
Multi-Observer Privacy-Preserving
Hidden Markov Models

Hung X. Nguyen and Matthew Roughan
School of Mathematical Sciences, The University of Adelaide, Australia.

E-mail:hung.nguyen, matthew.roughan@adelaide.edu.au

Abstract—Detection of malicious traffic and network health
problems would be much easier if ISPs shared their data.
Unfortunately, they are reluctant to share because doing so
would either violate privacy legislation or expose business secrets.
However, secure distributed computation allows calculations to
be made using private data, without leaking this data. This
paper presents such a method, allowing multiple parties to jointly
infer a Hidden Markov Model (HMM) for traffic and/or user
behaviour in order to detect anomalies. We extend prior workon
HMMs in network security to include observations from multi ple
ISPs and develop secure protocols to infer the model parameters
without revealing the private data. We implement a prototype of
the protocols, and our experiments with the prototype show its
has a reasonable computational and communications overhead,
making it practical for adoption by ISPs.

I. I NTRODUCTION

As the Internet grows, and becomes more and more a
part of the modern world’s critical infrastructure, the issue
of maintaining cyber-security confronts ISPs. There are many
aspects to this problem, broadly falling under the categories of
prevention, detection and mitigation. It may be ideal to prevent
attacks before they can cause damage, but it is currently
impossible to anticipate all possible attacks, and so detection
of novel, or unexpected problems is necessary.

There is a now large literature on network anomaly detec-
tion (for examples see [4], [16]) aimed at detecting network
problems. The range of techniques is large, but the general
approach is to estimate the characteristics of the network under
“normal” conditions, and then to look for substantial devia-
tions from those characteristics. The principle differentiator in
methods is the type of model used for normal conditions, and
the method used to test for uncharacteristic behavior.

A number of authors have applied Hidden Markov Models
(HMMs) to the task [1], [2], [13]. A Markov model is a simple
stochastic process based on random, memoryless transitions
through some series of states. In HMMs, we assume that the
states themselves are not directly observable, but that we can
make some indirect observations, and from these estimate the
underlying process.

HMMs are among the most popular approaches for mod-
elling time series data [10]. They have widespread applications
in areas such as speech recognition, bio-informatics, and
Internet traffic modelling [7], [14], and more pertinently to
finding problems in networks [1], [2], [13]. Once we have

trained such a model, we can then look for unlikely sequences
of observations, and use these to signal anomalies.

There is no doubt that anomaly detection in general, and
HMMs in particular, benefit from having as large a dataset as
possible from as diverse a set of viewpoints as possible. In
the Internet, these might take the form of observations from
multiple ISPs who are all interested in detecting large-scale
problems such Distributed Denial of Service (DDoS) attacks,
worms, or address hijacking. However, such collaboration
between ISPs is rare. The problem is that the type of data that
must be shared is often considered sensitive; either because it
contains business secrets, or customer or other data that has
legal privacy requirements.

There are various approaches one could imagine to solve
this problem. Here we apply an approach called variously
Secure Multi-party Computation (SMC), or Privacy-Preserving
Data Mining (PPDM). It has advantages over alternatives
in that no-one (not even a “trusted” In effect, the entire
computation is encrypted so that no participant learns anything
except the desired answer.

In this work, we solve the problem of learning a HMM from
observations made by multiple distributed and independent
parties. The observations themselves are private; no-one can
learn any one else’s observations. However, there is almostno
loss of fidelity as might be experienced in some anonymization
schemes. The solution we obtain deviates only slightly from
that if the data were completely public, provided some care is
put into choice of key length and scaling coefficients.

Our solution performs computation in the encrypted domain
to protect data privacy. Although data encryption and decryp-
tion introduce computation and communication overheads, we
show in our experiments that even running on commodity
hardware our prototype implementation can be used for re-
alistic applications.

II. BACKGROUND

A. HMM Theory

A Markov chain is a sequence of random variablesQ =
q1 . . . qT with the Markov property: given the present state,
the future and past states are independent. Consider a Markov
chain withN possible statesS = {s1, . . . , sN}. The Markov
property is formally defined as

P(qt+1 = si|q1, q2, . . . , qT) = P(qt+1 = si|qt = sj).978-1-4673-0269-2/12/$31.00c© 2012 IEEE

If the states of the Markov process are not directly observed,
but rather we see some output sequence that is probabilistically
associated with the Markov chain, the process is referred toas
a Hidden Markov Model (HMM) [10]. A HMM is formally
defined by the quintuple

• the set ofN statesS = {s1, . . . , sN},
• the set ofM observation symbolsV = {v1, . . . , vM},
• the initial probability

π = (π1, . . . , πN), whereπi = P(q1 = si),

• the time-independent state transition probability

A = (aij)N×N , whereaij = P(qt+1 = sj |qt = si),

• the time-independent observation probability

B = (bik)N×M , wherebik = P(Ot = vk|qt = si).

HMMs have been used successfully in detecting network
problems [1], [2], [13]. In these applications, a HMM is built
for normal traffic conditions. For example, HMMs are built
in [1] for application protocols and in [2] for SSH traffic.
Using these models, we can quickly evaluate the probability
of an observed traffic stream. When an anomaly occurs, the
likelihood of the observations will drop, and the deviationcan
be detected.

B. Introduction to Secure Multi-Party Computation

Secure Multi-party Computation (SMC) is a field of cryp-
tography that provides means to perform arbitrary compu-
tations between multiple parties who are concerned with
protecting their data. Mathematically, there arem parties
P1, . . . , Pm. Each party has private dataxi. They want to
compute a joint function(y1, . . . , ym) = f(x1, . . . , xm). The
goal is to computef without Pi learning anything aboutxj

or yj for all j 6= i, other than what can be inferred form their
own dataxi and outputyi.

The field of SMC originated from the work of Yao [15].
There is now a substantial literature on secure distributedcom-
putation and data mining. The parts most relevant to this work
include work on applications to network management [3], [11],
and anomaly detection using principle component analysis
[5]; and application of SMC to HMMs [9], [12]. However
our work is quite different from the last two cases, which
consider the situation where one party holds the model, and
the other the observations. That problem was relevant for a
particular application, but has no obvious connection with
network management. Instead, in our problem the observations
are partitioned between the different parties.

We apply here the now standardsemi-honestsecurity model.
In this model, the parties in the computation will follow the
protocol correctly, but may perform additional (polynomial
time) computations to attempt to learn additional information.
Many of the techniques we use here have been extended to deal
with adversaries who are willing to corrupt the protocol itself
leading to invalid results, however, the resulting approaches
are then more complex, and have larger overhead that is

q1 q2 q3 qT

O11O21 Om1 Om2O12O22 O2T OmTO1T

Fig. 1. A HMM with multiple observers.

usually unnecessary for data-mining applications where itis
in everyone’s interest to find the correct solution.

The approach we take here is to use a number of well
developed ideas from SMC as building blocks orprimitives
to create the algorithm we need. The challenge is to do
so efficiently, and without intermediate data leaking useful
information. The principle primitive used here is homomorphic
encryption. We also briefly describe the other techniques used
in this paper (secure logsum and secure negation).
Homomorphic Encryption: A homomorphic encryption
scheme is a special type of public-private crypto-system with
the property that some operation in the plain-text are mirrored
by operations in the cipher-text. In practice, that means we
can perform computations on the encrypted text, e.g.,

x⊕ y = D
[

E[x]⊗ E[y]
]

,

for some operators⊗ and ⊕. The homomorphic encryption
scheme we use here is the Paillier crypto-system [8].

The other primitives we use are:

• Secure logsum:This is a simple protocol that uses the
homomorphic properties of the Paillier crypto-system.
Consider two parties A and B where A has a vector
of encrypted values(E[log(x1)], . . . , E[log(xm)]), and B
holds the decryption key. A and B want to jointly com-
puteE[log

∑m

i=1 aixi] for a public vector(a1, . . . , am).
Algorithms for this protocol appear in [9], [12].

• Secure negation:We need to be able to allow two parties
A and B to compute the encrypted negationE[−a] of an
encrypted valueE[a].

III. HMM S WITH MULTIPLE OBSERVERS

Assume that we have a HMM with parameters{A,B,π}
as described in section II-A. There arem parties denoted by
P1, P2, . . . , Pm that make observations of the same underlying
Markov process. Without loss of generality, assume that the
observations are made between time0 andT , and that the time
interval is divided intoT slots [1, . . . , T]. Each party makes
its own observations of the system and these observations
are secret. At each time slot, we havem observations of the
underlying HMM. The observation set now becomes

O = {O1, . . . ,OT },

where each elementOt is a vectorOt = {O1t, . . . , Omt} of
observations from each party. The sequence ofT observations
that partyPj makes is denoted asO(j) = {Oj1, . . . , OjT }.
An example of this model is given in Figure 1.

We shall assume that the observations of the different parties
are independent. That is a natural assumption, as dependence
between observations would weaken the need for privacy.
Moreover, in this paper we assume all parties have the same
observation probability given by the matrixB = {bik}, though
we plan to extend our model to the heterogeneous case in
future work. Under these conditions the probability of a setof
observations at timet, conditional on the state of the Markov
process is given by

P(Ot|qt = si) =

m
∏

j=1

P(O
(j)
t = vkj

|qt = si) =

m
∏

j=1

bikj
.

We are interested in solving the training and evaluation
problems for HMMs as defined in Section II-A in a privacy
preserving manner. That is, the parties jointly compute the
likelihood of the observations using theforward protocol and
the HMM parameters using theBaum-Welchprotocol [10] in
such a way that at the end of the computation all parties learn
the correct parameter value but do not learn anything more
about the data of the other parties other than those that can
be directly inferred from the output and their inputs. Details
of the privacy-preservingforward and Baum-Welchprotocols
are provided in [6].

IV. I MPLEMENTATION AND RESULTS

In this section we describe our implementation of the secure
protocols described in the preceding section. The code for our
implementation is available atwww.hxnguyen.net. It is written
in Python, using the Paillier encryption scheme by Ivanov1,
which we have extended by adding the secure logsum and
secure negation protocols. The HMM code was implemented
on top of the standard HMM implementation by Hamiltom2.

However, the code is not a trivial extension of these pack-
ages. The crucial implementation issue is that the encryption
scheme applies to a finite field of non-negative integers,
whereas the HMM algorithms were designed to work with
potentially negative floating-point numbers. There is signifi-
cant room for problems if the translation between these two
domains is not performed carefully. We discuss details of the
scaling and conversion in [6].

To test the performance of the secure protocols, we construct
a simplified HMM for the detection of SSH brute-force attacks
in [2]. In this model, the HMM has two states where the
attackers alternate between “attack” and “inactive”, i.e.S =
{Attack, Inactive}, and there are 6 observation outputs repre-
senting possible the traffic countsV = {v1, v2, v3, v4, v5, v6}.

The following parameters are used for initial, transition and
observation probabilities

π = (0.01, 0.99), A =

(

attack inactive

attack 0.95 0.05
inactive 0.05 0.95

)

,

1https://github.com/mikeivanov/paillier
2http://www.cs.colostate.edu/hamiltom/code.html

Key length (bits) L P(O|w) π̄ Ā B̄

64 103 6.15 % 7.91 % 8.39 % 15.70 %
128 103 4.98 % 5.42 % 7.32 % 12.57 %
256 103 3.57 % 3.92 % 6.27 % 9.09 %
512 103 1.83 % 3.03 % 5.17 % 6.92 %
64 106 0.16 % 1.53 % 3.08 % 7.17 %

128 106 0.16 % 1.28 % 2.97 % 5.85 %
256 106 0.10 % 0.65 % 2.17 % 4.43 %
512 106 0.10 % 0.6 % 1.09 % 2.03 %

TABLE I
WORST-CASE ERRORS OVER10 RUNS, GIVEN AS PERCENTAGES.

B =

(

v1 v2 v3 v4 v5 v6

attack 0.1 0.1 0.1 0.1 0.1 0.5
inactive 1/6 1/6 1/6 1/6 1/6 1/6

)

.

We simulate a set of 10 realizations for the HMM, for each set
of parameter values, and run both the centralized and secure
distributed version of the estimation algorithms to compare.

A. Accuracy of the secure protocols

The approximation of real numbers by integers in the
Paillier crypto-system introduces errors. Here, we compare
the accuracy of the secure protocols against results provided
by the ideal result as produced by a centralized algorithm.
We compare the ideal result with the secure result using the
relative errorǫ = |p̂−p|/p, wherep̂ is the result of the secure
protocol, andp the ideal estimate. We evaluate the errors by
varying the values of the scaling parameterL and the key
length used in encryption.

Space constraints prevent us presenting results for each
parameterπ̄i, āij and b̄ik so we present, in Table I, the
worst caseerrors over each of the estimated components.
The results (given forT = 1000 samples) show that the
further through the estimation process we go (from̄π to
Ā to B̄), the larger the errors, but that for large keys,
and reasonable scaling parameters, the errors introduced by
integer approximation and consequent over- or underflow are
insignificant (2% in the worst case over multiple simulations,
and parameter estimates). Larger keys also provide better
security, so best performance occurs in the most secure case!

B. Runtime analysis

Another important consideration is the runtime of the pro-
tocol. We evaluate the runtime of our protocols by varying the
key length and the number of samples used to evaluate and
train the HMM, with L = 106. The results, generated on a
laptop with a duo core 2.8 Ghz processor with 4GB of RAM
are shown in Figure 2. The results show that the algorithm
is approximately linear in the number of samplesT , and
quadratic as a function of key length. This quadratic growth
is due to the runtime of the Paillier encryption and decryption
functions, which could be more efficiently implemented. There
is a clear trade-off between security and runtime as the longer
the key length the more secure the protocol but computation
time is also longer.

The Baum-Welch protocol takes on average 5 times longer
than the secure forward protocol for each iteration, so esti-
mation/training component of running these algorithms repre-

200 400 600 800
0

2000

4000

6000

Number of samples

R
un

 ti
m

e
(s

ec
on

d)

64 bits
128 bits
256 bits
512 bits

Fig. 2. Runtime for the secure forward protocol under different key-length.

sents a significant workload. However, detection of anomalies
requires only the forward algorithm.

C. Collaboration benefits

The other obvious question to ask is whether there is an
advantage in multiple parties collaborating. It is intuitive that
a larger set of data is beneficial, but it may not be obvious
that these benefits outweigh the costs involved in participating
in such a protocol. Here we study these to allow potential
collaborators to determine the cost/benefits.

Using the same model, we compare the errors as we increase
the number of participants in the protocol. We apply the Baum-
Welch algorithm toT = 100 samples and compare errors in
the estimates. In particular, due to space restrictions, wefocus
on the estimates ofB, which we can see from Table I are
the hardest to estimate accurately, and we calculate the Mean
Squared Error (MSE) over the matrix.

The resultant MSE is shown in Figure 3. The plot shows that
there is a substantial increase in accuracy when two parties
collaborate, but that the marginal improvement lessens with
increasing numbers of participants in the protocol.

1 2 3 4 5 6

0.008

0.01

0.012

0.014

Number of parties

M
ea

n
sq

ua
re

 e
rr

or

Fig. 3. MSE of the observation probabilitiesB.

V. CONCLUSION AND FUTURE WORK

In this paper we have shown that collaboration between
multiple parties can improve the quality of estimates provided
by HMMs. More importantly, we have shown how the parties
can collaborate without revealing private data to each other. In
the context of ISPs, this would mean that multiple ISPs can

help each other detect network problems without running the
risk of exposing critical data to competitors.

We have implemented the protocol using Paillier’s homo-
morphic encryption. The implemented protocols are accurate
and secure, and reasonably fast. However, as with all security
there is a computational and communications overhead in
encryption. In the future we plan to reduce this cost using
more efficient algorithms.

There are other ways in which the protocol can be enhanced,
for instance, we would use secure distributed protocols to
prevent free-riding, which is hard to detect in the context of
private data, and we aim to tackle this problem in future work.

REFERENCES

[1] D. Ariu, G. Giacinto, and R. Perdisci. Sensing attacks incomputers
networks with Hidden Markov Models. InProceedings of the Machine
Learning and Data Mining in Pattern Recognition - MLDM, pages 449–
463, 2007.

[2] C. Bartolini, L. Gaspary, A. Sperotto, R. Sadre, P.-T. deBoer, and
A. Pras. Hidden Markov Model modeling of SSH brute-force attacks.
In Integrated Management of Systems, Services, Processes andPeople
in IT, pages 164–176. Springer Berlin / Heidelberg, 2009.

[3] M. Burkhart, M. Strasser, D. Many, and X. Dimitropoulos.SEPIA:
Privacy-preserving aggregation of multi-domain network events and
statistics. InUSENIX Security Symposium, Washington, DC, USA,
August, 2010.

[4] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft. Structural analysis of network traffic flows. InProceedings
of the joint international conference on Measurement and modeling of
computer systems, SIGMETRICS ’04/Performance ’04, pages 61–72,
New York, NY, USA, 2004. ACM.

[5] S. Nagaraja, V. Jalaparti, M. Caesar, and N. Borisov. P3CA: Private
anomaly detection across ISP networks. In S. Fischer-Hbnerand
N. Hopper, editors,Privacy Enhancing Technologies, volume 6794 of
Lecture Notes in Computer Science, pages 38–56. Springer Berlin /
Heidelberg, 2011.

[6] H. X. Nguyen and M. Roughan. Multi-observer privacy-preserving
Hidden Markov Models. Technical report, University of Adelaide, 2011.
http://www.hxnguyen.net/papers/TRHMM.pdf.

[7] H. X. Nguyen and M. Roughan. SAIL: Statistically Accurate Internet
Loss Measurement. InProceedings of ACM Sigmetrics 2010 Conference,
New York, NY, June, 2010.

[8] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. InADVANCES IN CRYPTOLOGY EUROCRYPT 1999,
pages 223–238. Springer-Verlag, 1999.

[9] M. Pathak, S. Rane, W. Sun, and B. Raj. Privacy preservingprobabilistic
inference with Hidden Markov Models. InProc. of IEEE ICASSP 2011,
2011.

[10] L. R. Rabiner. A tutorial on Hidden Markov Models and selected
applications in speech recognition.Proc. of the IEEE, 77(2):257–286,
February 1989.

[11] M. Roughan and Y. Zhang. Secure distributed data-mining and its
application to large-scale network measurements.ACM SIGCOMM
Computer Communication Review, 36(1):7–14, January 2006.

[12] P. Smaragdis and M. Shashanka. A framework for secure speech recog-
nition. Audio, Speech, and Language Processing, IEEE Transactionson,
15(4):1404 –1413, may 2007.

[13] Y. Song, S. Stolfo, and T. Jebara. Markov models for network-behavior
modeling and anonymization. InTechnical reports-Columbia University,
http://hdl.handle.net/10022/AC:P:10682, 2011.

[14] C. V. Wright, F. Monrose, and G. M. Masson. On inferring application
protocol behaviors in encrypted network traffic.J. Mach. Learn. Res.,
7:2745–2769, December 2006.

[15] A. C. Yao. Protocols for secure computations. InProceedings of the 23rd
Annual Symposium on Foundations of Computer Science, SFCS ’82,
pages 160–164, Washington, DC, USA, 1982. IEEE Computer Society.

[16] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan. Network anomogra-
phy. In Proceedings of the 5th ACM SIGCOMM conference on Internet
Measurement, IMC ’05, pages 317–330, Berkeley, CA, USA, 2005.
USENIX Association.

