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ABSTRACT
Calculating the partition function of the zero-temperature antiferromagnetic model
is an important problem in statistical physics. However, an exact calculation is hard,
since it is strongly connected to a fundamental combinatorial problem of counting
proper vertex colorings in undirected graphs, for which an efficient algorithm is not
known to exist. Thus, one has to rely on approximation techniques. In this paper we
formulate the problem of the partition function approximation in terms of rare-event
probability estimation and investigate the performance of a particle-based algorithm,
called Multilevel Splitting, for handling this setting. The proposed method enjoys
a provable probabilistic performance guarantee and our numerical study indicates
that this algorithm is capable of delivering accurate results using a relatively modest
amount of computational resources.
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1. Introduction

Calculating the zero-temperature antiferromagnetic partition function is a fundamen-
tal problem in statistical physics, arising in the well-known general Potts model [1],
which studies the behavior of ferromagnets and other phenomena of solid-state physics,
and has been extensively explored in statistical physics [2–5], theoretical computer sci-
ence and mathematics [6, 7], signal processing [8, 9], modelling of financial markets
[10], biology [11], and social networks [12, 13].

To study the Potts model partition function [4], one should realize that it corre-
sponds to a difficult combinatorial counting problem, namely calculating the Tutte
polynomial [14]. In this paper we study the Potts model under the zero-temperature
regime, for which the partition function is given by the Tutte polynomial related
formula called the chromatic polynomial which counts the number of proper graph
colorings as a function of the number of colors [15]. In Section 2, we show that know-
ing the chromatic polynomial, is equivalent to the calculation of the zero-temperature
partition function.

The chromatic polynomial and the corresponding coloring problem belong to the
well-known list of Karp’s 21 NP-complete problems [16]. The proper graph coloring
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counting problem lies in the #P complexity class introduced by Valiant [17]. An exact
polynomial time solution of a #P problem will imply P = NP [18], so the best we
can reasonably hope for, is to find a good approximation technique. One of such
techniques, called fully polynomial randomized approximation scheme (FPRAS), has
been developed for approximate counting of some #P problems [19–21], but there
are also many negative results [18, 22]. In particular, the inapproximability of the
chromatic polynomial for a general case was established in [23] and [24].

There exists two basic approaches to tackle #P counting problems: Markov Chain
Monte Carlo (MCMC) and Sequential Importance Sampling (SIS). These approximate
counting algorithms exploit the fact that counting is equivalent to uniform sampling
over a suitably restricted set [25]. The main idea when using the MCMC method, is
to construct an ergodic Markov chain with limiting distribution which is equal to the
desired uniform distribution. The MCMC methods plays a central role in counting
approximations, [26–29], but SIS algorithms have their own merits [19, 30–33].

In view of the above discussion, we propose to apply an adaptive approach called
Multilevel Splitting (MS) [27]. This powerful concept was first used by Kahn and Harris
[34] for rare-event probability estimation. Their revolutionary idea can be summarized
as follows. Given a state space, partition it in such a way that the problem becomes
one of estimating conditional probabilities that are not rare, thus taking essentially an
sequential approach, where a particle-based population (sample), is going through a
mutation process to increase its performance and move to a rare regions of the state
space.

The MS particle-based method is often applied to rare-event probability estimation,
which makes it an appropriate candidate for estimating the number of proper graph
colorings, as these are rare in the set of all colourings. Consequentially, it is natural
to apply MS to estimating the zero-temperature Potts partition function. The paper
contribution is described below.

(1) This paper develops the required adaptation of the MS algorithm for the color-
ing problem. In particular we define a performance function, that is shown to
successfully handle the Potts model counting problem. The Gibbs sampler for
this particular performance is also shown to be efficient from both practical (the
ability to handle real physical grid models), and computational points of view.
To the best of our knowledge, there is currently no other single-threaded method
that is capable of handling graphs of few hundreds of vertices and edges within
reasonable time.

(2) Similar to [35], we show that MS has provable probabilistic performance guar-
antees. Namely, a relatively cheap (from a computational point of view) lower
bound can be obtained, thus introducing an additional merit.

(3) We develop a freely available research software package called ChromSplit to sup-
port our findings. Moreover, our method can be easily parallelized, and applied
for many other problems.

In addition, we show that the proposed counting procedure, combined with simple
binary search, can be easily adjusted to solve the important combinatorial optimization
problem of finding a graph chromatic number. The MS method, allows us to perform an
analysis of chromatic number statistics in small-world networks [36–39]. In particular,
we present numerical evidence that two well-known classes of graph models, Gilbert-
Erdős-Rényi (GER) [40, 41] and Watts-Strogatz (WS) [36], exhibit very similar scaling
behavior of the chromatic number with respect to the average node degree, particularly
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for sparse graphs. We show that in this case, and regardless of the random model
parameters, the change in structure between the different graphs has no significant
effect on the chromatic number!

Organization

The rest of the paper is organized as follows. In Section 2 we formulate the zero-
temperature antiferromagnetic partition-function approximation problem and explain
its connection to vertex coloring and the corresponding rare-event probability estima-
tion problem. In Section 3 we give a brief introduction to the MS algorithm, show
how it can be applied to graph coloring problems – both counting and optimization –
and describe a set of probabilistic performance guarantees. We report our numerical
findings in a detailed experimental study in Section 4, and present new results for the
chromatic numbers of random graphs in Section 5. Finally, in Section 6 we summarize
our findings and discuss possible directions for future research.

2. Problem Formulation

2.1. Proper vertex coloring

We start with the description of the (proper) vertex-coloring problem.

Definition 2.1 (Vertex coloring). Given a finite undirected graph G = (V,E) with
vertex set V and edge set E, a proper vertex coloring of the graph’s vertices with
colors {1, . . . , q}, q ∈ N, (also called a q-coloring), is such that no two vertices that
share an edge, have the same color.

In this paper we will be interested in the vertex-coloring counting problem. Namely,
consider the number of different q-colorings of a given graph G as a function of q and
denote this number by chr(G, q). It is well-known that the following is true [15].

(1) chr(G, q) is a polynomial of q.
(2) The degree of chr(G, q) is equal to the number of vertices in G.
(3) χ(G) = min{q : chr(G, q) > 0} is called the chromatic number and it stands for

the smallest positive integer that is not a root of the chromatic polynomial. This
number is equal to the minimal number of colors required to properly color a
given graph.

(4) Using a deletion-contraction recursive algorithm, the chromatic polynomial can
be computed in O

(
ϕ|V |+|E|

)
time, where ϕ = (1 +

√
5)/2.

(5) It is known now that there is no FPRAS for computing chr(G, q) for any q > 2,
unless NP = RP holds [24], (where RP stands for randomized polynomial time).

There exist some graph topologies with known chromatic polynomial. For example,
Figure 1 shows the polynomial of a small complete graph; but in general the polynomial
is hard to calculate.

For completeness, we next give a brief review of the zero-temperature Potts model
partition function and establish its correspondence to the proper vertex coloring prob-
lem. For an extensive overview, we refer to [42].
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Figure 1. The complete graph K3 = ({1, 2, 3}, {(1, 2), (2, 3), (3, 1)}). By inspection, it is easy to verify that
the chromatic polynomial of K3 is equal to chr(K3, q) = q(q − 1)(q − 2). For example, the number of proper

colorings using three colors is equal to 6, i.e., chr(K3, 3) = 6. In this case, the chromatic number of this graph

is 3. That is, one will not be able to construct a proper coloring with one or two colors.

2.2. Zero-Temperature Potts model

In this paper we consider the Fortuin-Kasteleyn representation of the Potts Model [43].
In this setting, a finite undirected graph G = (V,E) with the vertex set V and edge
set E, represents physical particles and their interactions, respectively. In particular,
the q-state Potts model is defined as follows. Let q ∈ N be a natural number and
define σ = {σv}v∈V to be a set of spins, where σv ∈ {1, . . . , q}. Define {Je}e∈E to be
a set of coupling constants such that for each e = (u, v), Je determines the interaction
strength between u and v. The Hamiltonian (energy function) is defined by

H (σ) = −
∑

e=(u,v)∈E
Je δ(σu, σv),

where δ is the Kronecker delta, which equals one whenever σu = σv and zero otherwise.
The corresponding partition function is

ZG(q) =
∑

σ
e−

1

kT
H(σ)

=
∑

σ
e%

∑
e=(u,v)∈E Jeδ(σu,σv) =

∑

σ

∏

e=(u,v)∈E
e%Jeδ(σu,σv)

=
∑

σ

∏

e=(u,v)∈E

[
1 +

(
e%Je − 1

)
δ(σu, σv)

]

=
∑

σ

∏

e=(u,v)∈E

(
1 + ϑeδ(σu, σv)

)
,

where k and T stand for Boltzmann’s constant and the temperature, respectively,
% = 1/kT, and ϑe = e%Je − 1.

Definition 2.2. In the Potts model a coupling {Je}e∈E is

• ferromagnetic if Je ≥ 0 for all e ∈ E; and
• antiferromagnetic if Je ≤ 0 for all e ∈ E.

The zero-temperature antiferromagnetic Potts model is defined in the limit %→∞
to have ϑe = e%Je − 1 = −1 for all e ∈ E. In the zero-temperature regime we therefore
have ϑ(u,v)δ(σu, σv) = −1{σu=σv}. From the above equation, the expression

ZG(q) =
∑

σ

∏

e=(u,v)∈E
(1 + ϑeδ(σu, σv)) =

∑

σ

∏

(u,v)∈E
1{σu 6=σv},
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is thus the partition function in question. Moreover, we now see that ZG(q) is the
number of proper graph colorings with q colors, since the inner product is equal to
1 only if the adjacent vertices have different spins (colors), and the outer summation
passes through all possible graph colorings.

We proceed by reducing these graph counting problems to the problem of estimating
the probability of randomly selecting a proper coloring.

2.3. The probabilistic set-up

For any G = (V,E) there are q|V | colorings. Suppose that q is greater than or equal
to G’s chromatic number. Then, some of these colorings are proper. Consider now
the uniform distribution on the set of all color assignments {1, . . . , q}|V | and let
X = {X1, . . . , X|V |} be a uniform random assignment from {1, . . . , q}|V |. Let ` be

the probability that a random assignment is a proper coloring. Then, ZG(q) = q|V |`.
That is, the estimation of ZG(q) and ` is interchangeable.

Exact calculation of ` is as hard as calculating ZG(q), but one could consider es-
timation of `. The Crude Monte Carlo (CMC) procedure for the estimation of ` is
straightforward and is summarized in Algorithm 1.

Algorithm 1 The CMC Algorithm for estimating `

Input: A graph G = (V,E), q ∈ N, and a sample size N ∈ N.
Output: Unbiased estimator of `.

1: for t = 1 to N do
2: Random coloring generation: For each v ∈ V , assign a color from

the {1, . . . , q} set, uniformly at random. Denote this coloring by Xt ={
X

(t)
1 , . . . , X

(t)
|V |

}
.

3: Verify proper coloring: If Xt is a proper coloring of G, that is, if

∏

(u,v)∈E
1{X(t)

u 6=X(t)
v } = 1,

set Yt = 1; otherwise, set Yt = 0.
4: end for
5: return:

ˆ̀
CMC =

1

N

N∑

t=1

Yt. (1)

2.4. Rare-event Monte Carlo

Unfortunately, Algorithm 1 will generally fail because of the rare-event setting. To see
this, consider a relatively small complete graph K30 with 30 vertices. Suppose that we
wish to color it with q = 30 colors. We can now calculate the exact ` value, since the
first graph vertex can be colored with 30 colors, the second with 29 colors and so on.
That is, there are 30! proper colorings. Having in mind that there are 3030 available
colorings, we arrive at ` = 30!/3030 ≈ 1.29× 10−12. This probability is so small that
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during Algorithm 1 execution, the random variable Yt = 0 almost certainly for all t,
returning ˆ̀

CMC = 0, even for a large sample size like N = 109.
To better understand this rare-event phenomenon, consider the following general

setting. Let X and X ∗ ⊆ X be sets and suppose that the probability ` = |X ∗|/|X | is
to be estimated. In our context X and X ∗ stand for the set of all graph’s colorings
and the proper ones, respectively. Then, the CMC estimator ˆ̀

CMC is given in (1). In
particular, the {Yt} are Independent Identically Distributed (IID) Bernoulli Random

Variables (RV). Hence, ˆ̀
CMC is an unbiased estimator of `, with known variance

Var
(

ˆ̀
CMC

)
=
`(1− `)
N

. (2)

We next consider the accuracy and hence efficiency of the rare-event estimator.
In this paper we will use two measures of accuracy: the relative experimental error

(RER) [44], given by RER =
∣∣∣ˆ̀CMC − `

∣∣∣ · `−1, and the relative error (RE). The former

measures error relative to the correct value, the latter considers the standard deviation
relative to their mean. Both are useful: RER is preferred, but requires knowledge of
the true value, which is not generally available (see [45] and [46] for details); on the
other hand, the RE can be estimated and provide a confidence interval. The RE of
ˆ̀
CMC is

RE
(

ˆ̀
CMC

)
=

√
Var

(
ˆ̀
CMC

)

E
(

ˆ̀
CMC

) =︸︷︷︸
(2)

√
`(1− `)/N

`
.

In the rare-event setting `� 1 so

RE
(

ˆ̀
CMC

)
≈ 1/

√
N`, (3)

which imposes a serious challenge. To see this, consider the rare-event probability
` ≈ 10−12, and suppose that we are interested in a modest 10% RE. It is easy to verify
from (3), that the required number of experiments N is about 1014.

The probabilities that concern us here are as small as 10−157, so we have no hope of
applying the naive CMC approach. We overcome this problem using the MS method for
rare-event probability estimation and optimization, which we describe in the following
section.

3. Multilevel Splitting

Here we adopt a quite general adaptive variance minimization technique called the
MS algorithm [27]. The latter is essentially a particle-based method for rare-event
probability estimation and optimization.

Careful examination of the CMC procedure reveals that the major problem is the
rareness of samples from the set X ∗. The main idea of MS is to design an adaptive
sequential sampling plan, with a view to decompose a “difficult” problem (sampling
from X ∗), into a number of “easy” ones associated with a sequence of subsets in the
sampling space X . A general MS framework is summarized in Figure 2. The resulting
MS algorithm, provides an unbiased estimator of ` [27], and is given in Algorithm 2.
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Find a sequence of sets X = X0 ⊇ X1 ⊇ · · · ⊇ XT = X ∗. Assume that the
subsets Xt can be written as level sets of some fitness function S : X → R for
levels

∞ = γ0 ≥ γ1 ≥ · · · ≥ · · · ≥ γT = γ,

such that Xt = {x ∈ X : S(x) ≤ γt} for t = 0, . . . , T .

Note that the quantity of interest ` is given by the telescopic product:

` =
|X ∗|
|X | =

T∏

t=1

|Xt|
|Xt−1|

=
T∏

t=1

P (S (X) ≤ γt | S (X) ≤ γt−1) = P (S(X) ≤ γT ) .

For each t = 1, . . . , T , develop an efficient estimator ĉt for the conditional
probabilities

ct = P (S(X) ≤ γt | S(X) ≤ γt−1) .

To avoid rare-event problems at the intermediate levels (γt), we assume that the
sets Xt, t = 1, . . . , T , are specifically designed such that the {ct} are not rare-
event probabilities.

Deliver

̂̀=
T∏

t=1

ĉt,

as an estimator of `.

Figure 2. General Multilevel Splitting framework.

Let us now put the coloring problem into the MS framework. It is straightforward to
define the X and the X ∗ sets as the set of all colorings and the set of proper colorings,
respectively. Note that X ⊇ X ∗ and that it is easy to sample uniformly from X by
choosing one out of q available colors for each vertex with equal probability 1/q. On
the other hand, defining the performance function S : X → R and the corresponding
sets X0, · · · ,XT can be a delicate task. There are quite a few possibilities, but in this
paper we propose that given a coloring x ∈ X , we define S(x) to be the number of
adjacent vertices that share the same color. Note that by definition (in Figure 2), it
holds that X = {x ∈ X : S(x) ≤ ∞}, and X ∗ = {x ∈ X : S(x) ≤ 0}.

Remark 1 (Choosing alternative performance function). The choice of this particu-
lar function is motivated by its efficient computational performance (see Proposition
3.1), and by our numerical finding in Section 4, which suggest that the proposed per-
formance is sufficient for physical grid models. Namely, for this performance function,
the conditional probabilities {ct} are not rare.

We can estimate ct using N samples (particles) chosen uniformly at random from
the Xt−1 set. Namely, the estimate ĉt is equal to the number of these samples that fall
into Xt divided by N . We achieve this uniform sampling using MCMC, in particular, a
Gibbs Sampler; see [27] and [32]. The resulting algorithm is described in Algorithm 2.
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Algorithm 2 The MS Algorithm for estimating `

Input: A graph G = (V,E), a sequence of levels γ1, . . . , γT , a performance function
S : X → R, and a sample size N ∈ N.

Output: Unbiased estimator of `.
1: Initialization: Generate N independent particlesW0 = {X1, . . . , XN} uniformly

from X . Let W1 ⊆ W0 be the subset of elements X in W0 for which S (X) ≤ γ1

holds, (that is, W1 is an elite population of particles), and let N1 be the size of
W1.

2: for t = 1 to T − 1 do
3: Draw Ki ∼ Bernoulli(0.5), for i = 1, . . . , Nt, such that

∑Nt

i=1Ki = N mod Nt.
The latter can be accomplished as follows. First, generate an (N mod Nt)-
cardinality subset I ⊆ {1, . . . , Nt}, |I| = (N mod Nt), uniformly at random
from the set of all (N mod Nt)-cardinality subsets. Then, for i = 1, . . . , Nt, set
Ki = 1 if i ∈ I, and Ki = 0 otherwise.

4: for i = 1 to Nt do

5: Set a splitting factor Sti =
⌊
N
Nt

⌋
+Ki, where bxc is the floor function.

6: Set Yi,0 = Xi.
7: for j = 1 to Sti do
8: draw Yi,j ∼ κt (y | Yi,j−1), where κt (y | Yi,j−1) is a Markov transition

density whose stationary distribution is the uniform distribution on Xt (we
describe this momentarily).

9: end for
10: end for
11: Set the population Vt = {Y1,1, . . . ,Y1,St1

, · · · ,YNt,1, . . . ,YNt,StNt
}. Note that

Vt contains N elements.
12: Let Wt+1 ⊆ Vt be the subset of elements of Vt for which S (X) ≤ γt+1, and let

Nt+1 be the size of new population Wt+1.
13: Estimation: Set ĉt = Nt+1/N .
14: end for
15: return: ˆ̀=

∏T
t=1 ĉt.

If at any stage in Algorithm 2 we get Nt = 0, then the algorithm stops and we
return ˆ̀ = 0, so it is important to choose the thresholds {γt} such that this occurs
rarely.

Efficiency of the MS Algorithm

Any successful application of the MS framework depends on the values of the condi-
tional probabilities {ct} being not too small, since their estimation is performed via
CMC (line 13 of Algorithm 2). These values are determined by the corresponding per-
formance function. However, we cannot expect a single performance function to work
well on all models, since the coloring problem is hard [24]. In this paper, for example,
the MS algorithm failed to identify the correct chromatic number of 6 out of 31 bench-
mark instances in Section 4.3. Choosing a good performance function is not easy, and
one should find a balance between flexibility and computational efficiency. For exam-
ple, a costly but also very promising approach, which uses a continuous performance
functions to the satisfiability problems [47], was introduced in [48].
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Markov transition step

The Markov transition step of Algorithm 2 is crucial. We must be able to generate a
Markov chain described by transition density κt, but this can be expensive in the sense
of computational time. We use a Gibbs sampler for the coloring problem, described in
Algorithm 3, and show that it is efficient in Proposition 3.1.

Algorithm 3 The Gibbs sampler for sampling uniformly from the population Xt,
given a starting point in that set.

Input: A graph G = (V,E), the number of available colors q, an element X =(
X1, . . . , X|V |

)
with Xi ∈ {1, . . . , q} from the set Xt, and the corresponding thresh-

old value γt.
Output: X̃ distributed approximately uniformly on the set Xt.

1: for i = 1 to |V | do
2: Set A = {Xi}.
3: for c ∈ {1, . . . , q} \ {Xi} do

4: if S
(

(X̃1, . . . , X̃i−1, c, . . . , X|V |)
)
≤ γt then

5: A = A ∪ {c}.
6: end if
7: end for
8: Choose X̃i uniformly at random from A; that is, an element of A is chosen with

probability 1/|A|.
9: end for

10: return X̃ =
(
X̃1, . . . , X̃|V |

)
.

Proposition 3.1 (Computational complexity of Algorithm 3). For the coloring prob-
lem, Algorithm 3 can be performed in O (q |E|) time.

Proof. We first note that the conditional sampling steps of Algorithm 3, (lines 3–7),
governs the running time of each cycle of the main for loop, and, one cycle is performed
for each v ∈ V . To complete the proof, it remains to show that for each v ∈ V this
step can be performed in O (q dv ) time, where dv stands for the degree of v, since it
holds that:

∑

v∈V
O (q dv) = O(q)

∑

v∈V
dv = O(q)2|E| = O (q |E|) .

Let us consider the actual sampling of X̃i from the uniform conditional density

U
(
xi | X̃1, . . . , X̃i−1, Xi+1, . . . , X|V |

)
.

Given the assignment of colors (X̃1, . . . , X̃i−1, Xi+1, . . . , , . . . , X|V |), all we need to do,

is to check which color can be assigned to X̃i, such that the performance function
satisfies

S(X̃1, . . . , X̃i−1, X̃i, Xi+1, . . . , X|V |) ≤ γt,

and pick one of these colors uniformly at random. It turns out that this operation can
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be performed in O (q dvi) time. Consider the sampling step and suppose that

S
(
X̃1, . . . , X̃i−1, Xi, Xi+1, . . . , X|V |

)
= γ′t ≤ γt

holds. Now, only the variable Xi is subject to change, so this change is localized to the
vertex vi and its immediate neighborhood of adjacent vertices. In particular, for any
given color from {1, . . . , q}, we can determine the new performance value by checking
vi’s neighbors and counting the ones that are colored with the same color. Let Ng(vi, c)
be a set of vertices adjacent to vi such that each v ∈ Ng(vi, c) is colored with color c.
It is not very hard to verify now that for any c ∈ {1, . . . , q} it holds that

S
((
X̃1, . . . , X̃i = c, . . . ,X|V |

))
= γ′t − 2 |Ng(vi, Xi)|+ 2 |Ng(vi, c)| . (4)

Noting that for any c ∈ {1, . . . , q} the computation of Ng(vi, c) can be done in O (dvi)
time, and having in mind that we need to perform it for every color, we arrive at
O (q dvi) time complexity and complete the proof.

The efficient performance calculation approach discussed above, is demonstrated in
Example 3.2.

Example 3.2 (Efficient calculation of S(·) in Algorithm 3). Consider the simple graph
in Figure 3, and suppose that we have two colors, white (w) and gray (g).

v3

v2

v4

v5v1

Figure 3. A simple graph with performance γ = 8.

Note that the v3 vertex is g-colored and the rest of the vertices are w-
colored, so it is not hard to calculate the overall performance S(c(v1), . . . , c(v5)) =
S(w,w, g, w,w) = 8, since each v1, v2, v4 and v5 have exactly two neighbors that are
colored with the same white color. Suppose now, that we would like to change the v1

vertex color to gray and calculate the new performance value γ′, which is required in
line 4: of Algorithm 3. Using (4), we arrive at

γ′ = γ − 2 |Ng(v1, w)|+ 2 |Ng(v1, g)| = 8− 2 · 2 + 2 · 1 = 6,

since Ng(v1, w) = 2 and Ng(v1, g) = 1. Note that during the performance value update,
we only considered v1’s neighbors; that is, we did not consider the vertex v5.

We next proceed with a clarification for a few remaining technical issues regarding
the MS Algorithm 2.
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The MS algorithm parameters

Algorithm 2 enjoys a property of having a relatively small number of parameters: the
sample (population) size N and the intermediate performance levels γ1, . . . , γT . Choos-
ing N is relatively easy, as we show in Section 4. Namely, for the coloring problem,
our numerical study indicates that setting N = 10|E| is sufficient. Choosing the levels
{γt} is not as easy. We run the MS algorithm multiple times to obtain statistics of the
results, so γ1, . . . , γT should be fixed in advance, in order to ensure an estimator’s un-
biasedness [27]. However, we also wish to adapt the chosen thresholds to the particular
problem.

A common method to resolve this problem is perform a single pilot run of Al-
gorithm 2 using a so-called rarity parameter ρ. The rarity parameter specifies the
percentage of the population Vt elements that will progress to Wt, and works by tak-
ing the ρth order statistic of S(·) of the elements of Vt to define γt. This proceeds until
t = T such that γT ≥ γ.

The pilot run establishes a set of threshold values adapted to the problem at hand,
with approximately the same reduction in the size of the sets Xt at each step (until
the last). We then use the pilot values of population’s performance in subsequent runs.
See [27] for further details.

Our numerical study showed that for this problem a value of ρ = 20% resulted in a
good tradeoff between the number of outer loops T , (the main for loop of Algorithm
2), and the work required inside the loops.

Time complexity of the MS algorithm

The initialization of the MS Algorithm 2 can be performed in O (N |V |q) time because
we generate N samples each with |V | elements, and for each of these we evaluate S(·).

The MCMC step is performed O(T ) times, with cost given in Proposition 3.1 to be
O (N |E|q). Hence, the overall complexity is equal to

O
(
N |V |q

)
+O

(
TN |E|q

)
= O

(
Nq (|V |+ T |E|)

)
. (5)

Clearly, the complexity depends on the number of levels T . There exists versions of
the Splitting Algorithm 2 where one can bound this value. For example, the splitting
version in [48] satisfies

T =

⌊
ln `

ln ρ

⌋
. (6)

However, this T value depends on the rare-event probability `, so one should at
least know `’s order of magnitude to get a meaningful complexity bound.

The MS algorithm error

We saw that Algorithm 2 outputs an unbiased estimator of the rare-event probability `.
A common practice is to repeat this algorithm for R independent replications, obtain
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independent unbiased estimators ˆ̀
1, . . . , ˆ̀

R and report the average:

ˆ̀= R−1
R∑

r=1

ˆ̀
r.

Under this setting, we can calculate the RER via

RER =
∣∣∣ˆ̀− `

∣∣∣ · `−1,

and estimate the relative error via

RE =

√√√√ 1
R−1

∑R
r=1

(
ˆ̀
r − ˆ̀

)2

ˆ̀2
.

As mentioned earlier, the RER is rarely available, since our task is to calculate `.
However, this measure is useful for benchmarking the performance of the MS algorithm
on instances for which we know the analytical value. See the first example in Section 4.

Finding a graph chromatic number via the MS algorithm

The adaptation of the MS Algorithm 2 to a method for determining a graph chromatic
number is straightforward. Recall that the MS algorithm counts the number of q-
colorings in a graph. Let ∆(G) be the maximal degree of the graph G = (V,E), and
recall that G can be colored with at least one and with at most ∆(G) + 1 ≤ |V | colors
via greedy coloring. With this in mind, we propose to apply a binary search procedure
on q = 1, . . . , |V |. The above idea is summarized in Algorithm 4.

Algorithm 4 Binary search algorithm for finding a graph’s chromatic number

Input: A graph G = (V,E), a sequence of thresholds γ1, . . . , γT , a performance func-
tion S : X → R, and population size N ∈ N.

Output: Chromatic number approximation of the G = (V,E) graph.
1: Set low = 0 and high = |V |.
2: while low < high do
3: Set mid = dlow + highe/2.

4: Let ˆ̀
mid be the estimated number of proper mid-colorings of G which is obtained

using the MS Algorithm 2.
5: if ˆ̀

mid > 0 then
6: high = mid.
7: else
8: low = mid.
9: end if

10: end while
11: return mid as an approximation of G’s chromatic number.

Algorithm 4 is relatively cheap in its running time. In particular, recalling that
q ≤ ∆(G) + 1 ≤ |V |, noting that Algorithm 4 will execute the main MS method
(Algorithm 2), for O (log(|V |)) times, and combining this with Equation (5), yields
the time complexity of O

(
log(|V |)N |V | (|V |+ T |E|)

)
.
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We complete this section by providing provable probabilistic performance lower
bounds guarantees introduced in [35].

Probabilistic lower bounds

When running the MS algorithm independently for R replications, we get an unbiased
estimators for the rare-event probability `. Combining this with Markov’s inequality
[49], we can deliver lower bounds for ` using Theorem 3.3.

Theorem 3.3 (Probabilistic lower bounds). Given n samples (Z1, . . . , ZR), drawn
independently from a proposal distribution Q such that E (Zr) = µ for r = 1, . . . , R,
and a constant 0 ≤ α < 1, the following probabilistic lower bounds exist.

(1) Minimum scheme bound (MSB):

P
(

min
1≤r≤R

[
Zr
η

]
≤ µ

)
≥ α, where η =

(
1

1− α

) 1

R

.

(2) Average scheme bound (ASB):

P

([
1
R

∑R
r=1 Zr

η

]
≤ µ

)
≥ α, where η =

1

1− α.

(3) Maximum scheme bound (MASB):

P
(

max
1≤r≤R

[
Zr
η

]
≤ µ

)
≥ α, where η =

1

1− α 1

R

.

(4) Permutation scheme bound (PSB):

P


 max

1≤r≤R





1

η

r∏

j=1

Zj




1/r

 ≤ µ


 ≥ α,

where η = 1/(1− α).
(5) Order Statistics bound (OSB):

P


 max

1≤r≤R





1

η

r∏

j=1

O(R−j+1)(
R
r

)




1/r

 ≤ µ


 ≥ α,

where η = 1/(1− α), and
(
O(1), . . . , O(R)

)
is an order statistics over the sample

set (Z1, . . . , ZR), such that for 1 ≤ r1 < r2 ≤ R, it holds that O(r1) ≤ O(r2).

Proof. See [35].

These bounds introduce a bonus feature to a user of the MS algorithm, since they
are available after the first few independent runs of Algorithm 2. In particular, the
following can be achieved in a relatively small amount of computational effort.
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• Our numerical study indicates that these bounds are tight, so we can estimate
the order of magnitude of ` after only a few iterations of MS, and from this
estimate how many runs will be needed in total to obtain a suitable accuracy of
the final estimator.
• From practical point of view, when we explore different graph (atomic) struc-

tures, one might be interested in a rough estimation of their counting values. For
example, when the model is big and thus reaching a predefined RE is expensive,
or in order to perform a model comparison. For the latter, a computationally
inexpensive (and tight!) lower bounds become very valuable, especially when
many such comparisons should be made.

Remark 2 (Performance of Probabilistic Lower Bounds). It was readily noted in [35],
these bounds sometimes decrease when the number of samples grows, i.e., the bound
tightness decreases. Ideally, we would expect the bound quality to improve with more
data, so this behavior is undesirable. However, on the positive side, the bounds are easy
to obtain and they are accurate enough to be useful (our numerical study indicates
that the bounds are generally within an order of magnitude of the true result or better
after only a few runs).

4. Benchmarks

We benchmark the algorithm on three classes of example networks. In particular, we
are dealing with the following graphs.

(1) The first class are the book graphs, for which the chromatic polynomial is known,
and hence we can use these to precisely assess accuracy of the MS algorithm.

(2) The second class includes the two- and three-dimensional grids, which are used
to model a physical atomic structure, and so provide a more realistic challenge
on which to judge speed.

(3) The third class is a well-known graph coloring benchmark set1. Our MS bench-
marking investigation is thus concluded by considering the performance of Al-
gorithm 4 on these instances.

We implemented the MS algorithm in a C++ package called ChromSplit,
which is freely available at http://www.smp.uq.edu.au/people/RadislavVaisman/

#software, along with its source code and all examples. Timing measures were in-
strumented directly into the code. All the tests were executed on a Intel Core i7-3770
quad-core 3.4Ghz processor with 8GB of RAM, running 64 bit Windows 7. All tests
were single-threaded, though parallelization would be easy to add.

MS parameters

We ran a number of preliminary benchmarks (not reported here) to determine reason-
ably robust parameter settings for N and ρ. The following parameters were used for
all results described here.

• q is the number of colors (spins).
• For the MS pilot run, we take ρ = 20%.

1http://mat.gsia.cmu.edu/COLOR/instances.html
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• For the probabilistic lower bounds in Theorem 3.3, we take α = 0.95, which is
equivalent to choosing 95% confidence.
• We set the sample size to be N = 10|E|, where |E| is the number of edges in a

graph under consideration.

4.1. Book graph

We start by considering the n-book graph Bn, which is defined as the graph Cartesian
product S(n+1) × P2, where S(n+1) is a star graph and P2 is the path graph on two
nodes [50]. An example, B6, is given in Figure 4.

Figure 4. The 6-book graph, B6.

The Bn graph has 2n + 2 vertices and 3n + 1 edges. Importantly, the exact chro-
matic polynomial is known to be q (q − 1)

(
q2 − 3q + 3

)n
[50], thus we can measure

our estimator’s relative experimental error RER, and provide precise benchmarks for
the accuracy of the MS algorithm.

We perform benchmarks on B100 for q = 2, . . . , 10. As noted earlier, we choose
ρ = 20% and N = 3010, since B100 has 301 edges.
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Figure 5. The RER and RE of the MS algorithm on B100 as a function of R – the number of independent
MS replications.

15



Figure 5 shows the RER and the RE as a function of R, the number of independent
MS replications, for q = 2, 6 and 10. The figure shows that the RER drops below 10%
within a reasonable number of repetitions. One should remember that the probabili-
ties being measured here are very small (as small as 10−60), so a 10% RER is quite
reasonable. One should also bear in mind, that the MS estimator unbiasedness implies
the downwards trend of RER for R→∞.

The rightmost point on each curve in Figure 5 corresponds to the R value for
which the estimated RE reaches 3%, and so we can see that the RE is a reasonable
(if somewhat conservative) metric against which to estimate when the algorithm has
converged sufficiently. In further tests, where we do not know the analytic form of the
chromatic polynomial, we will use this criteria — the R value at which the estimated
RE drops below 3% — to select the number of replications. Figure 5 also shows that

100 101

10−26

10−25

10−24

exact value

R

L
ow

er
B
ou

n
d

ˆ̀

PSB

MSB

OSB

ASB

MASB

Figure 6. The estimator ˆ̀ and the corresponding lower bounds for the B100 graph for q = 6 as a function of

replications number R. The estimator ˆ̀ is unbiased, but in this particular experiment, it first increased beyond
the true value, so the PSB which is based on the maximum function, became the tightest bound.

the counting problem is harder (the MS method converges more slowly) for smaller
values of q. This is not very surprising, since the corresponding decision problem of
determining if the graph is q-colored, is also hard for smaller q values. This hardness
follows from the fact that for smaller q values, one need to satisfy more coloring
constraints.

A similar set of results is shown in Figure 6, this time illustrating the lower-bounds
as a function of the number of replications R. For clarity we show only q = 6 (in our
experiments, we verified that the lower bounds behavior is similar for all q = 2, . . . , 10).
The figure shows that the best lower bound is the PSB. This lower bound becomes
close to the exact value after only 10 replications of the MS algorithm, indicating its
utility for providing rough estimates of ` early in the proceedings. For a six coloring
(q = 6) of the B100 graph, our algorithm completes a single replication in about 5.3
seconds (see Table 1), so we can conclude that a tight lower bound can be obtained
in less than a minute. Table 1 provides exact details of the data obtained for the B100

graph. The best lower bound is marked in bold.

16



Table 1. Performance summary of the MS algorithm on the B100 graph.

q ˆ̀ RER T R CPU (s) PSB MSB OSB ASB MASB

2 3.19× 10−61 2.40% 103 517 3.80× 103 2.67 × 10−61 1.37× 10−62 3.76× 10−63 1.59× 10−62 1.58× 10−64

3 1.23× 10−48 5.09% 91 166 1.24× 103 7.57 × 10−49 3.73× 10−49 2.87× 10−50 6.14× 10−50 9.62× 10−52

4 1.00× 10−36 6.62% 67 124 7.93× 102 5.88 × 10−37 3.24× 10−37 3.80× 10−38 5.01× 10−38 8.35× 10−40

5 3.20× 10−29 0.54% 54 132 8.07× 102 2.48 × 10−29 1.54× 10−29 1.51× 10−30 1.60× 10−30 2.77× 10−32

6 3.45× 10−24 5.98% 44 65 3.41× 102 2.99 × 10−24 1.83× 10−24 3.37× 10−25 1.72× 10−25 4.02× 10−27

7 1.12× 10−20 0.50% 38 85 4.23× 102 8.48 × 10−21 5.49× 10−21 1.04× 10−21 5.58× 10−22 1.26× 10−23

8 4.33× 10−18 7.51% 34 56 2.52× 102 3.53 × 10−18 2.80× 10−18 6.56× 10−19 2.17× 10−19 6.07× 10−21

9 5.09× 10−16 4.52% 30 60 2.63× 102 4.28 × 10−16 2.85× 10−16 8.78× 10−17 2.55× 10−17 6.49× 10−19

10 2.00× 10−14 3.52% 27 51 2.13× 102 1.69 × 10−14 1.13× 10−14 4.57× 10−15 1.00× 10−15 2.58× 10−17

4.2. Two- and three-dimensional grids

The second class of models considered are the two- and three-dimensional grids, which
are illustrated in Figure 7. The order of a grid graph refers to the length of a side, so
Figure 7 shows the order-4 grid graphs.

(a) The 2D order-4 grid. (b) The 3D order-4 grid.

Figure 7. Example grid graphs.

We consider 18 2D graph instances of orders n = 3, . . . , 20, and 6 3D graph instances
of orders n = 3, . . . , 8, each for q = 2, 3, 4 and 5. There are |E| = 2n(n − 1) and
3n2(n− 1) edges in 2D and 3D grids of order n, respectively. We choose N = 10|E| as
before and we choose the number of replications R such that the 3% RE requirement
is met.

Figure 8 shows the average experimental CPU and the number of levels T as a
function of the 2D and 3D grid order. The lower plots show the number of levels, T ,
derived from the pilot run, divided by the estimate (6), from which we note that the
experimental value of T is at most 61% higher than the suggested rule of thumb in
(6), and converges to being about 30% higher for larger networks.

Figure 8 also shows, in the upper plots, the CPU times in seconds, scaled by (5).
We can see from these, that the scaled times are roughly constant with n (for all n for
the 2D case, and for n ≥ 6 for the 3D case). The unscaled CPU times are shown in
Tables 2 and 3 for the 20×20 and 8×8×8 grids, respectively. The tables also provide
summaries of the T and R values for the different q values, along with the actual `
estimates. Note that the smallest of these is ∼ 10−157. Estimating probabilities this
small naively is completely impractical.

Note also the small inversion in probabilities: i.e., in the 3D order-8 grid, when we
go from q = 2 to q = 3 the estimated value decreases, when naively we should expect
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Figure 8. The average CPU time (s) and the average number of levels T divided by analytical bounds (5)
and (6). Note that the relative value of T is at most 61% higher than 1, and converges towards around 1.3,

indicating that the (6) provides a reasonable estimate of the number of levels required. For the 2D graph, the

scaled CPU time estimates appears consistent, and in the 3D case they appear to converge towards a consistent
value, again suggesting the performance estimate is a good guide.

this number to increase as it should be harder to find proper colorings with a smaller
number of colors (and indeed it is for all other cases). The reasons for this inversion
must lie in the 3D structure, though the exact reason is unclear.

We next consider the probabilistic lower bounds. It is important to note that the
calculation effort one should invest for the bounds calculation is relatively cheap as
compared to the overall CPU time, so a reasonable approach is to compute all available
bounds, and choose the maximum among them. We define the probabilistic maximal
lower bound (PMLB) to be the maximum among PSB, MSB, OSB, ASB, and MASB.

Table 2. Performance summary of the MS algorithm on the 20× 20 2D grid.

q ˆ̀ T R CPU PSB MSB OSB ASB MASB

2 7.45× 10−121 248 128 1.07× 104 1.58× 10−121 3.64 × 10−121 3.90× 10−123 3.72× 10−122 6.54× 10−124

3 5.97× 10−113 216 193 1.62× 104 1.14× 10−113 2.09 × 10−113 2.45× 10−115 2.99× 10−114 4.08× 10−116

4 7.78× 10−90 165 174 1.31× 104 2.00× 10−90 3.17 × 10−90 6.90× 10−92 3.89× 10−91 6.16× 10−93

5 6.11× 10−72 130 130 8.70× 103 2.49× 10−72 2.65 × 10−72 9.35× 10−74 3.05× 10−73 5.12× 10−75

Table 3. Performance summary of the MS algorithm on the 8× 8× 8 3D grid.

q ˆ̀ T R CPU PSB MSB OSB ASB MASB

2 1.55× 10−154 280 90 1.93× 104 3.65× 10−155 8.03 × 10−155 1.04× 10−156 7.77× 10−156 1.76× 10−157

3 9.27× 10−158 309 75 2.07× 104 2.05× 10−158 5.09 × 10−158 6.52× 10−160 4.63× 10−159 1.06× 10−160

4 6.89× 10−142 270 125 3.46× 104 1.45× 10−142 3.03 × 10−142 3.83× 10−144 3.45× 10−143 6.43× 10−145

5 2.10× 10−121 226 121 3.23× 104 6.52× 10−122 1.08 × 10−121 1.13× 10−123 1.05× 10−122 1.85× 10−124

Figure 9 presents the estimation of the RE of PMLB, with respect to the final mean
value obtained, as a function of R, for q = 2, . . . , 5. Note the decrease in the PMLB
accuracy as the number of samples grows. See Remark 2. However, as noted earlier, a
good idea regarding the `’s order of magnitude is obtained after only few iterations.
Despite that the reported error stands within 30%–60% interval, one should bear in
mind that we are dealing with the counting problem, which is much harder than its
optimization counterpart. In particular, from a strictly theoretical point of view, one
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Figure 9. The estimated relative error of PMLB with respect to ˆ̀ as a function of R.

cannot hope to achieve a bounded error approximation, since it implies that NP=RP
holds [24].

Tables 2 and 3 provide the detailed bounds for the 20 × 20 and 8 × 8 × 8 grids,
respectively, with the best lower bound is marked in bold. In general, for these graphs
the MSB bound introduced the best performance in contrast to the book model, where
PSB was the best.

Remark 3 (Exact Tutte and chromatic polynomial calculation). The chromatic poly-
nomial can be obtained using the Tutte polynomial [42, 50], for which an exact solver
exists [51]. Table 4 summarizes the CPU times for the exact and the approximate
(MS), approaches applied to 2D grids (note that the comparison is not quite apples
for apples in that the exact Tutte solver provides the complete polynomial, not the
result for a single q value, but we perform measurements here for q = 2 which is usually
the slowest case for the MS solver).

Table 4. CPU times (seconds) of the ex-

act Tutte solver and the MS algorithm on
2D grids. The exact solver outperforms MS

on small graphs, but its poor scaling means
MS is quickly superior, and moreover the

exact solver is limited to at most 8×8 grids.

3D grid results are described above.

Instance CPU (exact) CPU (MS)

3× 3 5.01× 10−4 1.23× 10−1

4× 4 2.18× 10−3 5.34× 10−1

5× 5 3.21× 10−2 2.96

6× 6 0.253 8.05

7× 7 2.46 19.3

8× 8 36.9 34.8

9× 9 — 74.5

For small models, the exact solver performed extremely well. Indeed it was faster
than solving using the MS algorithm. However, it scaled badly. The MS algorithm is
better by the time we reach order 8, and the exact solver crashed after 4.5 hours on
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the order 9 grid, as compared to a 74 s run by the MS approach. It is inconceivable
that we could find the exact solution for the order 20 grid considered above using the
exact solver.

The results are even more extreme for the 3D grids, where the MS algorithm is
already faster for the order-3 grid (0.11 as compared to 4.71 seconds), and the exact
solver crashed after 4 hours for even the order 4 grid. Thus the MS algorithm makes
possible computations that are completely impractical by exact means.

We have demonstrated the accuracy and efficiency of the MS method for calculating
the partition function or `. Algorithm 4 presents a further step: computation of the
chromatic number for a graph, i.e., the minimum number q, for which a proper coloring
exists.

4.3. Benchmarking optimization problem by Algorithm 4

As usual, for each G = (V,E) we set N = 10|E| and ρ = 0.2. Table 5 summarizes the
obtained results; the graphs are sorted by their number of vertices. Here, χ̂(G) and
# bin. stand for the chromatic number estimator delivered by Algorithm 4, and the
corresponding number of binary search iterations, respectively.

Table 5. Performance summary of Algorithm 4 on the set of
benchmark problems from http://mat.gsia.cmu.edu/COLOR/

instances.html. The “?” sign indicates graphs with an un-

known chromatic number. The gray rows stand for instances,
where Algorithm 4 could not identify the correct chromatic

number.

G(|V |, |E|) χ(G) χ̂(G) # bin. CPU

myciel3(11,20) 4 4 5 0.010
myciel4(23,71) 5 5 6 0.250
queen5.5(25,160) 5 5 6 1.212
queen6.6(36,290) 7 7 6 4.825
myciel5(47,236) 6 6 6 3.708
queen7.7(49,476) 7 7 6 14.67
queen8.8(64, 728) 9 9 7 49.26
huck(74,301) 11 11 8 11.37
jean(80,254) 10 10 7 8.782
queen9.9(81, 2112) 10 10 7 238.1
david(87,406) 11 11 7 23.05
myciel6(95,755) 7 7 8 72.69
queen8.12(96,1368) 12 12 7 212.7
queen10.10(100,2940) ? 11 8 615.7
games120(120,638) 9 9 8 76.30
queen11.11(121,3960) 11 12 8 1251
miles250(128,387) 8 8 8 38.39
miles500(128,1170) 20 20 8 234.0
miles750(128,2113) 31 31 8 629.5
miles1000(128,3216) 42 42 8 1290
miles1500(128,5198) 73 73 8 2471
anna(138,493) 11 11 9 60.88
queen12.12(144,5192) ? 13 8 2349
queen13.13(169,6656) 13 15 9 5020
mulsol.i.3(184,3916) 31 33 9 2791
mulsol.i.4(185,3946) 31 33 8 2454
mulsol.i.5(186,3973) 31 33 8 2516
mulsol.i.2(188,3885) 31 33 8 2561
myciel7(191,2360) 8 8 9 1195
queen14.14(196,8372) ? 16 8 7419
mulsol.i.1(197,3925) 49 49 9 2744
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For a majority of the benchmark networks, Algorithm 4 was successful in finding the
χ(G). In addition, the MS method delivers an upper bound for networks with unknown
χ(G). However, MS failed to provide a correct answer for two queen networks, and
the four graphs from the mulsol family. We conjecture, that this is due to the chosen
performance function, since the only cause for the MS method potential failure, is an
existence of a rare-event conditional probability {ct}. Consequentially, a good choice
of performance functions, is an important direction of future research.

5. The chromatic number of random graphs

We test the binary search Algorithm 4 by applying it (using parameters as set above)
to calculate chromatic numbers of two standard random-graph models: the Gilbert-
Erdős-Rényi (GER) [40, 41] and Watts-Strogatz (WS) [36] random graphs. The GER
random-graph is the classic “random” network for which there are known bounds on
the chromatic number [52].

The WS model is included because this has the so-called small-world property: for
certain parameter values the average distance between nodes is small, but clustering
coefficient is still high. Moreover, the GER is approximately embedded within the class
of WS models (for sparse graphs), as are the k-regular graphs, and so the WS model
shows a continuum of models interpolating between the two extremes of regularity and
randomness. As far as we are aware, despite the importance of small-world models,
there are no existing results for chromatic numbers on WS random graphs.

Note that the average node degree in G(n, p) network, (where G(n, p) stands for
GER model with n nodes and an edge existence probability p), is equal to (n − 1)p.
We used bounds on the chromatic number of any GER random graph, χ

(
G(n, p)

)
,

given in (7), [52], namely:

n

s0
≤ χ

(
G(n, p)

)
≤ n

s0

(
1 +

3 log log(n)

log(n)

)
, (7)

where s0 = dr(n) + 1e, b = 1/(1− p), and

r(n) = 2 logb(n)− 2 logb logb(n) + 2 logb

( e

2

)
.

The WS model used here starts by placing nodes regularly on a circle, and each
node connects to its k nearest neighbors, where k is a model parameter that takes its
values in {1, . . . , n−1}. Then edges are rewired (one end is reconnected to a new node
chosen uniformly from the alternatives) at random with probability β ∈ [0, 1]. The
average node degree in this network remains k, as the total number of edges remains
constant.

It is noteworthy that the WS model is a k-regular graph for β = 0, and approx-
imately equivalent to the GER random graph for β = 1 (and for sparse graphs),
thus the WS model interpolates between these two extremes. And it does so in an
interesting manner in that for moderately small values of β the graph has the small-
world property. We calculated the chromatic numbers for these random graphs for
n = 10, 20, 30, 40 and n = 50 with different values of p, k and β. For every parameter
set, we calculated the chromatic number of 100 randomly generated instances, and we
report the average values.
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(a) The GER G(30, p) model (with 30 vertices).
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(b) The WS model with 30 vertices.
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(c) The GER G(50, p) model (with 50 vertices).
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(d) The WS model with 50 vertices.

Figure 10. Chromatic number as a function of average node degree. The leftmost plot is for the G(n, p) GER

model and the rightmost plot is for the WS model.

Figure 10 summarizes the results for n = 30 and n = 50 (the n = 10, 20 and
40 results are omitted as they are very similar). The graphs show average chromatic
number with respect to the average node degree, so that we can easily compare the
two differently parameterized graphs on equivalent axes. The bounds in (7) are shown
in Figure 10 as LB and UB.

The GER results are quite expected, but noteworthy in that the chromatic num-
ber increases only slowly with average node degree, until the graph is quite highly
connected, where the chromatic numbers shoot up (it is known that the chromatic
number is bounded below by the size of the smallest clique, and hence the number
must eventually converge to the size of the network as p→ 1). Also, the scaled shape
of the curve is almost independent of n.

More interesting are the WS results. The β = 0 results are not stochastic, and hence
follow a somewhat regular pattern. However, as soon as β > 0, we see that for graphs
with low to medium values node degrees (less then or equal to 15 and 30 for WS graph
with 30 and 50 vertices, respectively), the value of β has an insignificant effect. That
is, all of the graphs from the almost k-regular, to the GER, have the same average
chromatic number!

For highly connected graphs the value of β starts to have some effect on the chro-
matic numbers, with χ increasing as β increases.
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It is interesting to note that the lower and upper bounds of the GER model hold
for the WS graphs as well for graphs of moderate degree, i.e., in the range where most
applications of WS lie.

In both cases, the size of the network n = |V | has little effect on the relative shape
of the curves.
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(a) The average CPU time as a function of

average node degree of GER and WS graphs
with 30 vertices.

0 10 20 30 40 50

0

20

40

60

average node degree

C
P
U

GER
WS

(b) The average CPU time as a function of

average node degree of GER and WS graphs
with 50 vertices.

Figure 11. Average computation times of Algorithm 4 for calculating χ as a function of the average node

degree.
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Figure 12. The average computation times of the Algorithm 4 for calculating χ as a function of |V | — the

number of graph’s vertices.

Average computation times are shown in Figure 11 and Figure 12. In Figure 11,
we report the CPU as a function of average node degree for graph sizes |V | = 30
and |V | = 50 in sub-figures (a) and (b), respectively (the n = 10, 20 and 40 results
are omitted as they are very similar). Figure 12 summarizes the average computation
times as a function of the graph’s number of vertices |V | ∈ {10, 20, 30, 40, 50}. Both
GER and WS models introduce a similar behavior in the sense of the required CPU
time. Both numerical findings indicate that the computation time scales linearly with
the number of edges in the graph.
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6. Conclusion

In this paper, we investigated two hard counting problems, the graph coloring and
the Potts model zero-temperature partition function approximation. By introducing
an equivalent rare-event estimation problem, we were able to apply the adaptive MS
approach. We showed that the MS algorithm provides a provable probabilistic perfor-
mance lower bound guarantee which is easy to calculate on-line. Our numerical results
indicate that the proposed method is successful in handling these hard rare-event esti-
mation problems and the proposed probabilistic lower bounds seem to be close to the
final estimator value.

In addition, we considered the chromatic number properties in random ER and
WS networks. Our findings imply that these networks with low to medium average
vertex degrees, share a similar behavior in the sense of their typical chromatic number.
Based on the obtained results, we conjecture that this behavior is probably due to
the fact that clustering coefficients in small-world networks do not change quickly in
response to rewiring, whereas the network diameter does. So clustering appears to be
much more important for determining chromatic numbers than properties such as the
network diameter.

As for the future work, it will be important to identify specific graph topologies for
which a rigorous performance guarantees (in the sense of the RE) could be obtained.
From the practical point of view, a choice of a performance function is an essential di-
rection to explore. In addition, it will be interesting to handle a general Potts model,
which implies an approximation of the Tutte polynomial. Moreover, a comprehen-
sive theoretical analysis of the small-world phenomena is of a clear interest. Finally,
since the MS algorithm is easily parallelized, it will be of merit to develop a software
package that runs on multiple CPU/GPU, in order to allow researchers dealing with
statistical physics, to calculate the zero-temperature Potts model partition function
for larger graphs.
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[37] M. Barthélémy and L.A.N. Amaral, Small-world networks: Evidence for a crossover pic-
ture, Phys. Rev. Lett. 82 (1999), pp. 3180–3183.

[38] M. Humphries, K. Gurney, and T. Prescott, The brainstem reticular formation is a small-
world, not scale-free, network, Proceedings of the Royal Society of London B: Biological
Sciences 273 (2006), pp. 503–511.

[39] Q.K. Telesford, K.E. Joyce, S. Hayasaka, J.H. Burdette, and P.J. Laurienti, The ubiquity
of small-world networks., Brain Connectivity 1 (2011), pp. 367–375.
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