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Abstract. In this paper we develop a mathematical model to capture
BGP table fluctuations. This provides the necessary foundations to study
short- and long-term routing table growth. We reason that this growth
is operationally critical for network administrators who need to gauge
the amount of memory to install in routers as well as being a potential
deciding factor in determining when the Internet community will run out
of IPv4 address space.
We demonstrate that a simple model using a simple arrival process with
heavy tailed service times is sufficient to reproduce BGP dynamics in-
cluding the “spiky” characteristics of the original trace data. We derive
our model using a classification technique that separates newly added
or removed prefixes, short-term spikes and long-term stable prefixes. We
develop a model of non-stable prefixes and show it has similar proper-
ties in their magnitude and duration to those observed in recorded BGP
traces.

1 Introduction
The Border Gateway Protocol (BGP) [1] automatically discovers paths within
the Internet, allowing end-hosts to communicate, whilst respecting policy re-
quirements of Autonomous Systems (ASs). However, events such as link failures,
newly added networks and policy changes can alter the path towards a particu-
lar destination in routers throughout the Internet, which in turn changes traffic
flow and performance [2]. There exists a need for network operators to under-
stand which events may lead to performance disruptions and traffic shifts [3–5]
or whether a change in routing configuration may lead to an unforeseen interac-
tion between policies [6,7]. Despite this, the properties of routing updates [8–10]
and the extent to which routers actually scale [11,12] are still poorly understood.
Several questions operators are still struggling to answer [13] include:

– What is the maximum BGP table a router can handle?
– How much memory is needed to store the Forwarding Information Base (FIB)

on the line-cards?
– What are the future hardware requirements for routers?

One of the reasons answers to these questions are missing, is that it is hard
to create field conditions for realistic tests [14]. Efforts within the IETF, for
example from the Benchmarking Methodology Working Group (BMWG) [15],
try to overcome the discrepancy between the field and testing conditions by
recommending metrics and test setups for test-beds. However, we argue that a
good model of BGP events is necessary to understand BGP dynamics, which
in turn will lead to the development of superior test tools as well as improved
estimation of future Internet trends such as IPv4 address space usage.



In contrast to existing tools [16] we create a model characterizing BGP table
fluctuations that is extendible to estimate the size of a BGP table at any par-
ticular point in time along with confidence interval estimates which are needed
to understand the likelihood of extreme fluctuations. A typical example often
cited in literature is the incident in April 1997 [17] where AS7007 accidentally
announced almost all prefixes in the Internet (belonging to all other ASes) for
approximately two hours. Although events of such a magnitude are rare, our data
analysis shows that short-term fluctuations in the order of up to several thousand
prefixes are not abnormal. It is unclear whether hardware limitations [12, 14],
protocol interactions [18], BGP implementations [19] or other factors [20] are to
blame for this behavior. Consequently, measuring magnitudes of previous events
without understanding their underlying nature will not predict the likelihood
of future events. A mathematical model, however, is capable of being trained
using current behavior, to provide insight into possible future behavior, e.g. the
likelihood of large routing events.

Large routing events can have a serious effect on routers and potentially
even cause service interruptions. Nowadays, routers in the Internet have a spe-
cially designed data structure to store forwarding information. This Forwarding
Information Base (FIB) is often stored in separate memory across the vari-
ous line-cards to improve packet lookup times and thus forwarding performance
(see for example the design of the Cisco GSR [21]). The FIB itself needs to be
constructed from routing information comprising manual router configuration
(including static routes), Interior Gateway Protocols (IGPs) and the BGP table
or Routing Information Base (RIB). Typically the RIB contributes the largest
proportion of the FIB table. It is also an “unknown factor”, as a network ad-
ministrator has limited control over what is learned from the outside. However,
if the memory limit on the line-cards is reached, the router cannot perform its
designed tasks and service outages occur.

In Section 4 we present a new classification technique to separate prefix
behavior. By studying recorded RIBs, and applying our classification technique,
we derive statistical properties of routing tables and in Section 5 we introduce
a model capable of capturing the RIBs short-term dynamics. We concentrate
our efforts on the previously un-examined short-term fluctuations, however, our
model provides a mechanism to fully characterize all changes and predict the
future components of the BGP table based on its current state.

2 Background and Related Work
Routing in the Internet is accomplished on a per-prefix basis. Routing protocols,
such as OSPF and IS-IS, are used to find the shortest path internally within an
AS, while BGP [1] is used to exchange reachability information between ASs. As
BGP is a policy-routing protocol, it gives operators some freedom to express their
company requirements and policies. To accomplish this, BGP allows attachment
of several attributes for each route, and is based on a path-vector protocol.
Upon startup, a router establishes sessions with all configured neighbors and all
appropriate table-entries are exchanged. Hence, each neighbor sends its RIB to
adjacent routers, which in turn store each table in memory (sometimes referred
to as the Adj-RIB-In). Next, the router may modify or filter attributes in the



Adj-RIB-In before selecting a single “best path” used to create its own RIB. The
RIB, together with static and IGP routes, are combined to form the Forwarding
Information Base (FIB). The FIB is typically a high-speed lookup data structure
which consists of prefix-next-hop pairs enabling forwarding of packets to the
appropriate next-hop: Special memory is used for storage of the FIB directly
on the line-cards of the routers. The selected best routes, if not subjected to
out-bound filtering, are then propagated to other neighbors.

BGP’s flexibility, coupled with the fact that network administrators (mis-)use
BGP in numerous ways means it is often difficult to determine the underlying
cause of routing behavior [9]. As BGP propagates changes to the best path,
a single router may send multiple updates based on one triggering event [8].
Further, the propagation of one update may cause induced updates at other
locations [22]. It is even possible for policy conflicts to occur that can potentially
disrupt the entire Internet [7] which has led to a considerable body of research
(see [10] for further details).

Pioneering work related to the size of the Internet RIB was undertaken by
Fuller et al. [23] who measured the number of routes in the RIB on a monthly
granularity over the period 1988-1992. Additionally, Huston [24] has used in-
formation obtained from the University of Oregon’s RouteViews project [25]
to display the long-term growth of numerous Autonomous Systems’ RIBs since
1994 [26]. In contrast, our work examines the fluctuations within the Internet
RIB on a fine timescale.

Several prefix -clustering techniques based on time correlations between up-
dates have been previously described [27,28] while other methods which cluster
updates based on their likelihood of being caused by a single event have also
been considered [22,29]. Clustering updates can provide insight into underlying
features, however, determining boundaries of clusters can be a difficult task. In
contrast, we describe a simple classification technique in Section 4 which has
clearly defined boundaries separating prefixes with different behaviors.

3 Data Sets
RouteViews 1 uses software [31] capable of conducting BGP sessions with routers
throughout the Internet to collect BGP data. RouteViews archive all routing
information and make their data publicly available to benefit the entire Internet
community. Fig. 1 provides an overview of the data used in the ensuing analysis
and unless otherwise stated, we use the Verio-Trace as an example dataset
throughout this paper.

As we cannot obtain the actual RIB of any router in the Internet, we need
to approximate a potential RIB from the available raw data. Each monitored
router (or peering router) provides a snapshot of their perspective every 2 hours
(hence the granularity of [24]). In addition to the snapshots, updates with times-
tamps to the nearest second are recorded. A snapshot, with updates applied in
chronological order, provides a finer granularity than simply using 2 hourly snap-
shots. The potential RIB is not an exact representation of the RIB on a remote

1 RIPE [30] collects similar data to that in RouteViews with a European focus. For
this investigation we have only used RouteViews data.



Name Verio-Trace Verio-Trace-Prediction
Start Time (UTC) 1 June 2004 01:23:03 1 August 2004 01:48:06
Finish Time (UTC) 1 August 2004 01:48:06 1 October 2004 00:20:56
Start RIB size 137820 entries 140484 entries
Finish RIB size 140484 entries 129191 entries

Fig. 1. Detailed Data Sources Information: All traces obtained from RouteViews [25]
for a Verio router (IP: 129.250.0.85, AS: 2914)

router, it is however a good approximation. Route monitors typically do not
collect internal prefixes of remote peers and the Minimum Route Advertisement
Interval (MRAI) [1] reduces the frequency of update messages recorded. We as-
sume that a majority of routing table fluctuations occur externally and on time
scales longer than 30 seconds (a typical setting for MRAI). Hence, we argue
our approximation provides a good representation to an actual RIB stored on
a remote router. Further, session resets between the route monitor and peering
router can cause discrepancies between the constructed and recorded tables. We
use intermediate table dumps to infer where missing withdrawals are likely to
have occurred, and the impact of these session resets for the data analyzed in
this paper is minimal.

4 Classification
Fig. 2 depicts the change in size of the RIB on a per second basis over a two-
month interval. Huston [24] has previously shown that the RIB experiences a
growth trend when monitored at hourly intervals. However, visual examinination
of the time series for the number of entries in the RIB reveals several other key
features such as “spikes” which are not evident at a coarser granularity. These
spikes indicate short-term availability of prefixes and occur in highly varying
magnitudes and durations. In Fig. 2 (b) a large upward spike in the early morning
hours (UTC) is clearly visible. The short-term event consisted of approximately
2, 000 prefixes which appeared in the routing table for less than 10 minutes.
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Fig. 2. Short-term RIB fluctuations from Verio Trace for (a) 1 June 2004 - 1 August
2004 and (b) a closer examination of 3 June 2004

Recall that our end-goal is to predict the size of the RIB at any given point
in time in the future, as well as estimate intermediate table fluctuations. How-
ever, the observed time series are a complex combination of various components



(trend, upward spikes and downward spikes). To achieve a clean simple model,
we need to extract the various components so that we can identify their key
characteristics and build models. Thus, in this section we develop a simple,
straightforward classification technique of the raw BGP data that, at the same
time, eases the construction of our model.

Given a number of observations at times t1, ..., tn, we first require our model
to predict the number of table entries at some future time tn+i. Then we are able
to estimate the probability a router reaches a predefined memory limit between
tn and tn+i. To achieve this, we need to know:

1. How many new prefixes are added?
2. What happens to existing prefixes?
3. What short-term changes prefixes exhibit?

Consequently, we need to understand the behavior of the RIB over the entire
interval [t1, tn+i]. This behavior leads us to the following classifications:

Definition 1 (Stable Prefix). Let RIBt be the set of prefixes for which we
have an explicit route at time t. If a prefix p ∈ RIBt1 and p ∈ RIBt2 then
p ∈ S

[t1,t2]
stable over time interval [t1, t2].

Within the RIB, there is a large proportion of prefixes which are permanently
or almost permanently routable. Definition 1 is designed to separate the majority
of prefixes which exhibit this behavior from the entire set of prefixes. A stable
prefix is present within the RIB at the start and end of the time interval under
consideration. Consequently, the number of stable prefixes can never exceed the
initial (and final) number of prefixes. Stable prefixes can, however, leave the RIB
during the time interval. As a result, the number of stable prefixes within the
RIB captures the downward spikes within the time series (see Fig. 3 (a)). Not
surprisingly, a large proportion of prefixes within the RIB are classified as stable.
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Fig. 3. (a) Stable prefixes and (b) Ephemeral prefixes from 17 - 20 June 2004 classified
on interval 1 June - 1 August 2004 from Verio-Trace

Definition 2 (Transient Prefix). If a prefix p ∈ RIBt1 and p /∈ RIBt2 or
p /∈ RIBt1 and p ∈ RIBt2 then p ∈ S

[t1,t2]
transient over time interval [t1, t2].



New prefixes are announced and others permanently withdrawn when new
networks are created and old networks aggregated or dismantled. The transient
prefixes as defined in Definition 2 captures these newly announced and with-
drawn prefixes. As previously shown [24], the RIB grows over time and thus the
transient prefixes capture this long term growth (plot not shown as we focus on
the short term process in this paper).

Definition 3 (Ephemeral Prefix). If a prefix p /∈ RIBt1 and p /∈ RIBt2 and
p ∈ RIBt for some t ∈ (t1, t2) then p ∈ S

[t1,t2]
ephemeral over time interval [t1, t2].

A majority of routing dynamics are caused by a minority of prefixes [32–34].
We aim to separate these prefixes with our definition of ephemeral prefixes. These
prefixes as shown in Fig. 3 (b) tend to have short lifetimes although we show later
that their lifetimes are best modeled as a heavy-tailed distribution. Consequently,
ephemeral prefixes form the upward spikes within the RIB timeseries and may
cause router line-cards to exceed their memory limit (before any expected long-
term trend would exceed the bound).

All classifications described above are merely approximations to what opera-
tors may intuitively label as stable, transient or ephemeral. The times t1 and t2
are arbitrary times, hence the interval [t1, t2] can be of any length. If we let the
interval be infinite, every prefix would be classified as ephemeral. Conversely,
if t1 = t2, every prefix would be classified as stable. In Section 5, we demon-
strate that the approximate nature of the classifications, and the arbitrary time
interval is not vital to our model’s success.

5 Model
In this section we develop our model. We focus on the ephemeral prefixes, as
they are most relevant in terms of short-term memory consumption. As described
above, the classification of ephemeral prefixes is conceptually aimed at separating
those prefixes which experience short-term presence in the RIB.

We define a spike of prefixes as a group of prefixes which arrive and depart
at the same time. Visual detection of these spikes is somewhat trivial, however
determining a simple and effective technique to automatically identify such spikes
is not. The difficulty arises as updates relating to multiple events may overlap.

Definition 4 (A Spike of Prefixes). The spike, Sa,w, is the set of prefixes
which enter the table at time a and leave at time w where a ≤ w. The spike
duration is r = w−a and the spike size is the number of prefixes in the set Sa,w.

Updates are witnessed to occur in bursts which may last a number of seconds,
after which the MRAI timer prevents any announcements from being sent, but
updates caused by a single event may not be advertised or withdrawn at exactly
the same time. As Cisco uses a jittered 30 seconds as their default MRAI, we use
bins of 30s to capture the start and conclusion of spikes, sacrificing the ability
to detect spikes at a finer granularity than 30s, however, large spikes which take
several seconds to announce or withdraw are identified as a single set which is
especially critical in identifying the probability of large spikes.



Our model assumes that the three components of spikes, (1) spike arrival
times; (2) spike sizes; and (3) spike durations, are independent. Superimposing
independent spikes defined by the three components above forms the basis for
our model to predict the future statistical properties of the RIB.

5.1 Spike Arrival Times
Fig 4 (a) depicts the Complementary Cumulative Distribution Function (CCDF)
for spike arrival times. It can be seen that the arrival times are uniformly dis-
tributed across the interval. Also, the mean inter-arrival time between spikes
can be shown to be approximately 19.6 seconds. In this section, the uniform
distribution of spike arrival times is satisfactory for our purposes. In Section 6,
however, we require a spike arrival process. Given the difficulty in accurately
determining the actual arrival time of each announcement, let alone spike, the
precise form of the spike arrival process is impossible to identify. For simplicity,
we have chosen to use the classical telecommunications arrival process, namely
the Poisson process, to model the spike arrival process.

5.2 Spike Sizes
Fig. 4 (b) shows the CCDF for the spike sizes on log-log axes. We can see
that the distribution of the size of spikes is heavy-tailed and consequently, we
model the size of spikes as a Pareto distribution. We estimate parameters using
logarithmic transformed data (dashed line). Note that, although we use the
Pareto distribution, we do not claim this is the ideal distribution as there remains
some disparity between the actual and fitted curves. Note a single outlier is
responsible for the large discrepancy from the model in bottom right of the
plot. We do, however, assert the distribution is heavy-tailed, and the Pareto
distribution is a simple, parsimonious distribution with this feature.

5.3 Spike Durations
Recall from Definition 3, ephemeral prefixes are not present at the start and
end of the time period. They may experience multiple lifetimes within the time
period [t1, t2] through multiple announcements and withdrawals. Consequently,
some prefixes with multiple short lifetimes will provide more data points than
other prefixes that have long lifetimes and contribute one or few data points.
For our model we assume independence between events. The CCDF, plotted on
log-log axes, for the lifetimes of ephemerals is shown in Fig. 4 (c).

The lifetimes of ephemeral prefixes are artificially limited by the size of the
time period we use for classification. As a result, the CCDF representing the
lifetimes of ephemeral prefixes is dependent on the arbitrary choice of time pe-
riod [t1, t2]. Thus, we require a model to separate the censorship or truncation
effect caused by the arbitrary choice of time interval and the underlying process
defining the lifetimes of ephemeral prefixes.

We consider, without loss of generality, an arbitrary time interval [0, T ] and
assume the start times are distributed according to the uniform distribution on
[0, T ]. Hence the probability an individual arrival occurs before time u obeys the
probability distribution function

Pr{t ≤ u} = u/T . (1)



01/06 01/07 01/08
0

0.2

0.4

0.6

0.8

1

Date/Time (x)

P
r(

A
rr

iv
al

 T
im

e 
>

x)

10
0

10
1

10
2

10
3

10
−6

10
−4

10
−2

10
0

Spike Size (x)

P
r(

S
pi

ke
 S

iz
e 

>
 x

)

(a) (b)

10
1

10
3

10
5

10
7

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Spike Duration (x)

F
c (x

) 
=

 P
r(

S
pi

ke
 D

ur
at

io
n 

>
 x

)

Fig. 4. Spike components from Verio-
Trace. (a) Spike Arrival time CCDF
(b) Empirical (solid) and Pareto Model
(dashed) of Ephemeral Spike Size CCDF
(Mode = 2.26, Exponent = 1.93). (c) Em-
pirical (solid) and Truncated Pareto Model
(dashed) of Ephemeral Spike Durations
(Mode = 8.24, Exponent = 0.28).

(c)

We also assume independent durations of spikes, r and let a,w denote the start
and stop times, respectively. If we further assume the duration of spikes are
Pareto distributed, then the probability density function is given by

f(x) = cbc

xc+1 , x ≥ b, (2)

where b is the mode and c is the exponent. However, a prefix will only be classified
as ephemeral if it is absent at the end of the classification interval [0, T ], i.e.,
w ≤ T . So the distribution we observe is the conditional distribution

F c(x) = Pr{r ≤ x|w ≤ T} =
Pr{r ≤ x ∩ w ≤ T}

Pr{w ≤ T}
. (3)

First, consider the numerator, so

Pr{r ≤ x ∩ w ≤ T} = Pr{r ≤ x ∩ a + r ≤ T}

=
∫ x

b

Pr{r = u}Pr{a ≤ T − u}du. (4)

Substituting (1) and (2) into (4) yields

Pr{r ≤ x ∩ w ≤ T} =
∫ x

b

(
cbc

uc+1

T − u

T

)
du

=
T − b

T
− T − x

T

(
b

x

)c

− bc

T

(
xc+1 − b−c+1

1− c

)
. (5)



The normalization factor Pr{w ≤ T} is the particular case of (4) where x = T .
Thus, if we set

Qb,c(x) =
T − b

T
− T − x

T

(
b

x

)c

− bc

T

(
xc+1 − b−c+1

1− c

)
(6)

then from (3)
F (x) = Pr{r ≤ x|w ≤ T} =

Qb,c(x)
Qb,c(T )

. (7)

Using a nonlinear regression based on (7) on a log scale, we are able to
estimate parameters for ephemeral prefixes to fit our model CCDF (F c(x) =
1− F (x)) to the empirical data. The example shown in Fig 4 (c) demonstrates
that our model is successful in capturing the distribution for the lifetimes of
ephemerals including the truncation caused by the classification. Furthermore,
a Pareto distribution with parameters estimated using our truncated model of
spike durations provides an intuitive description for the non-truncated duration
short-lived prefixes spent in the table.

6 Results
Fig. 5 (a) shows the timeseries for the number of ephemeral prefixes in Verio
Trace. Two model generated time series (Fig. 6) based on fitted parameters of
Verio Trace found in Section 5, contain the same features as in the empirical
data (Fig. 5 (a)). The empirical data contains a single large spike of magnitude
greater than 2000 prefixes. The model generated time series in Fig. 6(a) also
predicts (in one case) a large spike of magnitude greater than the limits of the
plot. These large spikes are particularly important from a modeling perspective
as they potentially cause memory capacity problems in router line cards. Our
model provides the predictive ability to determine the probability an abnormally
large spike will occur. Also, many short duration spikes and few spikes of several
hundred prefixes that last from seconds to weeks are witnessed. Most clearly seen
in Fig. 6(b) is performance of the model when capturing overlapping different
duration spikes (i.e. the 15 day period in June). An obvious artifact caused by
the classification technique is the ‘bump’ in the center of the timeseries. As seen
in each realization (Fig. 6) our model is able to successfully account for this.

Recall our goal is to predict statistical characteristics of the future time-
series as shown in Fig. 5 (b). Other than a single spike lasting approximately
20 days towards the end of the timeseries, the Figs. 5 (a) and (b) are similar:
- they have similar spike sizes, durations and truncation effect (the ’bump’).
Note we are not aiming to predict exact locations of spikes, but rather their
statistical characteristics. We believe based only on parameters estimated from
Verio-Trace, our model is able to predict the statistical properties of future
short-term fluctuations in the RIB.

The marginal distribution for our model is shown in Fig. 7. We used 500
model realizations to find a numerical approximation to the mean, maximum
and minimum marginal distributions. The empirical data from Verio-Trace and
Verio-Trace-Predicion are also plotted, both of which fall inside the ranges for
the marginal distribution. It is thus arguable that our model is able to reproduce
the highly varying nature in the number of ephemeral prefixes.
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Fig. 5. Empirical number of ephemeral prefixes: Each plot demonstrates how the num-
ber of ephemeral prefixes within the RIB changes over two 2 month periods.
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Fig. 6. Model generated number of ephemeral prefixes: Each plot demonstrates a dif-
ferent realization of the model for the number of ephemeral prefixes within the RIB
over a 2 month period. The parameters for the model are obtained from Verio-Trace.

More validation of the model is needed, but space limitations prevent us
presenting more extensive results. These preliminary results indicate our model
is capable of encapsulating the non-stable prefixes and extendable to the entire
set of routable prefixes. We reiterate that although we use the Pareto distribution
for lifetimes and sizes of spikes, we do not claim that this is the ideal distribution
to use. However, we do assert that they exhibit heavy-tailed properties and the
Pareto distribution is just one common distribution which has this property.

7 Conclusion and Future Work
In this paper we presented a classification technique to separate long-term growth
trends from short-term state changes arising from newly added or removed BGP
prefixes. We demonstrated the efficacy of our technique over a 2-month time
interval using RouteViews BGP data. Our analysis confirmed the results of pre-
vious work such as [34] which supported the validity of our model. We further



10
2

10
3

10
4

10
−8

10
−6

10
−4

10
−2

10
0

Number of Ephemerals (x)

P
r(

N
um

be
r 

of
 E

ph
em

er
al

s 
>

 x
)

Fig. 7. Mean marginal distribution (dotted) for the number of ephemeral prefixes in
RIB found from 500 realizations of our model. Also shown is the minimum and max-
imum marginal distributions (dashed) together with the marginal distribution for the
empirical data from Verio Trace (solid) and Verio-Trace-Prediction (solid-dotted).

elicited the presence of heavy-tailed features in the number of short-term fluc-
tuations in terms of size and duration.

The main contribution of this paper was to demonstrate that a simple arrival
process with heavy-tailed service times is sufficient to capture BGP routing
dynamics. To this end, we derived the parameters for our model from observable
BGP data and successfully reproduced BGP table fluctuations including the
“spiky” characteristics of the original traces.

In future work we will expand our model to estimate long-term table growth
as well as the probability that short-term spikes do not exceed a fixed number of
table entries. Also, we will investigate changing the classification interval start
times and durations together with considering the evolution of prefixes as they
enter the table. This issue is critically important in order to successfully predict
when the Internet community will run out of IPv4 address space as well as the
amount of memory needed for BGP tables on router line-cards.
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