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Introduction

A traffic matrix (giving traffic volumes from ingress to egress in a network) is the basic
input to many network engineering tasks. However, an Internet traffic matrix is hard to measure
directly, and so much work (for some examples see [1, 2, 3, 4, 5, 6]) has been conducted in recent
years on how one can estimate a traffic matrix from indirect measurements of link traffic.
Such measurements may be easily collected using SNMP (the Simple Network Management
Protocol), but only reveal link traffic volumes, not the source or destination of the traffic, and
one must solve a highly underconstrained problem in order to obtain the desired traffic matrix.
Solving such problems requires side-information, which may be brought in if we know a prior:
a reasonable model for the traffic in question. A variety of such models have been proposed,
and we examine critically one such, the gravity model. Importantly, such a simple model is
unlikely to be perfectly accurate, but can still be useful in determining a viable traffic matrix.
The simplicity of this model also makes it useful in simulations of networks where one wishes
to generate many instances of random networks, with random traffic matrices.

Background and Related Work

An IP network can be abstractly thought of as a graph, whose nodes are routers, and whose
edges are links between these. A Traffic Matrix (TM) describes the volumes of traffic traversing
a network from the point at which it enters the network, to the exit point. Such a matrix is useful
in capacity planning, traffic engineering, network reliability analysis, and many other network
engineering tasks. It is possible to measure such a matrix using measurement technologies
such as flow level traffic collection [7], but typically these are hard to implement across a
large network [5]. On the other hand SNMP data is easy to collect, and almost ubiquitous.
However, SNMP data only provides link load measurements, not TM measurements [5].The
link measurements y are related to the TM, which is written as a column vector x, by the
relationship y = Ax where A is called the routing matrix. The routing matrix is simply defined
so that A;; equals the fraction of traffic from route j that uses link ¢ in the network, and is
zero for most elements (and thus forms a sparse matrix). The resulting problem of inferring
the TM from link measurements is a classic underconstrained, linear-inverse problem.

There is extensive experience with ill-posed linear inverse problems from fields as diverse
as seismology, astronomy, and medical imaging [8, 9, 10, 11, 12|, all leading to the conclusion
that some sort of side information must be brought in. Examples of such include, Vardi [1]
and Tebaldi and West [2] who assume a Poisson traffic model; Cao et al. [3] assume a Gaussian
traffic model; Zhang et al. [5] assume an underlying gravity model; and Medina et al. [4] assume
a logit-choice model. Finally, a more general approach to the problem of linear inverse problems
is to use regularization, as suggested in [6]. Zhang et al showed that an intuitive regularization
approach, based on Minimization of Mutual Information (MMI), resulted in fast, accurate and
robust estimate of the traffic matrix, which interestingly can be closely approximated by using a
gravity model as a starting point. There are also alternative approaches that rely on gathering
additional information, for instance by changing network routing [13], but this class of methods
is only practical in special cases where control over network routing is possible.

Each method of estimation is sensitive to the accuracy of this prior: for instance, [4]
showed that the methods in [1, 2, 3] were sensitive to their prior assumptions (which took
the form of a relationship between the mean and variance of the traffic matrix elements when
these are considered as a time series). Some effort has gone into validating the time series



type models of traffic matrices, e,g, see [4, 14, 15|, but these approaches assume independence
of traffic matrix elements. The gravity model brings in spatial correlations between traffic
matrix elements. The assumption was tested in [5, 6], on a large set of traffic data from a
large Internet Service Provider (ISP) in North America (AT&T), where it was not found to
be accurate enough for TM inference, but it was accurate enough to use as a starting point.
All of these tests were aimed at assessing the model as a starting point estimation algorithms,
not characterization of the traffic matrices for other applications such as simulation of traffic
matrices, which we shall make the focus of this paper.

Further effort on modeling the relationships between TM elements has been performed
in [16], and successfully exploited for anomaly detection in [17, 18]. These papers focused
on a Principle Components Analysis (PCA) of the traffic matrices, as times series. The PCA
exploits the correlations between traffic matrix elements to separate the periodic components of
the traffic (as seen in [14]), from random fluctuations, and anomalous events. It is not obvious
how the structures described within [16] would lead to a simple model for use in simulations of
network traffic matrices. On the other hand, the gravity model is so simple that it has already
been used in a number of simulation contexts as a model for network traffic, e.g. see [19].

Gravity models

Gravity models, taking their name from Newton’s law of gravitation, are commonly used
by social scientists to model the movement of people, goods or information between geographic
areas [20, 21]. In Newton’s law of gravitation the force is proportional to the product of
the masses of the two objects divided by the distance squared. Similarly, in gravity models
for interactions between cities, the relative strength of the interaction might be modeled as
proportional to the product of the cities’ populations. A general formulation of a gravity model

is given by X;; = R}'—:j, where Xj; is the matrix element representing the force from 7 to j;

R; represents the repulsive factors that are associated with “leaving” from 4; A; represents the
attractive factors that are associated with “going” to j; and f;; is a friction factor from ¢ to j.

In network applications, gravity models have been used to model mobility in wireless
networks [22], and the volume of telephone calls in a network [23]. In the context of Internet
TMs, we can naturally interpret X;; as the traffic volume that enters the network at location
¢ and exits at location j, the repulsion factor R; as the traffic volume entering the network
at location ¢, and the attractivity factor A; as the traffic volume exiting at location j. The
friction matrix (f;;) encodes the locality information specific to different source-destination
pairs, however, as locality is not as large a factor in Internet traffic as in the transport of
physical goods, we shall assume a common constant for the friction factors. The resulting
gravity model simply states that the traffic exchanged between locations is proportional to the
volumes entering and exiting at those locations.

In this very simple gravity model, we aim to estimate the amount of traffic between nodes.
Denote the nodes by n, ng,.... We estimate the volume of traffic T'(n;,n;) that enters the
network at node n; and exits at node n;. Let T™(n;) and T°"(n;) denote the total traffic that
enters the network via node n;, and exits the network via node n;, respectively. The gravity
model can then be computed by either of
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where T is the total traffic across the network, and p'"(n;) and p°**(n;) denote the probabilities
of traffic entering and exiting the network at nodes i and j respectively. Under the (reasonable)

assumption that the network is neither a source nor sink of traffic in itself, so all traffic crosses
the network, then T'= )", T™(ny) = Y, T°*(n)) and we can also write

(1) T(ni,n;) =T = Tp"™ (n:)p™" (ny)

(2) p(ni, nj) = p™ (ni)p™ (n;)

where p(n;,n;) is the probability that a packet (or byte) enters the network at node n; and
departs at node n;. Hence we can see that the gravity model corresponds to an assumption of



independence between source and destination of the traffic. More importantly, using the above,
the gravity model can be written as a matrix formed from the product of two vectors, e.g.

(3) P = pinPoy

so by characterizing these two vectors, we obtain a reasonable characterization of the matrix.

In this paper, we use data derived from the Abilene research network http://abilene.
internet2.edu/ to examine the gravity model. As this is a research network, they have made
their traffic, and network topology data public, including traffic matrix measurements. We have
used this data to estimate link loads in the network, and from these test various approaches
to estimation and characterization of traffic matrices. The particular result of interest here is
how well the gravity model estimates the traffic matrix data. The answer is, not well enough
for many applications: the average accuracy of the simple gravity model above is +39%. As
in previous tests of estimation techniques [5, 6] these results can be considerably improved
by using a better initial gravity model (which incorporates natural routing asymmetries), or
by regularization techniques. However, in this paper, we shall allow this to be a somewhat
inaccurate starting point for 1st order modeling of traffic matrices, and consider characterization
of this gravity model as our goal.

In fact such a characterization turns out to be quite easy. We start by approximating the
vectors pi, and peye With an exponentially distributed random variable. Figure 1 (a) shows one
example of such a fit. Note that, although the fit is not perfect, there are only 12 samples used
in drawing this distribution, with obvious limitations on the accuracy, and also the accuracy
of the characterization is still better than the accuracy of the gravity model overall. Hence, we
consider this to be an excellent starting point for generating a gravity model. The traffic matrix
is then generated as the matrix product described above. While, in reality, it may make sense
for there to be correlations between the source and destination traffic volumes (the vectors pj,
and Pout), we found that the approximation works extremely well in generating a traffic matrix
with similar statistics to the observed traffic matrices, as shown in Figure 1 (b).
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Figure 1: Plots showing the Cumulative Distribution Functions (CDFs) of the
traffic data at the edge of the network p;,, and for the traffic matrix itself. The
solid lines show the data, while the dashed lines are exponential fits to the data.

Conclusion

In this paper we have presented a very simple first order model for the Abilene traffic
matrix data. The model is a gravity model, and while such a model provides poor accuracy for
estimation of traffic matrices, it appears to provide quite a reasonable approach for generating
traffic matrices with similar statistics to the observed traffic matrices. Hence, such a model
could be the basis for techniques for simulation of traffic matrices in many other applications.
Future work will extend the validation of this model, and derive more refined models.
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