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Abstract. A traffic matrix represents the load from each ingress point to each
egress point in an IP network. Although networks are engineered to tolerate some
variation in the traffic matrix, large changes can lead to congested links and poor
performance. The variations in the traffic matrix are caused by statistical fluc-
tuations in the traffic entering the network and shifts in where the traffic leaves
the network. For an accurate view of how the traffic matrix evolves over time,
we combine fine-grained traffic measurements with a continuous view of rout-
ing, including changes in the egress points. Our approach is in sharp contrast to
previous work that either inferred the traffic matrix from link-load statistics or
computed it using periodic snapshots of routing tables. Analyzing seven months
of data from eight vantage points in a large Internet Service Provider (ISP) net-
work, we show that routing changes are responsible for the majority of the large
traffic variations. In addition, we identify the shifts caused by internal routing
changes and show that these events are responsible for the largest traffic shifts.
We discuss the implications of our findings on the accuracy of previous work on
traffic matrix estimation and analysis.

1 Introduction

The design and operation of IP networks depends on a good understanding of the of-
fered traffic. Internet Service Providers (ISPs) usually represent the traffic as a matrix
of load from each ingress point to each egress point over a particular time interval. Al-
though well-provisioned networks are designed to tolerate some fluctuation in the traffic
matrix, large variations break the assumptions used in most designs. In this paper, we
investigate the causes of the traffic matrix variations. Identifying the reasons for these
disruptions is an essential step toward predicting and planning for their occurrence,
reacting to them more effectively, or avoiding them entirely.

The traffic matrix is the composition of the traffic demands and the egress point se-
lection. We represent the traffic demands during a time interval t as a matrix V (·, ·, t),
where each element V (i, p, t) represents the volume of traffic entering at ingress router
i and headed toward a destination prefix p. Each ingress router selects the egress point
for each destination prefix using the Border Gateway Protocol (BGP). We represent the



BGP routing choice as a mapping ε from a prefix to an egress point, where ε(i, p, t) rep-
resents the egress router chosen by ingress router i for sending traffic toward destination
p. At time t each element of the traffic matrix T M is defined as:

T M(i, e, t) =
∑

p∈P :ε(i,p,t)=e

V (i, p, t). (1)

where P is the set of all destination prefixes.
Figure 1 presents a simple network with one ingress router i, two egress routers e

and e′, and two external destination prefixes p1 and p2. Given traffic demands V (i, p1, t)
and V (i, p2, t) and a prefix-to-egress mapping ε(i, p1, t) = ε(i, p2, t) = e, the traffic
matrix for this network is T M(i, e, t) = V (i, p1, t)+V (i, p2, t) and T M(i, e′, t) = 0.
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TM(i,e,t) =

Fig. 1. Example of traffic matrix.

Fluctuations in the traffic demands and changes in the prefix-to-egress mapping cause
the traffic matrix to vary. This paper considers the natural question: what are the causes
of large variations in the traffic matrix?

Most previous work on measuring [1–4] and analyzing traffic matrices [5, 6] has
assumed that the prefix-to-egress mapping ε is stable. However, relying on periodic
snapshots of routing data runs the risk of associating some traffic measurements with
the wrong elements in the traffic matrix, obscuring real variations in the traffic. In this
paper, we study how changes in ε impact the traffic matrix. A previous analysis of five
traces of 6–22 hours in duration on the Sprint network [7] shows that most BGP routing
changes do not lead to large traffic shifts. However, given that large traffic variations are
infrequent (yet significant) events, we believe that longer traces are necessary to draw
meaningful conclusions. Our previous work [10] shows that internal routing can cause
ε to change for a large number of prefixes at the same time, which can potentially cause
a large traffic shift. Neither [7] nor [10] study the significance of traffic shifts caused by
routing relative to regular traffic fluctuations, which is the topic of this paper.



In this paper, we study the impact of routing changes on the traffic matrix over a
seven-month period in a tier-1 ISP network. Using Cisco’s Sampled Netflow feature [8]
and feeds of internal BGP (iBGP) messages, we compute the traffic demands V and the
prefix-to-egress mapping ε for eight ingress routers. Joining these two datasets allows
us to construct a detailed view of the variation of the traffic matrix over time. We also
collect measurements of the intradomain routing protocol [9] in order to identify the
changes in ε that were caused by internal network events, using the algorithm described
in [10]. Our analysis shows that:

1. Although the likelihood of large traffic fluctuations is small, big changes do
sometimes occur. In any given ten-minute time interval, less than 0.02% of the
traffic matrix elements studied have a traffic variation of more than 4 times the
normal traffic variations. However, some elements vary by more than 4 times the
normal variations several times a week.

2. Most routing changes do not cause much variation in the traffic matrix. Pre-
vious studies [7, 11] have shown that routing changes typically do not cause large
traffic shifts; most BGP routing changes affect destination prefixes that receive very
little traffic.

3. Routing changes are responsible for many of the large traffic shifts: 58.6%
of instances where a traffic matrix element fluctuated by more than 10 times the
normal variation for that element could be explained by a BGP routing change.

Although routing changes usually do not affect much of the traffic, many of the
large traffic shifts are triggered by routing changes. Large traffic shifts caused by rout-
ing are rare, but important events. After introducing our measurement methodology in
Section 2, we identify the causes of the big variations in Section 3. Section 4 discusses
the implications of our results on other studies of traffic matrices. Section 5 concludes
the paper.

2 Measuring Traffic Matrix Variation

Studying the variation of traffic matrix elements over time requires collecting fine-
grained measurements of traffic and routing. We analyze data collected from a tier-1
ISP network for 173 days from March to September 2004. We collect data from eight
aggregation routers that receive traffic from customers destined to peers and other cus-
tomers. The eight routers are located in major Points of Presence (PoPs) that are spread
throughout the United States.

We compute eight rows of the traffic matrix, considering all traffic from these eight
ingress aggregation routers to all of the egress PoPs. This section describes how we
compute the prefix-to-egress mapping ε(i, p, t) from the BGP data and the traffic de-
mands V (i, p, t) from the Netflow data. Once we have computed ε and V , we use Equa-
tion 1 to compute the elements of the traffic matrix TM(i, e, t). The BGP monitor and
the Netflow collection servers are NTP-synchronized, allowing us to use the timestamps
to join the two datasets.



2.1 Prefix-to-Egress Mapping

A BGP monitor collects internal BGP update messages directly from each vantage
point. Configured as a route-reflector client of each vantage point, the BGP monitor
receives updates reporting any change in the best BGP route at each router for each
destination prefix. The monitor records each BGP update with a timestamp at the one-
second granularity.

A single network event, such as a failure or policy change, can lead to a burst of
BGP updates messages as the routers explore alternate paths. Rather than studying the
details of routing convergence, our analysis focuses on the changes from one stable
route to another. Similar to previous studies [10, 11], we group the BGP updates for the
same destination prefix that have an interarrival time of 70 seconds or less. Our analysis
considers the stable route that existed before the flurry of updates and the new stable
route that exists at the end.

Based on an initial BGP table dump and a sequence of BGP updates, we generate
the prefix-to-egress mapping ε(i, p, t) for any given time. The egress point corresponds
to a PoP rather than a specific router. We associate each egress router with a PoP based
on the router name and configuration data.

2.2 Traffic Demands

Every vantage point has the Cisco’s Sampled Netflow feature [8] enabled on all links
that connect to access routers and exports flow records to a collection server at the same
location. The collection server samples the flow records using the technique presented
in [12] in order to reduce processing overhead, and computes 10-minute aggregated
traffic volumes for each destination prefix. We use these aggregated reports to extract
V (i, p, t) for each vantage point i and destination prefix p at every 10-minute interval.
Consequently, a reference to a time t indicates the end of a 10-minute interval.

Because of sampling, the volumes V (i, p, t) are random quantities that depend on
the sampling outcomes. Through a renormalization applied to the bytes reported in
sampled flow records, the quantities V (i, p, t) are actually unbiased estimators of the
volumes of the original traffic from which they were sampled, i.e., their average over all
possible sampling outcomes is the original volume. The standard error associated with
an aggregate of size V is bounded above by

√

k/V for some constant k that depends
on the sampling parameters [12]. For the parameters employed in the current case,
k < 21MB. Note that the standard error bound decreases as the size of the aggregate
increases. This property aligns well with our focus on the largest changes in traffic
rates: these are the most reliably estimated. As an example, for a 10-minute aggregate
of traffic at a rate of 10 MB per second, the standard error due to sampling is no more
than 6%.

Even though the traffic data is divided into 10-minute intervals, our 70-second
grouping of BGP updates is important for cases when path exploration crosses the
boundary between two ten-minute intervals. This ensures that we focus our analysis
on stable changes of ε. If the mapping ε(i, p, t) changes more than once in a 10-minute
interval, then we cannot distinguish the volume of traffic affected by each of them in-
dividually. Therefore, we exclude those cases from our analysis by ignoring intervals



with prefixes that have more than one stable routing changes in that bin; this excludes
0.05% of the (i, e, t) tuples from our study. We also exclude all traffic for the small
number of flows that had no matching destination prefix in the BGP routing tables or
update messages; we verified that these flows corresponded to an infinitesimal fraction
of the traffic.

3 Causes of Large Traffic Variations

In this section, we explore the contributions of changes in the traffic demands V and
prefix-to-egress mapping ε to the variations in the traffic matrix elements TM. Our
analysis shows that, although most changes in ε have a small effect on the traffic matrix,
many of the large variations in the traffic matrix are caused by changes in ε. Also, we
show that, while most changes in ε are caused by external routing events, the small
number of internal routing events are more likely to cause larger shifts in traffic.

3.1 Definition of Traffic Variations

Figure 2 shows an example of how two traffic matrix elements (with the same ingress
point i) change over the course of a day. The total traffic entering at the ingress point
varies throughout the day, following a typical diurnal cycle. For the most part, the traf-
fic TM(i, e1, t) has the same pattern, keeping the proportion of traffic destined to e1

relatively constant. For most of the day, no traffic travels from ingress i to egress point
e2. The most significant change in the two traffic matrix elements occurs near the end
of the graph. The traffic leaving via egress point e1 suddenly decreases and, at the same
time, traffic leaving via egress point e2 increases. This shift occurred because a routing
change caused most of the traffic with egress point e1 to shift to egress point e2. The
egress point e2 also starts receiving traffic that had previously used other egress points
(not shown in the graph), resulting in an increase for e2 that exceeds the decrease for
e1. In the meantime, the total traffic entering the network at ingress i remained nearly
constant.

The traffic experiences other relatively large downward spikes (labeled as load vari-
ation). These spikes may very well be associated with a routing change in another AS
in the Internet that caused traffic to enter at a different PoP (this kind of traffic variation
was called an “ingress-shift anomaly” in [6]). In this paper, we analyze traffic shifts
caused by routing changes experienced by our network. Finding a signature of routing-
induced traffic variations for one network is an important first step to infer other traffic
variations that are caused by routing changes in other networks.

To analyze these kinds of traffic fluctuations, we define the variation of a traffic
matrix element at an interval t as:

∆TM(i, e, t) = TM(i, e, t) − TM(i, e, t − 1).

3.2 Changes in Traffic Demands vs. Egress Points

The variation of a traffic matrix element (∆TM ) is composed of the load variation
(∆L), which represents volume fluctuations on the traffic demands V , and the routing
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Fig. 2. Sample traffic volume from one ingress to two egresses.

shifts (∆R), which accounts for changes in the prefix-to-egress mapping ε:

∆TM (i, e, t) = ∆L(i, e, t) + ∆R(i, e, t)

∆L(i, e, t) represents the change in the volume of traffic for all destination prefixes
that did not change their egress point from the previous time interval (i.e., ε(i, p, t) =
ε(i, p, t − 1) = e):

∆L(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) = e

V (i, p, t) − V (i, p, t − 1)

Fluctuations in the traffic demands may occur for a variety of reasons, such as changes
in user or application behavior, adaptations caused by end-to-end congestion control, or
even routing changes in other domains.

The routing variation ∆R(i, e, t) considers the destination prefixes that shifted to
egress point e during time interval t or shifted from e to another egress point in t:

∆R(i, e, t) =
∑

p ∈ P :
ε(i, p, t) = e

ε(i, p, t − 1) 6= e

V (i, p, t) −
∑

p ∈ P :
ε(i, p, t) 6= e

ε(i, p, t − 1) = e

V (i, p, t − 1)

Note that if a routing change occurs within the time interval t, we associate all of the
traffic associated with that prefix in that time interval with the new egress point.

Not all traffic matrix elements carry the same volume of traffic, and the volume of
traffic from an ingress to an egress PoP varies over time. How do we judge if a change in



the traffic is “large”? There is no absolute standard: one approach might be to judge the
size of the change in traffic matrix element relative to the average traffic for that element.
However, this is not useful here, because the traffic process itself is non-stationary. It has
daily and weekly cycles, as well as level shifts resulting from routing changes. The rela-
tive change ∆TM(i, e, t)/TM(i, e, t) (or ∆TM(i, e, t)/ max(TM(i, e, t), TM(i, e, t−
1))) seems appealing. However, this metric places too much emphasis on large relative
changes to small values; for example, a traffic matrix element with 1 kbit/sec might eas-
ily experience a 50% relative change in traffic without having any significant effect on
the network. An alternative metric would be the absolute change ∆TM(i, e, t). How-
ever, a shift of (say) 10 MB/sec may be significant for one ingress point but not for
another. Another option would be to normalize the value of ∆TM (i, e, t) by the total
traffic entering ingress point i at time t, which would capture changes in the fraction
of the incoming traffic that uses a particular egress point. However, this metric depends
on the “current” traffic demand at ingress i (which could be low at certain times) and
may not accurately reflect the strain imposed on the network by the traffic change. An-
other extreme approach would be to consider the capacity of the network, and define
as large any traffic shift that causes a link to be overloaded. Besides being difficult to
compute, this metric is too closely tied to the current design of the network, and is not
useful for most typical applications of the traffic matrix such as capacity planning or
anomaly detection. Instead, we want a metric that captures properties of the traffic ma-
trix itself, such as how large the traffic changes are relative to the normal variations of
traffic matrix elements.

For that, we should consider what type of process we observe, namely, a differ-
ence process. Over short time periods, we can approximate the traffic with a linear
process yt = α + βt + xt, where xt is a zero-mean stochastic process, with vari-
ance σ2. We observe the differences ∆yt = yt − yt−1, which will form a stationary
process, with mean β and variance 2σ2. Thus we can approximate the difference pro-
cess by a stationary process, and measure deviations from the mean, relative to the
standard deviation of this process. We measure 2σ(i, e)2 on the traffic variation pro-
cess ∆L(i, e, ·) (using the standard statistical estimator), and use this to normalize
the traffic variations, i.e. we then observe ∆L̃(i, e, t) = ∆L(i, e, t)/

√
2σ(i, e), and

∆R̃(i, e, t) = ∆R(i, e, t)/
√

2σ(i, e).

If the variance of the process xt was time dependent, it might make sense to use a
moving average to estimate the process variance at each point in time, i.e. σ(i, e, t)2,
and use this to normalize the traffic variations. We tried such an approach, but it made
little difference to the results, and so we use the simpler approach described above.

Figure 3 presents a scatter plot of ∆ ˜TM (i, e, t) versus ∆R̃(i, e, t) for all the valid
measurement intervals t. The high density of points close to zero shows that large traf-
fic variations are not very frequent (99.88% of the traffic variations are in the [−4, 4]
range). Points along the horizontal line with ∆R̃(i, e, t) = 0 correspond to traffic vari-
ations that are not caused by routing changes, whereas points along the diagonal line
correspond to variations caused almost exclusively by routing changes. Points in the
middle are caused by a mixture of routing changes and load variation. Figure 3 shows
that both load and routing are responsible for some big variations. Routing changes,



however, are responsible for the largest traffic shifts. Indeed, one egress-point change
made a traffic matrix element vary more than 70 times the standard deviation.
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Fig. 3. Scatter plot of ∆ ˜TM versus ∆R̃ for all traffic matrix elements over the seven-month
period.

3.3 Internal vs. External Routing Changes

The prefix-to-egress mapping ε may change because of either internal or external rout-
ing events. External routing changes represent any changes in the set of egress points
that an AS uses to reach a destination prefix. For example, in Figure 1, the neighbor
AS might withdraw the route for p2 from the router e, resulting in a change in ε. Ex-
ternal routing changes may be caused by a variety of events, such as an internal routing
change in another domain, a modification to the local BGP routing policy, or a failure
at the edge of the network. In contrast, internal routing changes stem from changes in
the routing inside the AS, due to equipment failures, planned maintenance, or traffic
engineering. These events affect the prefix-to-egress mapping because the intradomain
path costs play a role in the BGP decision process through the common practice of
hot-potato routing.

When selecting a best BGP route, a router first considers BGP attributes such as
local preference, AS path length, origin type, and the multiple exit discriminator. If



multiple “equally good” routes remain, the router selects the route with the “closest”
egress point, based on the intradomain path costs. Since large ISPs typically peer with
each other in multiple locations, the hot-potato tie-breaking step almost always drives
the final routing decision for destinations learned from peers, although this is much
less common for destinations advertised by customers. In the example in Figure 1, an
internal link failure might make router i’s intradomain path cost to e suddenly larger
than the path to e′. This would change the prefix-to-egress mapping for p2, causing a
shift in traffic from egress point e to e′. Using the methodology described in [10], we
identified which changes in ε were caused by internal events.

Figure 4 shows the cumulative distribution functions of ∆R̃ caused by hot-potato
routing and by external BGP changes. For comparison, we also present the cumula-
tive distribution function (CDF) of a normal distribution, which is drawn from ran-
domly generated Gaussian data with standard deviation equal 1, because ∆R̃ has been
normalized to have standard deviation equal 1. Although the routing events are rare
(only 0.66% of non-zero ∆ ˜TM are caused by eBGP changes and 0.1% by hot-potato
changes), this result shows that there are significant cases where these events are big,
to very big. In particular, approximately 5% of traffic shifts caused by hot-potato rout-
ing are at least one order of magnitude bigger than normal variations. A single internal
change is more likely to affect a large number of destination prefixes [10], including the
popular destinations receiving large amounts of traffic.
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We analyzed the source of traffic variation for individual traffic matrix elements,
and saw that the likelihood of changes in the prefix-to-egress mappings can vary signif-
icantly from one ingress router to another. Figures 6 and 5 present the same data as in
Figure 3 for two sample traffic matrix elements (Note that the axis are different across
the two graphs.). Some traffic matrix elements have no traffic variation caused by rout-
ing changes (Figure 5), whereas other have few very large egress shifts (Figure 6). We
computed the percent of the traffic matrix elements (i, e) that have large to very large
traffic shifts. We define large as more than 4 times the normal traffic variations for (i, e)
and very large more than 10 times. Approximately 25% of ingress-egress pairs (i, e) in
our study have no large traffic variation, and the vast majority of them (85.7%) have no
very large traffic variation. The differences across the traffic matrix elements have two
main explanations:

– Size of traffic matrix element. Some traffic matrix elements carry little traffic.
Most of the traffic from an ingress router exits the network at few egress PoPs,
because of hot-potato routing. For instance, most of the traffic entering in San Diego
is likely to stay in the west cost. Therefore, the traffic element San Diego to New
York carries very little traffic at any time.

– Impact of internal events. The likelihood of hot-potato routing changes varies
significantly from one ingress point to the other [10], depending on the location in
the network and the proximity to the various egress points. For our eight ingress
points, the fraction of BGP routing changes caused by internal events varies from
1% to 40%. As a result, the likelihood of large traffic shifts caused by hot-potato
routing varies significantly from one traffic matrix element to another.

Out of the traffic matrix elements that do experience large traffic variations 15%
have an average of more than one large traffic variation per week. The small percentage
of elements that experience large traffic variations combined with the low frequency
large shifts per element may lead to the incorrect conclusion that these events are irrel-
evant. However, if we consider the network-wide frequency of large traffic shifts, these
events happen fairly often. To show this, we have counted the number of 10-minute
measurement intervals for which at least one of our eight vantage points experienced
a large traffic variation. On average, the network experiences a large traffic variation
every four and half hours. Large traffic variations caused by routing changes happen
every 2.3 days, and very large routing-induced traffic variations happen every 5.9 days.
If our analysis considered all of the PoPs in the network, the overall frequency of large
traffic variations would be even higher.

4 Implication for Traffic Matrix Studies

Our analysis on traffic matrix variations has important implications for the results of
previous measurement studies.

Differences across vantage points: The results in Section 3 show that the like-
lihood of changes in the prefix-to-egress mappings can vary significantly from one
ingress router to another. In particular, some ingress points may be much more suscep-
tible to hot-potato routing changes than others [10], making analysis of routing stability
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Fig. 5. Scatter plot of ∆ ˜TM versus ∆R̃ for a traffic matrix element that have no routing-induced
traffic variations over the seven-month period.

very dependent on where the data are collected. For example, the study in [11] showed
that popular destination prefixes do not experience BGP routing changes for days or
weeks at a time. In addition to studying RouteViews and RIPE BGP feeds, the analysis
included iBGP data from two of the eight routers used in our current study. In our anal-
ysis, these two routers did not experience many hot-potato routing changes. Had the
analysis in [11] analyzed a router that experiences several hot-potato routing changes a
day, the conclusions might have been quite different. In fact, hot-potato routing changes
can affect a large number of prefixes [10], both popular and not, so we might reasonably
expect popular destinations to experience changes in their egress points. A preliminary
analysis across all eight vantage points confirms that popular destination prefixes have
more BGP instabilities from vantage points that experience more hot-potato routing
changes.

Choice of metrics in studying unlikely events: The analysis in Section 3 shows
that large changes in the traffic matrix elements occur relatively infrequently. In ad-
dition, most changes in the prefix-to-egress mapping do not lead to large traffic shifts,
consistent with the results in [7]. Yet, these two results do not imply that routing changes
are not a significant contributor to large changes in the traffic matrix elements. In fact,
the opposite is true. A small number of routing changes are indeed responsible for a
relatively large fraction of the (few) large traffic shifts. In addition, long traces are nec-
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Fig. 6. Scatter plot of ∆ ˜TM versus ∆R̃ for a traffic matrix element that has few very large
routing-induced traffic shifts over the seven-month period. One traffic shift was over 70 times
normal traffic variations!

essary to draw conclusions about infrequent (yet significant) events. The study in [7]
draws on five traces of 6–22 hours in duration, outside of the maintenance periods where
operators made planned changes to the internal network, making it difficult to conclude
definitively if large traffic shifts occur and whether routing contributes to them.

Errors from ignoring egress changes in traffic matrix analysis: Previous work
on measuring and analyzing traffic matrices has assumed that routing is stable, in part
because fine-grained routing data is sometimes difficult to collect. Most of the work
on traffic matrix estimation [1, 2, 4] assumes that there are no changes in the prefix-to-
egress mapping or the intradomain paths between the ingress and egress points. Even
work on direct measurement of the traffic demands [5, 13] has used only daily routing
snapshots, although the work in [7] is a notable exception. Using out-of-date routing
information runs the risk of associating some traffic measurements with the wrong el-
ements in the traffic matrix. In some cases, the routing changes might lead to second-
order effects on the traffic (e.g., by causing congestion or increasing the round-trip time)
that may appear in the data, but the primary affect of the traffic moving to a different
egress point is obscured—as is the reason for the variation in the traffic. In addition,
changes in the prefix-to-egress mapping may cause large fluctuations in multiple traffic
matrix elements at the same time, which would be obscured if the traffic matrix is com-



puted or analyzed without regard for routing changes. In our ongoing work, we plan to
quantify the errors in the traffic matrix computed using daily snapshots, similar to the
approach in [7] but focusing specifically on routing changes that have a large affect on
multiple traffic matrix elements.

Dependence on network design, traffic, and goals: The results of any traffic ma-
trix analysis, including ours, depend on the details of the network under study. For
example, large ISP networks handle high volumes of aggregated traffic, which may
experience much smaller statistical fluctuations in the traffic. In addition, a large ISP
network connects to its peers and many of its customers in multiple locations in the
network, increasing the likelihood that destination prefixes are reachable via multiple
egress points. This makes an ISP network much more likely to experience changes in
the prefix-to-egress mapping over time. Together, these two factors tend to make rout-
ing changes have a larger relative influence on the traffic matrix in ISP networks than
in other kinds of networks. Even within a single network, the fluctuations in the traffic
matrix may vary from one ingress point to another, due to hot-potato routing changes
or the particular senders and receivers connected to that router. Identifying metrics that
isolate each of these effects would be very helpful in deepening our fundamental under-
standing of what causes fluctuations in traffic matrices.

5 Conclusion

Our study shows that large traffic variations, while unusual, do sometimes happen. Al-
though most routing changes typically do not affect much traffic, routing is usually a
major contributor to large traffic variations. This implies that network operators need to
design the network to tolerate traffic variations that are much larger than typical statis-
tical fluctuations in the incoming traffic. In addition, research on traffic engineering and
anomaly detection should take into account the impact of routing on the traffic matrix.
Since both the traffic demands V and the prefix-to-egress mapping ε are necessary to
compute an accurate traffic matrix, we believe it is more accurate to operate on V and
ε directly, rather than simply on T M.

This work has implications for both the research and network operations communi-
ties. Researchers should consider the impact of changes in the prefix-to-egress mapping
when analyzing the traffic matrix. Ignoring these changes might lead to wrong conclu-
sions about traffic matrix stability. Operators need to provision for traffic variations that
are much larger than normal traffic fluctuations. In addition, operators often need to
diagnose the cause of a large surge in traffic. Our work shows that the routing system is
one important place they should look for explanations.

As future work we plan to quantify the inaccuracies introduced in studies of routing
and traffic stability when changes in ε are ignored. We are also studying the duration
of the traffic shifts. If traffic shifts are short-lived, then network operators should just
over-provision to tolerate them. If they are long-lived, however, adapting the routing
protocol configuration may be a better approach for alleviating congestion.
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