Dynamic model
�Stability & robustness
�Transient behavior



Strategy

�Start with duality model
�Linearize around equilibrium point

�Local stability & robustness

�Apply linear control & robustness theory
�Conclusions

�TCP stability does not scale
�How to scale

…… the rest are details



Model assumptions
� Small marking probabilities

� End to end marking probability

� Congestion avoidance dominates
� Receiver not limiting
� Decentralized

� TCP algorithm depends only on end-to-end measure 
of congestion

� AQM algorithm depends only on local & aggregate 
rate or queue

� Constant (equilibrium) RTT
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Model structure

Multi-link multi-source network

F1

FN

G1

GL

Rf(s)

Rb
’(s)

TCP Network AQM



Duality model - AIMD
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Duality model - AIMD
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Duality model - AIMD
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Duality model - AIMD
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Loop function
Rf(s)

F1

FN

G1

GL

)()()()(   )( ' sGsRsFsRsL bf=

Rb
’(s)

TCP Network AQM

Theorem
Closed loop system is stable if and only if

det (I + L(s)) = 0
for no s in closed RHP



Validation
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Single link
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This control scheme is 
unstable in many conditions, 
particular for large c!

The lag introduced by Reno is 
more of a problem than time 
delay of network.



Robustness of AIMD

�Robustness = stability as network scales
�Unstable as

�Delay increases
�Capacity increase 
�#sources decreases

�Stable when window size is small
�Unstable for future networks

…… is strong robustness possible?



The End



Discussion



Acronyms
QoS Quality of Service
RED Random Early Detection/Discard
RFC Request for Comment
RTT Round Trip Time
RTO Retransmission TimeOut
SACK Selective ACKnowledgement
SONET Synchronous Optical NETwork
SS Slow Start
SYN Synchronization Packet
TCP Transmission Control Protocol
UDP User Datagram Protocol
VQ Virtual Queue
WWW World Wide Web

ACK Acknowledgement
AQM Active Queue Management
ARP Address Resolution Protocol
ARQ Automatic Repeat reQuest
ATM Asynchronous Transfer Mode
BSD Berkeley Software Distribution
B Byte (or octet) = 8 bits
bps bits per second
CA Congestion Avoidance
ECN Explicit Congestion Notification
FIFO First In First Out
FTP File Transfer Protocol
HTTP Hyper Text Transfer Protocol
IAB Internet Architecture Board
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
ISOC Internet Society
MSS Maximum Segment Size
MTU Maximum Transmission Unit
POS Packet Over SONET
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