Multi-Observer Privacy-Preserving
Hidden Markov Models

Hung X. Nguyen and Matthew Roughan
School of Mathematical Sciences, The University of Adedaidlustralia.
E-mail:hung.nguyen, matthew.roughan@adelaide.edu.au

Abstract—Detection of malicious traffic and network health trained such a model, we can then look for unlikely sequences
problems would be much easier if ISPs shared their data. of observations, and use these to signa| anomalies.
Unfortunately, they are reluctant to share because doing so There is no doubt that anomaly detection in general, and

would either violate privacy legislation or expose businessecrets. HMMSs i icular. b fit f havi | d
However, secure distributed computation allows calculatns to S In particular, benefit from having as large a aataset as

be made using private data, without leaking this data. This Possible from as diverse a set of viewpoints as possible. In
paper presents such a method, allowing multiple parties togintly ~ the Internet, these might take the form of observations from

infer a Hidden Markov Model (HMM) for traffic and/or user  muyltiple ISPs who are all interested in detecting largdesca
behaviour in order to detect anomalies. We extend prior workon problems such Distributed Denial of Service (DDoS) attacks

HMMs in network security to include observations from multi ple dd hiiacki H h llab .
ISPs and develop secure protocols to infer the model paramets WOMS, or aadress hijacking. However, such collaboration

without revealing the private data. We implement a prototype of between ISPs is rare. The problem is that the type of data that
the protocols, and our experiments with the prototype showts must be shared is often considered sensitive; either bedaus

has a reasonable computational and communications overhda contains business secrets, or customer or other data that ha
making it practical for adoption by ISPs. legal privacy requirements.

There are various approaches one could imagine to solve
this problem. Here we apply an approach called variously
As the Internet grows, and becomes more and moreSacure Multi-party Computation (SMC), or Privacy-Pressgv
part of the modern world's critical infrastructure, theues Data Mining (PPDM). It has advantages over alternatives
of maintaining cyber-security confronts ISPs. There ar@ynain that no-one (not even a “trusted” In effect, the entire

aspects to this problem, broadly falling under the categosi computation is encrypted so that no participant learnshamgt
prevention, detection and mitigation. It may be ideal to/pré  except the desired answer.

attacks before they can cause damage, but it is currentlyin this work, we solve the problem of learning a HMM from
impossible to anticipate all possible attacks, and so tietec observations made by muiltiple distributed and independent
of novel, or unexpected problems is necessary. parties. The observations themselves are private; no-ane ¢

There is a now large literature on network anomaly detegsarn any one else’s observations. However, there is almmst
tion (for examples see [4], [16]) aimed at detecting netwollsss of fidelity as might be experienced in some anonyminatio
problems. The range of techniques is large, but the genesghemes. The solution we obtain deviates only slightly from
approach is to estimate the characteristics of the netwadleu that if the data were completely public, provided some care i
“normal” conditions, and then to look for substantial devigput into choice of key length and scaling coefficients.
tions from those characteristics. The principle differatatr in Our solution performs computation in the encrypted domain
methods is the type of model used for normal conditions, aggl protect data privacy. Although data encryption and decry
the method used to test for uncharacteristic behavior. tion introduce computation and communication overheaes, w

A number of authors have applied Hidden Markov Modelshow in our experiments that even running on commodity
(HMMs) to the task [1], [2], [13]. A Markov model is a simple hardware our prototype implementation can be used for re-
stochastic process based on random, memoryless trassitighstic applications.
through some series of states. In HMMs, we assume that the
states themselves are not directly observable, but thatawe ¢ Il. BACKGROUND
make some indirect observations, and from these estimate {1 M Theory
underlying process. o )

HMMs are among the most popular approaches for mod-~ Markov chain is a sequence of random variabls=
elling time series data [10]. They have widespread appdioat 9! - - - 97 With the Markov property: given the present state,
in areas such as speech recognition, bio-informatics, am _future and pas.t states are independent. Consider a Warko
Internet traffic modelling [7], [14], and more pertinently t chain W't_hN possible s_tate§ = {s1,-..,sn}. The Markov
finding problems in networks [1], [2], [13]. Once we havdroPerty is formally defined as

978-1-4673-0269-2/12/$31.0@) 2012 IEEE P(gi+1 = sila1, G2, - - - qr) = Plqi+1 = silar = s;).

|. INTRODUCTION



If the states of the Markov process are not directly observe
but rather we see some output sequence that is probalailigtic
associated with the Markov chain, the process is referred to
a Hidden Markov Model (HMM) [10]. A HMM is formally
defined by the quintuple

« the set of N statesS = {s1,...,sn}, -
« the set ofM observation symbol® = {v4,..., v}, 011021 Oy 012022 Opg O11Oa2r Omr
« the initial probability Fig. 1. A HMM with multiple observers.
m=(m,...,7n), wherem; =P(q = si), usually unnecessary for data-mining applications wheiie it
. the time-independent state transition probability in everyone’s interest to find the correct solution.
The approach we take here is to use a number of well
A = (aij)nxn, Wherea;; = P(qi+1 = sjl¢t = 5:),  developed ideas from SMC as building blocks imitives

to create the algorithm we need. The challenge is to do
so efficiently, and without intermediate data leaking ukefu
B = (bix)nxa, Whereb;, = P(O; = vg|qe = s5). information. The principle primitive used here is homontdg
. . encryption. We also briefly describe the other techniquesl us
HMMs have been used successfully in detecting netwogk i« paper (secure logsum and secure negation).
problems [1], [2,]' [13]. In these applications, a HMM is hUi,I Homomorphic Encryption: A homomorphic encryption
for normal traffic conditions. For example, HMMs are builopeme s a special type of public-private crypto-systeth wi
in [1] for application protocols and in [2] for SSH traffic.\ye hroperty that some operation in the plain-text are médo
Using these models, we can quickly evaluate the probabilily oherations in the cipher-text. In practice, that means we

(_)f an observed traffic str_eam. When an anomaly occurs, the, perform computations on the encrypted text, e.g.,
likelihood of the observations will drop, and the deviatiman

be detected. x®y = D[E[z] ® Ely]],

« the time-independent observation probability

B. Introduction to Secure Multi-Party Computation for some operatory and &. The homomorphic encryption

Secure Multi-party Computation (SMC) is a field of cryp-SC_rl'_f]me \;]ve use hgre Is the Pa|II|er crypto-system [8].
tography that provides means to perform arbitrary compu- e other prlmltlves.wc-a use .are.
tations between multiple parties who are concerned withe Secure logsumThis is a simple protocol that uses the

protecting their data. Mathematically, there are parties homomorphic properties of the Paillier crypto-system.
Pi,...,P,. Each party has private data. They want to Consider two parties A and B where A has a vector
compute a joint functiofyy, ..., ym) = f(z1,...,2m). The of encrypted valuegE[log(x1)], . . ., Eflog(zm)]), and B
goal is to computef without P; learning anything about; holds the decryption key. A and B want to jointly com-
or y; for all j # i, other than what can be inferred form their ~ pute Eflog > ;" ; a;x;] for a public vector(as, . . ., am).
own dataz; and outputy;. Algorithms for this protocol appear in [9], [12].

The field of SMC originated from the work of Yao [15]. * Secure negationiVe need to be able to aII_ow two parties
There is now a substantial literature on secure distribateo- A and B to compute the encrypted negatibft-a] of an

putation and data mining. The parts most relevant to thikwor ~ €ncrypted value[a].

include work on applications to network management [3]],[11 i

and anomaly detection using principle component analysis

[5]; and application of SMC to HMMs [9], [12]. However Assume that we have a HMM with parametdtd, B, m}

our work is quite different from the last two cases, whicRS described in section II-A. There ane parties denoted by

consider the situation where one party holds the model, aft: 12 - - -, P that make observations of the same underlying

the other the observations. That problem was relevant fofM@rkov process. Without loss of generality, assume that the

particular application, but has no obvious connection witpbservations are made between tinend7’, and that the time

network management. Instead, in our problem the obsensti¢nterval is divided into" slots [1,...,T]. Each party makes

are partitioned between the different parties. its own observations of the system and these observations
We apply here the now standasemi-honestecurity model. are secret. At each time slot, we haweobservations of the

In this model, the parties in the computation will follow theinderlying HMM. The observation set now becomes

. HMM s wWiTH MULTIPLE OBSERVERS

protocol correctly, but may perform additional (polynoiia 0 =1{0, Or)
time) computations to attempt to learn additional inforiowat Y ’
Many of the techniques we use here have been extended to de@tre each elemer®; is a vectorO; = {O1¢,..., O} Of

with adversaries who are willing to corrupt the protocoglits observations from each party. The sequencé abservations
leading to invalid results, however, the resulting apphesc that party P; makes is denoted a®Y) = {0;1,...,0;r}.
are then more complex, and have larger overhead thatAis example of this model is given in Figure 1.



Key length (bits)| L | P(O]w) T A B
64 | 103 6.15% 791 % 839% 1570 %

We shall assume that the observations of the differentgzarti

are independent. That is a natural assumption, as depemdenc 128 | 103 | 498% 5429% 7.32% 1257 %
between observations would weaken the need for privacy. 256 102 357% 392% 627%  9.09%
Moreover, in this paper we assume all parties have the same 5121 107 | 183% 3.03% 517%  6.92%
b tion probability given by the matiB = {b;, }, though ol B 0.16%  153% 308%  Ll1%

observation p Y9 y = ikg gh 128 106 | 016% 128% 297% 585%
we plan to extend our model to the heterogeneous case in 256 | 105 | 010% 0.65% 217% 443 %
future work. Under these conditions the probability of acfet 512 | 10° [ 010% 06% 1.09% 203 %
observations at time, conditional on the state of the Markov TABLE |
prOCGSS iS given by WORSTCASE ERRORS OVERLO RUNS, GIVEN AS PERCENTAGES

m . m

P(Odlqr = si) = [[ PO = v, lae = s:) = [ bin, - v vz v U5
j=1 j=1

_ attack <0.1 0.1 01 01 0.1 0.5>

We are interested in solving the training and evaluation inactive \1/6 1/6 1/6 1/6 1/6 1/6
problems for HMMs as defined in Section II-A in a privacyWWe simulate a set of 10 realizations for the HMM, for each set
preserving manner. That is, the parties jointly compute tlaé parameter values, and run both the centralized and secure
likelihood of the observations using ttierward protocol and distributed version of the estimation algorithms to conepar
the HMM parameters using tmaum-WeIprrotocol [1Q] in A Accuracy of the secure protocols
such a way that at the end of the computation all parties learn S . )
the correct parameter value but do not learn anything more! N approximation of real numbers by integers in the
about the data of the other parties other than those that &llier crypto-system introduces errors. Here, we compar
be directly inferred from the output and their inputs. Distaithe accuracy of the secure protocols against results pedvid

of the privacy-preservingprward and Baum-Welchprotocols by the ideal result as produced by a centralized algorithm.
are provided in [6]. We compare the ideal result with the secure result using the

relative errore = |p — p|/p, wherep is the result of the secure
protocol, andp the ideal estimate. We evaluate the errors by
varying the values of the scaling parameferand the key
In this section we describe our implementation of the secugngth used in encryption.
protocols described in the preceding section. The codedor 0 Space constraints prevent us presenting results for each
implementation is available aiww.hxnguyen.nelt is written  parameters;,a;; and b;; so we present, in Table I, the
in Python, using the Paillier encryption scheme by Ivanovworst caseerrors over each of the estimated components.
which we have extended by adding the secure logsum ande results (given forl' = 1000 samples) show that the
secure negation protocols. The HMM code was implement@gtther through the estimation process we go (framto
on top of the standard HMM implementation by Hamiltom A to B ), the larger the errors, but that for large keys,
However, the code is not a trivial extension of these packnd reasonable scaling parameters, the errors introduged b
ages. The crucial implementation issue is that the enamptiinteger approximation and consequent over- or underflow are
scheme applies to a finite field of non-negative integeigisignificant (2% in the worst case over multiple simulagipn
whereas the HMM algorithms were designed to work witand parameter estimates). Larger keys also provide better
potentially negative floating-point numbers. There is #ign security, so best performance occurs in the most securé case
cant room for problems if the translation between these two . .
domains is not performed carefully. We discuss details ef t#' Runtime analysis
scaling and conversion in [6]. Another important consideration is the runtime of the pro-
To test the performance of the secure protocols, we cornstri@col. We evaluate the runtime of our protocols by varying th
a simplified HMM for the detection of SSH brute-force attackkey length and the number of samples used to evaluate and
in [2]. In this model, the HMM has two states where th&ain the HMM, with L = 10°. The results, generated on a
attackers alternate between “attack” and “inactive”, Se= laptop with a duo core 2.8 Ghz processor with 4GB of RAM
{ Attack, Inactive}, and there are 6 observation outputs repré’® shown in Figure 2. The results show that the algorithm
senting possible the traffic counts= {vy, va, vs, v4, Vs, V6 }- is approximately linear in the number of sampl@&s and

The following parameters are used for initial, transitionda quadratic as a function of key length. This quadratic growth
observation probabilities is due to the runtime of the Paillier encryption and deciympti

functions, which could be more efficiently implemented. fehe
attack inactive is a clear trade-off between security and runtime as thedong
attack 0.95 0.05 the key length the more secure the protocol but computation
( 0.05 0.95 >’ time is also longer.
The Baum-Welch protocol takes on average 5 times longer
Ihttps://github.com/mikeivanov/paillier than the secure forward protocol for each iteration, so- esti
2http://www.cs.colostate.edu/hamiltom/code.html mation/training component of running these algorithmgseep

IV. I MPLEMENTATION AND RESULTS

m = (0.01,0.99), A= inactive



6000
=64 bits

g > 128 bits

84000 |+ 256 bits |

= 512 bits

Q

E

£ 2000, |

R — DRSS 3

P\ ooy SRR e o o o i

200 400 600 800

Number of samples

Fig. 2. Runtime for the secure forward protocol under défgrkey-length.

help each other detect network problems without running the
risk of exposing critical data to competitors.

We have implemented the protocol using Paillier's homo-
morphic encryption. The implemented protocols are aceurat
and secure, and reasonably fast. However, as with all ggcuri
there is a computational and communications overhead in
encryption. In the future we plan to reduce this cost using
more efficient algorithms.

There are other ways in which the protocol can be enhanced,
for instance, we would use secure distributed protocols to
prevent free-riding, which is hard to detect in the conteixt o
private data, and we aim to tackle this problem in future work

sents a significant workload. However, detection of anoesali [1]
requires only the forward algorithm.

C. Collaboration benefits 2]

The other obvious question to ask is whether there is an
advantage in multiple parties collaborating. It is intgtithat
a larger set of data is beneficial, but it may not be obviouBl
that these benefits outweigh the costs involved in partiitiga
in such a protocol. Here we study these to allow potential
collaborators to determine the cost/benefits. [4]

Using the same model, we compare the errors as we increase

the number of participants in the protocol. We apply the Baum
Welch algorithm toT" = 100 samples and compare errors in
the estimates. In particular, due to space restrictiondoaes
on the estimates o3, which we can see from Table | are
the hardest to estimate accurately, and we calculate the Mea
Squared Error (MSE) over the matrix. [6]

The resultant MSE is shown in Figure 3. The plot shows that
there is a substantial increase in accuracy when two parties
collaborate, but that the marginal improvement lessenh wit
increasing numbers of participants in the protocol.
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Fig. 3. MSE of the observation probabilitids.

[14]

V. CONCLUSION AND FUTURE WORK

15
In this paper we have shown that collaboration betwe([an]

multiple parties can improve the quality of estimates piedi

by HMMs. More importantly, we have shown how the partleE.L ]
can collaborate without revealing private data to eachrothe

the context of ISPs, this would mean that multiple ISPs can
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