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Abstract—A planar graph is one that can be drawn (say on
a piece of paper) without any crossing links. In this paper we
show, using a new data set, that data-network graphs show a
surprisingly high likelihood of being planar. The data set — the
Internet Topology Zoo — is a store of network data created
from the information that network operators make public. As
such, it includes meta-data that we could never have derived
from automated network measurements. A surprising number of
graphs in the Zoo are planar, many more than can be explained
through the models for graph formation we tested. We speculate
that planarity results from the requirement to build transparent
networks that network operators can understand easily.

I. INTRODUCTION

Graphs of communications networks have received a great

deal of interest over the last few decades, for example [1]–

[8], both through purely scientific interest and for practical

reasons. Network graphs determine many of the properties of

the underlying communications network such as its reliability

and performance. They are therefore valuable inputs into

many network algorithms, and much effort has gone into their

measurement and synthesis for use in testing new algorithms.

More importantly, models of graph formation tell us some-

thing about how networks are designed. Any one engineer

may be able to describe, at least loosely, their method for

network design. However, the more interesting goal is to learn

universal laws of network formation that may, for instance,

still apply as technology evolves. Moreover, through under-

standing these laws we may learn how best to improve the

underlying technology to fit the network design process, rather

than putting the cart before the horse, as has been so often

done in networking, by requiring engineers to work around

technological limitations, or in providing them with features

they do not need.

In this paper we note one feature – planarity – that is

common in the networks we observe, but which is not ex-

plained well by the existing graph formation models. There

are ongoing debates about what type of model best fits data

networks: on the one hand lie the random graph models

(starting with Erdos-Renyi and Gilbert [9] and going forward

throughWaxman [1], and more recently power-law graphs [2]–

[5]). On the other hand lie “designed networks” such as

the structured networks of G-ITM [6], [7] or HOT (Highly

Optimized Tolerance) graphs [8]. Proponents of power-law

and HOT graphs appear convincing, but both are hampered

by lack of accurate data. In the few cases where a commercial

network has been used the data have not been published.

There is ongoing research effort to improve the accuracy

of measured networks, but we circumvent that issue entirely

in this paper through a new source of network data — the

Internet Topology Zoo — first described in [10]. The graphs

in this dataset are derived from openly published network

maps. This avoids the difficulties encountered by measurement

based studies whose errors have confused the issue of topology

modelling for years.

The new data is interesting, in particular, we observe a

high degree of planarity in our networks. A planar graph

can be drawn in a plane without edges crossing. Planarity has

interesting consequences:

• A planar graph (without loops) is 4-colorable;

• For any planar graph we can define a dual (which is also

planar), by taking one vertex in each face (including the

outer face) and creating one edge in the dual between

each face divided by an edge;

• The planar separator theorem states that every n-vertex
planar graph can be partitioned into two subgraphs of size

at most 2n/3 by the removal of O(
√

n) vertices;

and so on. However, here we are less interested in the

properties of planar graphs than we are in what this property

tells us about graph formation, and how it helps us develop

appropriate synthetic models for communications networks.

There are two broad approaches suggested for generating

synthetic communications networks: variations on random

graphs, and the structural methods most recently exemplified

by optimization models [8]. The latter makes a great deal

more sense when considering a computer network that will

have typically been designed by a small group of engineers

(rather than randomly grown). However, we use this approach

to generate a large set of networks, and show that it does not

generate networks with the observed degree of planarity.

This is not unexpected. The optimization approach seeks

to improve some objective function usually related to the

capital cost of building a network. It does not include any

constraints or cost associated with link crossings. However, in

real network design there is a cost for complexity. A more

complex network is harder to manage. It is harder for a

network engineer to picture. Debugging is more difficult, as

there are more possible sources of errors, and the relationship

between error and observations of that error may be less direct.

Therefore a more complex network has a higher operations

cost.

Operations costs associated with network designs are diffi-

cult to quantify and are, for this reason, often ignored in the



Operations-Research literature. However, these costs are real,

and are qualitatively understood by many network engineers.

The result is that they often avoid purely optimized networks

in favor of simple designs. We speculate that this is the cause

of the high degree of planarity we observe.

Rather than discarding the existing work on network syn-

thesis through optimization, this result implies that additional

criteria should be included in such optimizations. Such cri-

teria could crudely enforce planarity through constraints or

additions to the objective function, or could be more subtle

through including a “complexity” based cost, though we leave

the choice of such a cost function for future research.

Finally, this paper represents a stepping stone towards a

greater understanding of the explicit and implicit rules used

in the construction of networks. We expect that future work

in this area will use other network statistics, and other data

sources to confirm and rigorously explain the phenomena

observed here.

II. DATA

Before we begin discussing the details of our topological

data, let us first define our terminology. By topology we

mean an undirected graph G = (N , E), which abstracts
the connectivity of a data communications network. In fact,

we really mean a multigraph, as multiple edges are allowed

between a single pair of nodes (formally, E is a multiset).
Care must be taken to define the nature of the nodes and

edges of the graph. Internet topologies have been given for

each of the seven OSI layers: e.g., edges may refer to physical

cables, virtual network layer connections, or even the HTML

links between WWW pages. Other types of topology are also

possible, such as those reflecting hierarchical approximations:

e.g., groupings of routers into Autonomous Systems (ASs) or

Points-of-Presence (PoPs). The datasets we are using contain

various levels of detail, from physical fiber, through to virtu-

al/logical connectivity between ASs. The Zoo contains various

Internet communications networks, but we ensure that in each

case the type of nodes and links are precisely specified.

A. The Collection Process

There are various strategies available for measuring network

topology. The most direct way is to ask the network itself.

IP routers are managed through configuration files describing

the current operation of the router, and which can be used to

measure a network [11]. However, these files are considered

sensitive and are rarely allowed outside an organization. Thus

such data may be used to construct the type of map we use

here, but is otherwise rarely available to researchers.

The second class of techniques involve IP-level hacks that

ideally return the path between two points. The IP header

option field “record route” [13], [14] returns the route of

a packet as it traverses the network, however, the more

common approach is to use traceroute [15], [16]. Despite

being commonly used, traceroute has many well-known

deficiencies summarized in [17], [18].

There are nevertheless many studies of network topology

using traceroutes (for examples see [19]–[24]), but the result-

ing network topologies are sometimes very inaccurate [17],

[18], and verification against ground-truth data is difficult.

There is a third group of strategies for topology inference

based on the ideas of network tomography. The statistical

nature of these approaches leads to the need for verifications

against difficult to obtain ground truth.

We see the Zoo data as complementary to measurement

based studies. One of the potential uses of the Zoo data is

to establish ground-truth data to use in testing and improving

measurement-based approaches, which have, in principle, the

potential to survey a much wider range of networks.

Instead of the existing automated methods we adopt here a

simple, manual approach. Many companies present public ma-

terial about their network, primarily for promotional purposes.

They wish to sell their network.

Some care goes into such maps because they are a form

of advertisement and therefore have legal requirements for

accuracy; they are highly visible to potential customers; and

finally, network engineers are often proud of their work, and

many would very much like to display it at its best.

The most important form of published information, from our

point of view, is a network map, though other supplementary

data can often be very useful as well. Such maps often

only show PoPs and their interconnects, but sometimes they

provide much more detail. We have collected over 200 such

maps and associated data, and make no claim that we have

an exhaustive list. In fact it is likely that many more such

maps exist, and will exist in the future. Our collection and

transcription process is described in detail in [10]. In brief,

we use a group of tools to aid manual transcription of the

network maps. The manual process, along with the quality

checks we implement, insures a highly accurate representation

of the published network map is transcribed into our database.

The graphs are stored in a flexible and easy to read data format

— GML (the Graph Markup Language) — which allows us

to include meta-data about the graph (e.g., its link capacities

and node locations) and the data collection (e.g., the date of

collection). GML is easily read using the Python based graph

library NetworkX [25], and easily converted into other formats

such as the XML derivative GraphML [26], or the dot format

used by GraphViz [27].

The data is stored at www.topology-zoo.org. It is viewable

through a table containing meta-data about the networks, or

as a large batch file. Scripts are provided for easy access and

translation of the data.

We ask that any researchers who make use of this data take

care to understand the limitations of the data as documented

in [10].

B. Accuracy

How accurate is the Zoo’s data? The maps are created by

network companies themselves, so they are based directly on

ground truth. However, some network operators clearly pro-

duce these maps manually, potentially leading to inaccuracies



in their depiction of their own network. There are two reasons

that these errors must be much less significant than those in,

for instance, traceroute studies.

• The network maps we use are all public documents, and

so must satisfy standard due diligence requirements for

an advertisement or official corporate publication. That

is not to say that all corporations are perfect – it is easy

to make mistakes in drawing the map – but a network

operator is unlikely to publish a worse map than the one

they use in their own network operations.

• Some network maps may idealize the network. However,

we argue that in these cases, we are seeing what was in

the mind of the network engineer when the network was

designed. In this sense, the idealized view of the network

is actually more interesting than its implementation.

It is important to spend a little time considering the second

point. Many of the networks in the Zoo are not “router-

level” networks. Instead, they show interconnects between

Points-of-Presence (PoPs) which roughly correspond to a

metropolitan area where the network operator has equipment

and connectivity. It is natural that these networks are a little

simpler than the router-level graphs studied in other places, but

in many ways this is the part of the network design that is most

interesting. This is the part that determines (to a large extent)

the capital costs of links in the network (intra-PoP links are

much cheaper), and the potential peering points of a network.

Moreover, a PoP does not suffer the technological constraints

(such as port limits) mentioned in [8] because a PoP can

consist of multiple routers. So at this level, a designer has more

freedom to design the desired network, rather than dealing with

technological constraints that might limit the degree of a node.

A second question of accuracy is “How accurate are our

transcriptions?” We have transcribed a large number of maps

so it is inevitable that some errors occur. However, we have

tried to minimize errors by (i) using a graphical tool so that the

transcription process is closely matched to the maps, and (ii)

making sure that each network is transcribed by one person,

and then checked by at least one other person. The collection

also has a discussion forum to allow ongoing feedback to

help reduce any remaining inaccuracies. For further detailed

discussion we refer the reader to [10].

C. Classification

As noted above, it is important to be precise about exactly

which topology is being considered. One of the advantages of

the manual transcription of the data from public information

is that we can provide a number of additional classification

tags for the data.

At the most basic level we classify our networks as Com-

mercial (COM) or Research and Education Networks (REN).

Our secondary type classification is related to the role the

network plays: backbone, testbed, customer, transit, access

and internet exchange. These are not exclusive groupings, but

tags we attach to each network as appropriate. In analysing

planarity we found some differences between customer and

non-customer networks, and so only define that precisely here

(see [10] for details of the other secondary classifications).

The customer tag is used when a network provided a higher

level of services to its customers1 than simple transit. We

classified a network with this tag if the services provided

required per-customer state: for instance, web hosting or

electronic mail. With the introduction of per-customer state,

the provider must have a customer service model that is not

driven purely by the technical requirements of maintaining

connectivity and core services (DNS, routing, etc.). This tag

is applied when a provider clearly advertises a web-hosting,

e-mail or co-location facility, or similar per-customer state

service, for their connected organizations.

The other major aspect of network type is the layer of

the network. We provide tags indicating the layer (1-3) and

perhaps some more information about the type of technology

being used, for instance IP.

We may more accurately compare networks if we focus on

their area of influence [28]. The tags for this categorization are

taken from the set metro, region, country, country+, continent,

continent+ and global.

A metro network is one that spans a city, or a city-sized

area possibly including a small number of adjacent townships.

Likewise the country and continent designations. A region

network is approximately the size of a province, state or a

small number of states, where the number of states involved is

not a substantial part of the containing country. The country+

(and continent+) classifications are used when the network

is mostly located within one country (or continent) but has

routers in another that do not correspond to a significant

number of the total. The label is needed because there are

many networks that are easily identified as belonging to a

country (or continental) region, but for expedience have one

or more routers outside the country. Where a network has

significant presence in at least two continents, it is labelled a

global network.

III. RESULTS

A. Planarity Analysis of Zoo Maps

Datasets in the Zoo are kept in a version control system so

that studies can be accurately replicated despite the ongoing

nature of the data collection. The dataset used in this paper

is labelled Zoo.v0.01, and contains 147 transcribed networks

into the Zoo.

Some of the maps are disconnected. In these cases, we

take the largest connected components. If the graph has

multi-edges, we convert them (for the purpose of analyzing

planarity) to single edge before performing our analysis. This

step does not change the planar property of the graphs, but

can change the average node degree.

Planarity was determined using the Boyer-Myrvold pla-

narity test algorithm [29] implemented in the Matlab BGL

1In many cases customers might not be individual users, they may be
businesses or research organizations.



(Boost Graph Library) [30]. Among the 147 networks ana-

lyzed, 21 (14%) were non-planar.

It would be natural to expect that larger, more complicated

graphs are likely to be non-planar, and so we investigate the

relationship between planarity, network size, and the average

node degree. Figure 1 shows a scatter plot of the planar

(+) and non-planar (o) graphs in the Zoo. It is quite clear
that the non-planar graphs tend to have higher average node

degree, and that the average node degree at which the networks

become commonly non-planar decreases with network size.
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Fig. 1. Planarity of the network maps as a function of network size, and
average node degree. We omit the network with 754 nodes and 895 edges
whose graph is non-planar because it would not allow us to focus on the
majority of smaller graphs.

Both conclusions are to be expected. For instance, there are

well known upper bounds for the number of edges for a planar

graph as a function of the network size. Euler’s results [31]

give two upper bounds: 3n−6 for arbitrary graphs, and 2n−4
for a graph where there are no triangles (cycles of length 3).

Network Name Size(n) Av. Node Degree

Airtel 9 4.2
AT&T(IP-MPLS) 25 4.48
BT(North America) 35 4.23

Chinanet 38 3.26
Cogentco 197 2.46

Dataexchange 6 3.66
Deltacom 113 2.84

Deutsche Telekom (IPTransit PoPs Only) 30 3.67
Globalcenter 9 8
Globenet 66 2.85
Goodnet 17 3.65
Gridnet 9 4.44

HurricaneElectric 24 4.6
IBM 18 2.67
IIJ 28 3.86
Ion 125 2.34
Kdl 754 2.37

Telcove 53 3.36
TW 71 3.24

UUNET 42 3.67
Xspedius 34 2.88

TABLE I
THE NON-PLANAR NETWORKS.

The 21 non-planar networks are given in Table I, where the

names are attributed from the source of the data.

The breakdowns of non-planar networks according to their

classifications are given in Table II. Note that some networks

could not be classified. Therefore, the table elements don’t

necessarily sum to 147. Noteworthy points are that

• layer 1 networks are slightly more likely to be planar;

• all of the research networks are planar;

• customer networks are more likely to be non-planar; and

• larger networks (in geographic extent) are more likely to

be non-planar.

However, the above results may all be conflated with network

size, for instance, country-wide networks (and larger) tend to

have more nodes than regional or metropolitan networks. As

we expand the size of the Zoo it should be possible to do a

more formal statistical analysis, controlling for the network

size and degree, to understand the true factors that influence

planarity.

Classification Planar Non-planar

Layers
Layer1 24 3
Layer3 90 18

Types
REN 53 0

Commercial 73 21

Classes
Customer 37 12

Non-Customer 36 1

Geoextent
Regional 16 1

Country-Wide 81 13
Country+ 24 7

TABLE II
PLANARITY OF NETWORKS FOR DIFFERENT CLASSIFICATIONS.

B. Planarity of Random Graphs

An obvious question remains. Is the degree of planarity we

observe unusual, or should we expect to see these results?

There are a small set of results discussing planarity of

random graphs, but these are asymptotic results for large

graphs. Instead, we approach this question by generating a set

of synthetic topologies of comparable size and node degree

to those collected in the Zoo. From these we can gain insight

into the likelihood of planarity.

Our first approach is to generate a set of Erdos-Renyi (or

Gilbert) random graphs [9], and examine their planarity. An

Erdos-Renyi random graph is generated by randomly choosing

the node-pairs connected by a fixed numberm of links (chosen
to set the average node degree, which is given by 2m/n).
However, such a network is not guaranteed to be connected,

so we modify it as follows. Assume that you want to generate

a random connected graph with n nodes and m edges. Start
by picking a node at random and calling that the connected

tree, then pick another node at random and join it to the tree

at a random position, and so on. Continue this process until

all n nodes are connected. This forms the connected core of
the network. After that, pick the remaining m + 1 − n links
randomly from the (n2 − 3n + 2)/2 possible node pairs that
haven’t been chosen yet.

For each combination of average node degree and network

size we can generate a set of such networks, and measure their

planarity, and from these samples derive an estimate of the
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(a) Random topologies.
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(b) Optimized topologies.

Fig. 2. Planarity as a function of average node degree and network size compared to contours of constant probability of planarity derived from two different
network models. The percentage for each contour gives the probability of planarity along that curve. Note that we focus on the most important region of the
plot which omits the KDL network with 754 nodes and 895 edges, whose graph is non-planar.

probability that a network with those parameters will be planar.

However, in order to compare these results with those of the

Zoo, it is more useful to have contours of constant probability

for particular network size and average node degree. We

construct these contours as follow: for each network size n we
perform a binary search on the number of links m until we
find a value that has given planarity probability p in a 95%
confidence interval for 10000 trials. This procedure appears

to work well within the limits of the problem (for instance,

we cannot always achieve an exact match between a given

probability and a particular average node degree because the

number of links in a network is a discrete variable).

The contours are plotted against a scatter plot of the Zoo

networks in Figure 2 (a). The contours are truncated at a

maximum network size of 80 to reduce the computational

cost of deriving the contours, focusing on the most interesting

region.

The contours do not show a distribution function. They

should be interpreted as follows. If a network lies on one of

the contours, say for instance the 10% contour (near the top),

then there is a one in ten probability that the network will

be planar. Most networks do not sit exactly on a displayed

contour but we can still estimate their probabilities from the

closest contours.

The most obvious feature of Figure 2 (a) is that the number

of planar graphs far exceeds what the contours predict. For ex-

ample, along the 10% contour we would expect approximately

90% of the networks to be non-planar, but in fact the reverse

is true – less than 10% of these graphs are non-planar. Thus,

based on this simple random model, the degree of planarity

observed is highly unexpected.

C. Planarity of Optimized Networks

No-one would seriously argue that Internet-like networks,

such as we examine in the Zoo, are well modelled by a simple

random graph of the type used above. In this section we use a

recent approach for generating realistic Internet-like networks.

To generate these topologies we use the idea that network

topologies can be modelled as the result of an optimization

problem, see for example [32]. This optimization problem

is intended to model the fact that networks are designed by

network engineers to fulfil a purpose, not purely as the result

of a simple random process. Consequently, it is reasonable to

expect that networks are optimized with respect to monetary

cost and service provided, within the bounds of technological

constraints. However, our approach is slightly different from

[32] because we aim to be able to control the average node

degree in order to construct contours.

Our approach starts with a set of node locations randomly

chosen, independently and uniformly distributed over a rectan-

gle representing the area for the network. To determine traffic

demands between the nodes, each node is assigned a popula-

tion independently at random from a chosen distribution (in

this case exponential, although Pareto distributed populations

give similar topologies). Traffic demand between a pair of

nodes is then proportional to the product of the populations

for those nodes, as per a standard gravity model [33].

Once the node positions and traffic have been randomly

generated we derive a (near) optimal network using a genetic

algorithm. The optimization has three tunable costs to allow

us to obtain different types of networks:

0) A link existence cost, C0 = k0. This is a fixed cost for

a link to be in the network.

1) A link length cost, C1 = k1ℓ, where ℓ is the link length,
determined by the positions of the two nodes at either

end of the link.

2) A bandwidth-length cost, C2 = k2ℓW , where W is the

link bandwidth. Required bandwidth for a link is equal

to a constant multiple of the sum of the traffic demands



for the paths traversing that link (we find paths using

shortest path routing based on link distances ℓ).

The total cost of a link is given by

C = C0 + C1 + C2 = k0 + k1ℓ + k2ℓW.

We can understand how to choose the parameters ki if we

consider their impact on the final network. The network is

required to be connected, so if we were to optimize only

with respect to C0 or C1, then we would produce a minimum

spanning tree. If we were to optimize only with respect to C2,

then a fully-connected network would be the optimum. We

can tune between these extremes by modifying the values of

the three parameters so there is a balance between the costs.

In the cases presented here we do so by fixing k0 and k1 and

changing the relative value of k2, which allows us to control

the average node degree in the resulting optimized networks.

Figure 3 shows three examples of tuning the k2 parameter for

a network with 40 nodes.
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Fig. 3. Average Node Degree vs the parameter k2. We see that varying k2

while keeping the other parameters constant allows us fine grained control
of node degree. As k2 tends to infinity the optimal networks become fully
connected, and as k2 goes to zero, the networks tend to a tree.

For each choice of n and k2 we generate 500 networks (from

different starting node/population distributions). We measure

the proportion of these that are planar as with the random

graphs. We also use the bootstrap method to generate 95%

confidence intervals for the estimates of the proportion that

are planar. We plot the resulting estimates of the expected

proportion of planar graphs in Figure 4. We perform the same

analysis for networks of sizes 10, 20, 40, ..., 80 though we

only plot 30 and 60 in Figure 4 for clarity.

Note that we also looked at the variation in the average

node degree for the generated networks. Although the expected

average node degree is set by the parameter k2 there is some

variation for particular networks as shown by the confidence

interval in Figure 3. However, this variation was found to be

small enough that we have not shown it in Figure 4.

The procedure for generating contours is slightly more

complex here, as we cannot (within a reasonable time) gen-

erate as many samples as for the random graph. Instead, we

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of nodes

P
la

n
a
ri
ty

 P
ro

b
a
b
ili

ty

 

 

30 nodes

60 nodes

Fig. 4. Probability of planarity as a function of average node degree for
optimized networks.

generate the contours by interpolating an inverted version of

the curves shown in Figure 4. The resulting contours are shown

in Figure 2 (b).

We can see in the figure that the contours for optimized

networks are more widely separated than those for random

graphs, and that, for instance, the 10% curve is higher indi-

cating that networks can be larger and more connected (higher

node degree) before non-planarity sets in. That gives a closer

match to the Zoo data, but it is still very far away from

explaining the high degree of planarity observed in many of

the larger networks.

D. Subgraphs

We now investigate the reasons why some networks are

non-planar. Kuratowski’s theorem states that a graph is planar

if and only if it does not contain a subgraph that is homeo-

morphic2 to K5 (the complete graph with 5 vertices) or K3,3

(complete bipartite graph) [31]. These subgraphs are shown

in Figure 5. We identify the Kuratowski subgraph, i.e., the

subgraph homeomorphic K5 or K3,3 of our non-planar net-

works using the Boyer-Myrvold algorithm [29] implemented

in Matlab [30]. Note that a non-planar graph can have more

than one Kuratowski subgraph, but that planar graphs cannot

contain any.

Table III shows the size of the Kuratowski subgraphs. In

comparison to the original graph size, we see that these are

2-3 times smaller, as illustrated in Figure 6. This suggest that

only a small sub-set of densely connected nodes lead to the

non-planarity result.

We investigate this further by noting that tree-like struc-

tures are always planar, and that such a component cannot

be the cause of non-planarity. We removed portions of the

Kuratowski subgraphs that were tree-like by taking the 2-core

component of the Kuratowski subgraph. We then contract the

resulting graphs by removing all degree 2 nodes, effectively

2Two graphs are homeomorphic if there is an isomorphism from a subdivi-
sion of one to a subdivision of the other [34], where a subdivision of a graph
results from inserting vertices into edges (subdivision preserves planarity).



Fig. 5. The subgraphs K3,3 and K5 .
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Fig. 6. Size of the Kuratowski subgraph versus the network size. We omit a
network with 754 nodes and 895 edges whose graph is non-planar because it
would not allow us to focus on the majority of smaller graphs. NB: there are
only 19 points because 2 networks have the same values (Globalcenter and
Gridnet both have 9 nodes and 9 nodes in their Kuratowski subgraphs).

reversing subdivision operation. The results are also shown in

Table III. These simple operations reduced all of the networks

down to less than a dozen nodes, and only a few more edges.

Again, this suggests that only a very small subset of nodes are

responsible for non-planarity. This may be misleading, as at

present we consider one Kuratowski subgraph of each network,

but it seems likely that non-planarity is unusual even in the

larger, more complicated networks.

A closer look at the contraction results reveal that only

3 networks (Globalcenter, Gridnet and Dataexchange) have a

Kuratowski subgraph homeomorphic to K5 (the clique on five

nodes). In the other 18 networks, their Kuratowski subgraphs

contain K3,3 subdivisions. We don’t know the significance of

this finding as yet, but it suggests some interesting possibilities

for future research.

IV. SPECULATION

The results above are not definitive by any means, as we

cannot rule out bias in the selection process for members of

the Zoo. However the results are highly suggestive. The data

at our disposal reveal an interesting, and unexpected feature

of Internet networks, that is, a high likelihood of being planar.

The likelihood is much higher than for the two models of

network generation that we tested (it will be interesting in the

future to compare other models of network generation to see

if any are so likely to generate planar networks). Even in the

non-planar cases, it seems that only a small subset of nodes

contribute to non-planarity. We speculate that planarity does

not occur by accident. It is much more likely that it is being

deliberately imposed on network designs.

Why might a network engineer require planarity? Simply

speaking, network engineers have to understand their network.

They need to work with it to debug problems, and to manage

devices. A planar graph, by virtue of being easy to draw, can

be more easily understood, and therefore managed. A more

complex, harder to understand network is certainly possible,

but will have some cost (in terms of the engineer’s time at

least). These types of cost are hard to quantify and hence

have often been ignored in the literature on network design

and optimization. In fact, most networks are not designed

using formal mathematical algorithms. They are designed

“by eye”. Perhaps this is in part because of the fact that

formal optimization networks generate complicated, hard to

understand networks.

We do not suggest that network engineers deliberately

design planar networks, nor would they design for other

obscure mathematical properties, but rather that planarity is

one signature of the desire for simple designs.

V. CONCLUSION AND FUTURE WORK

This paper has shown a surprising degree of planarity

in observed networks. We speculated that this is caused by

network designers who prefer network designs that are simple

to understand. There is another potential explanation, namely

that the Zoo is preferentially biased towards networks that

can be drawn, because we use network maps to populate the

Zoo. However, remember that non-planarity does not mean

a network cannot be drawn. It only means there will be

link crossings, and we observe such in many of the graphs.

Even maps of planar networks often contain crossings simply

because maps are usually a geographic approximation to the

network, and therefore the nodes and links aren’t placed

arbitrarily. In any case, it is an ongoing task to better measure

this property and confirm the results.

Our ideas about the cause of planarity seem intuitive,

but are speculation none-the-less. We also aim to test these

ideas more thoroughly through mathematical methods, e.g.,

by testing other types of network synthesis models to see if

it arises naturally through other means, or through looking

more carefully for the sources of non-planarity in graphs. We

can also look for other signatures of “simplicity” in network

design, to see if the underlying hypothesis, about how network

engineers work, is justified.

As a network evolves, and grows, engineers may not

mathematically optimize the network, but they certainly do

try to improve it. So the optimization paradigm for network

synthesis should not be discarded as a result of this work.

We need, however, to consider the effect of more complicated

optimization objectives, which penalize “complex” designs.

However, it is not at all clear how to create such an objective,

or optimize a network against it, and so this is yet another

topic for future research.



Network Name
Kuratowski subgraph 2-core Contracting degree 2 nodes
# of nodes #of edges # of nodes # of edges # of nodes # of edges

Airtel 6 9 6 9 6 9
AT&T(IP-MPLS) 19 22 13 16 8 11
BT(North America) 19 22 16 19 7 10

Chinanet 12 15 10 13 8 11
Cogentco 62 65 25 28 8 11

Dataexchange 5 10 5 10 5 10
Deltacom 63 66 31 34 8 11

Deutsche Telekom (IPTransit PoPs Only) 19 22 14 17 9 12
Globalcenter 9 14 6 11 6 11
Globenet 30 33 21 24 8 11
Goodnet 11 14 11 14 7 10
Gridnet 9 14 9 14 5 10

HurricaneElectric 11 14 10 13 7 10
IBM 17 20 14 17 8 11
IIJ 13 16 11 14 8 11
Ion 65 68 27 30 8 11
Kdl 263 266 202 205 11 14

Telcove 28 31 27 30 8 11
TW 40 43 29 32 9 12

UUNET 30 33 22 25 7 10
Xspedius 23 26 20 23 7 10

TABLE III
KURATOWSKI SUBGRAPHS OF NON-PLANAR GRAPHS.
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