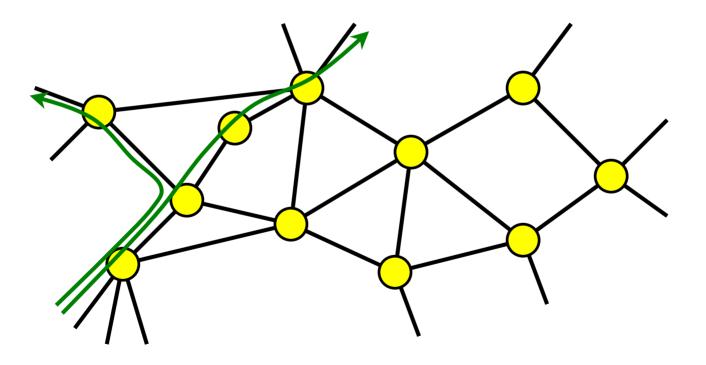


Estimating Point-to-Multipoint Demand Matrices

Matthew Roughan, Yin Zhang

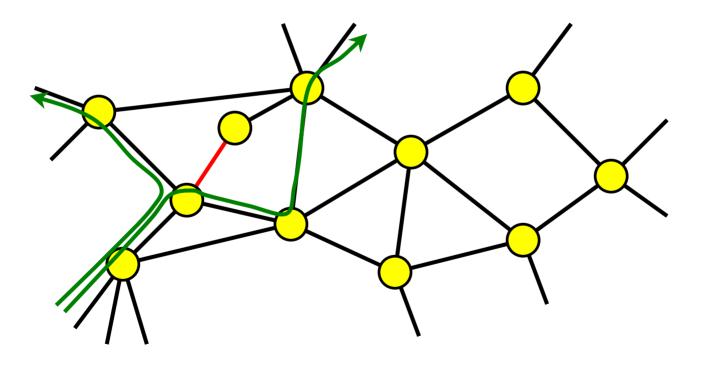
Problem: point-to-point TM estimation

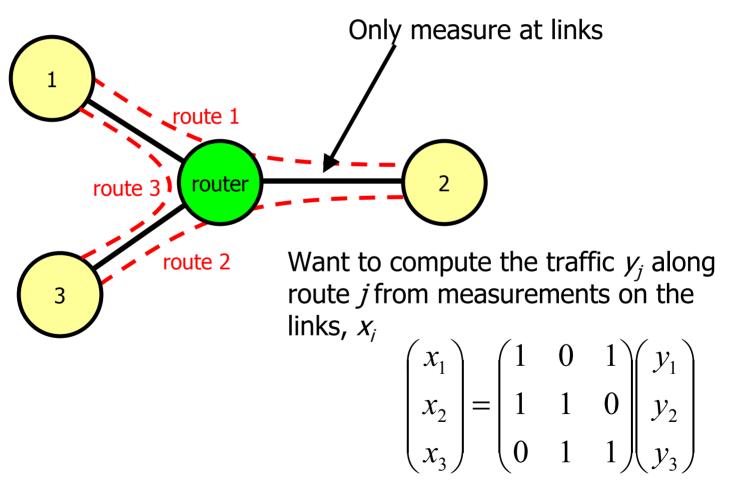
Have link traffic measurements Want to know demands from source to destination

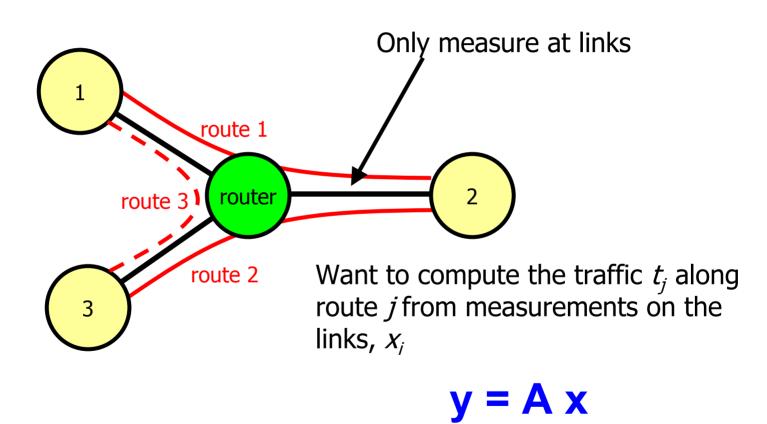


Example App: reliability analysis

Under a link failure, routes change

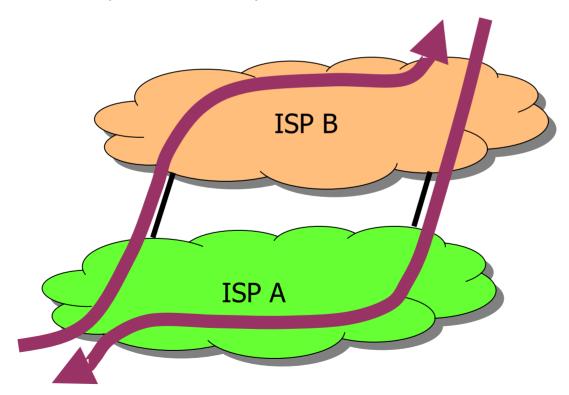






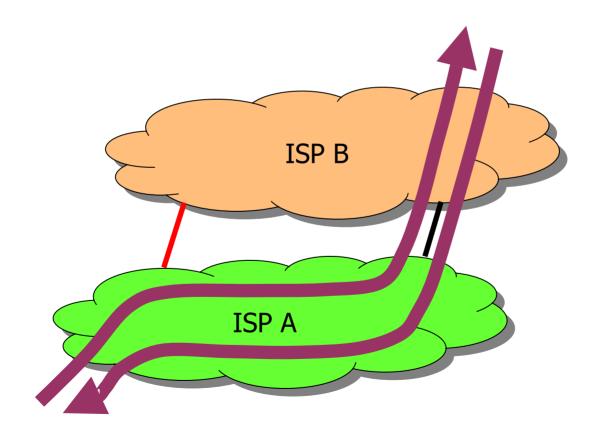
Point-to-Multipoint

- We are trying to find an *invariant*
 - Something that doesn't change when the network changes
- But we only see one part of the network



Peering link failure

peering link failure so the traffic uses alternate Traffic matrix changes

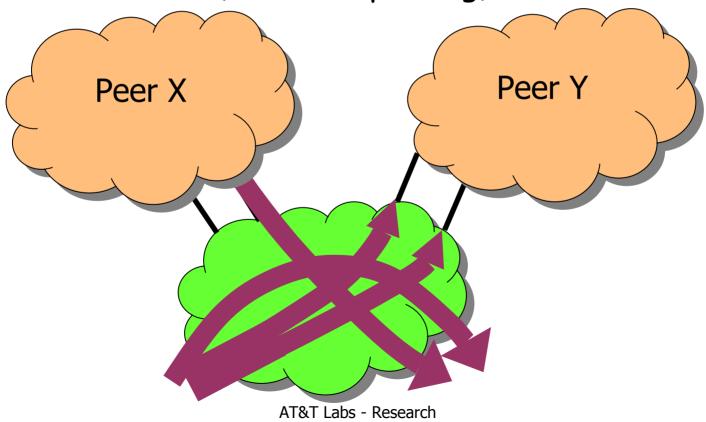


Invariant

- Traffic matrix changes
 - Not invariant to all network changes
- Point-to-Multipoint Demand Matrix
 - Remains unchanged
- Can be measured using netflow
- We can estimate it from link data
 - Much of multipoint traffic goes out a disjoint sets of exit points, grouped by peer
 - Larger peers all have private peering links
 - BGP policy between sets of peering links typically the same
- Basic trick
 - y = A x
 - But now x is the point to multipoint traffic matrix

Multipoint flows

- Inbound flows (peering -> access) still P-P
- Internal flows (access -> access) still P-P
- Outbound flows (access -> peering) become P-MP



Gravity Model

Assume traffic between sites is proportional to traffic at each site

- Assumes there is no systematic difference between traffic in LA and NY
- Only the total volume matters
- Could include a distance term, but locality of information is not as important in the Internet as in other networks
- Equivalent to source/destination independence

Prob(S=s, D=d) = prob(S=s) prob(D=d)

$$Prob(D=d | S=s) = P(D=d)$$

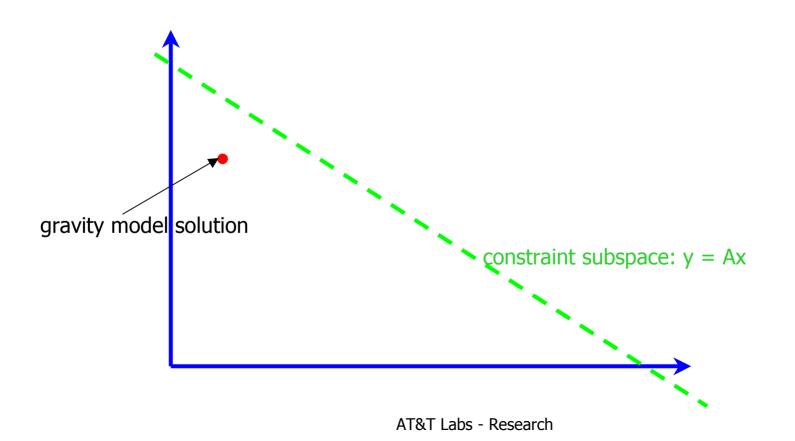
Generalized gravity model

- Internet routing is asymmetric
 - Control over exit points
- Negligable transit traffic
 - No traffic from peer X to peer Y transits the backbone
- Leads to conditionally independent model
 - Independent conditional on the class of the ingress/egress points
 - Classes
 - Peering
 - Access

 $Prob(S=s, D=d \mid s \in C_s, d \in C_d) = prob(S=s \mid s \in C_s) prob(D=d \mid d \in C_d)$

Combining gravity model and tomography

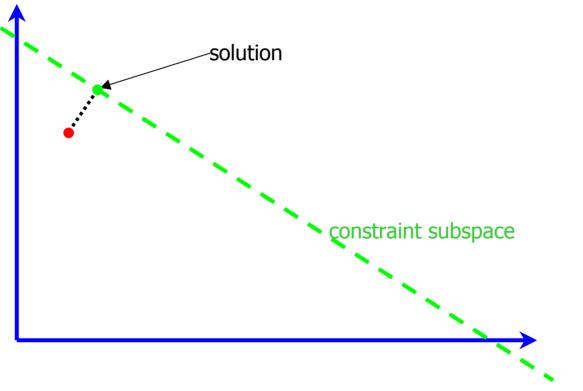
In general the aren't enough constraints
Constraints give a subspace of possible solutions



Solution

Find a solution which

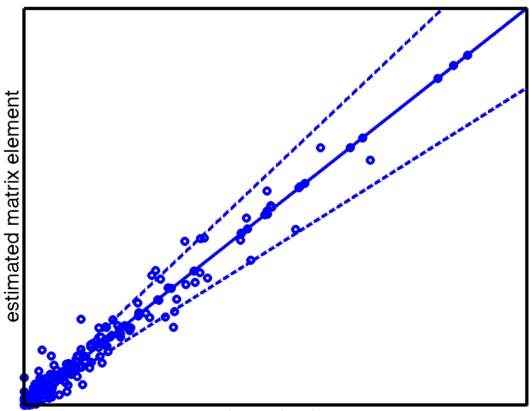
- Satisfies the constraint
- Is close to the gravity model (Kullback-Liebler distance)



Validation for point-to-point

- Results good: ±20% bounds for larger flows
- Observables even better
- Robust

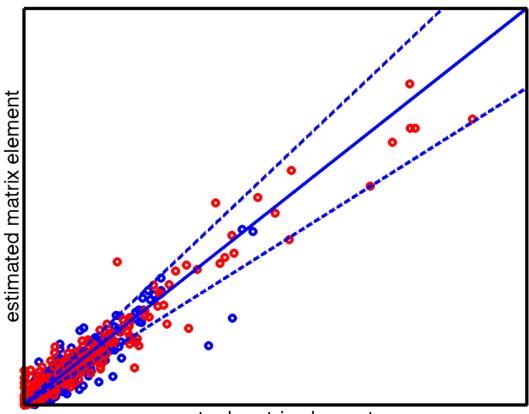
Fast



actual matrix element

Validation for point-to-multipoint

Not quite as goodaverage error 20% compared to 12%



actual matrix element

Conclusion

Point-to-multipoint estimation is

- Useful
 - Failure analysis of peering links
 - Failure analysis where IGP distance change closest exit point
- Possible (from link stats)
- Results aren't yet as accurate as point-to-point
 - Need to run further experiments
 - Check parameters
 - Check we are comparing apples with apples