
The Mathematical Foundations for Mapping Policies to Network Devices

Dinesha Ranathunga1, Matthew Roughan1, Phil Kernick2 and Nick Falkner3

1ARC Centre of Excellence for Mathematical and Statistical Frontiers,
School of Mathematical Sciences, University of Adelaide, Adelaide, Australia

2CQR Consulting, Unley, Australia
3School of Computer Science, University of Adelaide, Adelaide, Australia

{dinesha.ranathunga, matthew.roughan, nickolas.falkner}@adelaide.edu.au, phil.kernick@cqr.com

Keywords: Network-security, Zone-Conduit model, Security policy, Policy graph.

Abstract: A common requirement in policy specification languages is the ability to map policies to the underlying net-
work devices. Doing so, in a provably correct way, is important in a security policy context, so administrators
can be confident of the level of protection provided by the policies for their networks. Existing policy lan-
guages allow policy composition but lack formal semantics to allocate policy to network devices.
Our research tackles this from first principles: we ask how network policies can be described at a high-level,
independent of vendor and network minutiae. We identify the algebraic requirements of the policy-mapping
process and propose semantic foundations to formally verify if a policy is implemented by the correct set of
policy-arbiters. We show the value of our proposed algebras in maintaining concise network-device configu-
rations by applying them to real-world networks.

1 INTRODUCTION

Managing modern-day networks is complex, tedious
and error-prone. These networks are comprised of a
wide variety of devices, from switches and routers to
middle-boxes like firewalls, intrusion detection sys-
tems and load balancers. Configuring these heteroge-
neous devices with their potentially complex policies
manually, box-by-box is impractical.

A better approach is a top-down configuration
where device configurations are derived from a high-
level user specification. Such specifications raise the
level of abstraction of network policies above device
and vendor-oriented APIs (e.g., Cisco CLI, Open-
Flow). Doing so, provides a single source of truth,
so, security administrators for instance, can easily de-
termine who gets in and who doesn’t (Howe, 1996).

In recent years, several research groups have pro-
posed high-level policy specification languages for
both Software Defined Networking (SDN) (Soulé
et al., 2014; Reich et al., 2013; Foster et al., 2010;
Prakash et al., 2015) and traditional networks (Bartal
et al., 2004; Guttman and Herzog, 2005). A com-
mon requirement in these languages is the ability to
map the abstract policies to the underlying physical
network. Doing so accurately, is essential to

• enforce policy correctly; and

• track policy changes per network device, so, re-
dundant policy updates can be avoided.

But, mapping policies to the physical network devices
has challenges

• policy needs to be decoupled from the network. A
policy shouldn’t need to change with vendor, or
every time IP address changes occur;

• the mapping must be formally verifiable. Precise
and unambiguous mathematical semantics elimi-
nate wishful thinking pitfalls in deploying policies
to networks. So, security administrators have as-
surance, for instance, that their intended policies
are enforced by the correct firewalls; and

• policies can have complex semantics including
node and link properties.

We propose a generic framework to map policies
to network devices algebraically. We illustrate it’s
use by considering security policies, because incor-
rect deployment of these policies in domains such as
Supervisory Control and Data Acquisition (SCADA)
networks can result in catastrophic outcomes includ-
ing the loss of human lives! However, the principles
involved, can easily be extended to policies involving
traffic measurement, QoS, load balancing and so on.

In developing our algebras, we have derived
the properties and constraints of sequentially- and

1

parallelly-composed policies for various policy con-
texts. These policy-composition semantics must be
preserved, when mapping policy to devices, to ensure
correct deployment. Using an algebraic framework
also makes the policy-mapping process efficient.

We will demonstrate the use of our proposed al-
gebras in deploying security policies on real SCADA
networks. Particularly, we will show it’s value in
maintaining a clear, concise set of firewall configura-
tions. Our approach allows administrators to conduct
“what if” analysis by changing policy and/or network
topology and observe their effect on the network de-
vices required to implement the changes.

2 BACKGROUND AND RELATED
WORK

“The advantages of implicit definition over construc-
tion are roughly those of theft over honest toil.”

Bertrand Russel
The quote is salient because network installations are
commonly built from the bottom-up, i.e., a network-
device is purchased, and configurations written. The
policy is the result of the configuration, which is the
consequence of a purchasing decision. So, the policy
is implicitly defined as a result of many small deci-
sions that interact in complex ways. Instead, best-
practice guides (e.g., Byres et al., 2005) suggest de-
signing the policy first, and only then determining
how to implement it.

Solutions that employ a top-down network config-
uration have been proposed (e.g., Soule et al., 2014;
Anderson et al., 2014; Bartal et al., 2004). They allow
management of a single network-wide policy (i.e.,
source of truth). These policies should be high-level:
i.e., decoupled from network and vendor intricacies,
to capture policy intent and not the implementation.

Capturing intent has several benefits: policy can
be distinguished from network to assist with change
management; accurate comparison of organisational
policies to industry best-practices can be made to
evaluate compliance; and policy semantics can be ex-
pressed without network minutiae like IP addresses.
But, most research towards high-level policy lan-
guages (Bartal et al., 2004; Cisco Systems Inc., 2014;
Soulé et al., 2014), still requires these minutiae to be
specified in-policy, to implement policy on a network.

If the high-level policy definition is built on formal
mathematical constructions, then there are no implicit
properties and it provides a truly sound foundation
for everything that follows. The formalism would al-
low construction of complex and flexible policies and

support reasoning about the policies. For instance,
we could precisely compare a defined policy with in-
dustry best-practices in (Byres et al., 2005) for com-
pliance and reduce network vulnerability to cyber at-
tacks (Ranathunga et al., 2016a).

It is equally important to map policy to devices
using a formal approach. For instance, we can only be
confident of the protection provided for our network
if we could prove that an intended security policy is
implemented by the correct set of network firewalls.
Some top-down configuration languages (Bartal et al.,
2004; Prakash et al., 2015) allow creation of network-
wide high-level policies, but lack means to allocate
policy to network devices in provably correct way.

NetKAT (Anderson et al., 2014) is a SDN lan-
guage for specifying and reasoning about network be-
haviour. An implementation has been developed for
NetKAT to handle high-level policies based on vir-
tual network topologies (Smolka et al., 2015). The
implementation uses an extension of Binary Decision
Diagrams to generate OpenFlow entries from high-
level policy. Another is the SOL framework (Heo-
rhiadi et al., 2016) that uses a path-based abstraction
to capture optimisation requirements of SDN applica-
tions. The abstraction allows definition of valid paths
via predicates. But, our aim is to develop an alge-
braic framework to map high-level policy to network-
devices in both SDN and traditional networks.

We have proposed (Ranathunga et al., 2016a) a
high-level security policy specification that is network
and vendor independent for top-down configuration
of firewalls. The language semantics allow these poli-
cies to be easily understood by humans. We investi-
gate here, the underlying requirements for mapping
these policies to network devices.

3 ABSTRACT POLICIES

Abstractions are key to constructing high-level poli-
cies. Since a policy may be arbitrated using one or
more network devices, a good abstraction should de-
couple what is arbitrated from how it is arbitrated.

A simple abstraction that is commonly used to de-
couple policy from the network is (endpoint-group,
edge) (Bartal et al., 2004; Prakash et al., 2015). An
endpoint groups elements with common physical or
logical properties: e.g., a subnet, a user-group, a col-
lection of servers, etc. An edge specifies the rela-
tionship between the endpoints, i.e., it describes what
communication is allowed between the endpoints.

Consider the example network in Figure 1(a), our
high-level policy might be “we want to measure all
HTTPS flows from S1 to S4”. This intent can be ex-

2

(a) Network topology. (b) Policy graph of (a).

Figure 1: Example network consisting of four endpoints
(S1− S4) and six policy arbiters A,B, ...,F (a). The corre-
sponding policy graph is shown in (b) with these endpoints
and policy edges (E1,E2, ...,E6) between them.

pressed using the (endpoint-group, edge) abstraction
as p:=S1 → S4 : collect https, where p ∈ P is
an element of the possible space P of policies.

We now want to map the policy to enforcing de-
vices (i.e., arbiters). It looks naively easy. Just imple-
ment the policy on arbiter F . However, the problem is
in general more complicated. For example, consider
policy from S1 to S2. If arbiter A captures flows de-
scribed by policy pA and likewise pB, then the combi-
nation is pA∩B because the policy expresses that flows
be collected but load balancing across the two paths
could result in either being used by a given packet.

For another example, consider policy from S2 to
S3. If arbiters C and D capture flows described by
policy pC and pD respectively, then the combination
would yield their union because both arbiters in the
path are used for flow collection.

We will, in general, denote the policy composition
resulting from parallel routes as pA⊕ pB and that re-
sulting from serial routes as pA⊗ pB. In this example,
pA⊕ pB = pA∩B and pC⊗ pD = pC∪D. Note though,
the meaning of ⊕, ⊗ are policy-context dependent.

The problem of mapping our high-level policy p
(from S1 to S4) to network devices, may be even more
complicated than simply implementing the policy on
F . What happens if F fails? Surely we would still
want to collect HTTPS flows that traverse the redun-
dant paths from S1 and S4 (e.g., path via S2 and S3).
So, p must also be mapped to the policy arbiters along
the path S1− S2− S3− S4, to cater for this redun-
dancy. But then, should we map the policy to all of
these arbiters or a subset of them?

Given the parallel routes between S1 and S2 it is
easy to see that we need to map p to both A and B to
preserve the semantics of⊕. But, when arbiters are in
series (e.g., C,D) we have the choice of mapping pol-
icy to both or just one to preserve the semantics of ⊗.
Mapping to both may be unnecessary and inefficient
and arbiters may have limits on their capabilities.

The policy arbiters may not always be in series or

parallel. We have described earlier (Ranathunga et al.,
2015) how mapping policy to topology becomes in-
teresting when a star-topology is involved. Loosely
mapping policy to arbiters using a hyper-edge adds to
the policy-graph complexity and decreases it’s preci-
sion: i.e., it allows a 1 : n relationship between hyper-
edges and policies. So, we must track the policy be-
tween every endpoint-pair in a hyper-edge to correctly
map policy to network devices.

We can overcome these issues using a simple-edge
mapping instead (Ranathunga et al., 2015). The pol-
icy graph is then simplified and it’s precision is in-
creased. The 1 : 1 relationship between edges and
policies now implies we need to only track a single
policy per edge, to map policy accurately to devices.

We may also need to consider paths that consist
of one or more intermediate endpoints, when im-
plementing policy between an endpoint pair. For
instance, consider implementing a security policy
f :=S1 → S3: http in the network in Figure 1(a).
Once implemented on the arbiters (i.e., firewalls), the
policy should allow HTTP traffic flow from S1 to S3.
But, the policy can only be deployed correctly if end-
points S2,S4 can route or forward HTTP traffic.

An endpoint’s traffic route or forward capability
can be restrictive. For instance, in a security pol-
icy context, an endpoint can group hosts with similar
security requirements (ANSI/ISA-62443-1-1, 2007).
So, high-risk systems can be grouped in to one end-
point and only safe traffic that originate and/or termi-
nate at the endpoint is permitted by the security pol-
icy. Enabling this endpoint to transit-traffic could po-
tentially expose the high-risk systems within to cyber
attacks. So, an endpoint’s traffic transitivity capability
must be considered in constructing valid device-paths
and captured explicitly in the mapping process.

Our high-level policy p intends to collect HTTPS
flow data from S1 to S4. Likewise, traffic measure-
ment policies can be defined between any pair of end-
points in the network, so the corresponding (endpoint-
pair,edge) tuples collectively construct a policy-graph
(Figure 1(b)). Each (logical) edge in this graph maps
to a physical network path comprising of arbiters and
zero or more intermediate endpoints: e.g., policy-
edge E4 in Figure 1(b) implements our policy p.

So far, we have described several key require-
ments of a policy-to-device mapping process. Next,
we illustrate these using more detailed examples in-
volving policies found in practice.

3.1 Quality of Service (QoS) Policies

QoS policies can provide bandwidth guarantees for
traffic. The policy arbiters here would be QoS capable

3

routers or switches. Imagine provisioning a minimum
bandwidth of 100MB/s for HTTP traffic flow from S1
to S4 in Figure 1(a). The intent can be expressed as
min(S1 → S4 : http, 100MB/s). Similarly, QoS
policies between any endpoint-pair can be expressed
using the policy-graph in Figure 1(b).

Parallel and serial (QoS-device) topologies also
have an impact on the end QoS policy. Consider the
parallel topology between S1 and S2 in Figure 1(a), if
we assume pA and pB provide bandwidth guarantees
of B1 and B2 respectively, then with load balancing,
the resultant QoS policy (pR) can provide a total band-
width guarantee pR = pA⊕ pB = sum(B1,B2).

With serial devices, the bandwidth guarantee of
the resultant policy is pC⊗ pD = min(B3,B4) where
B3,B4 are the bandwidth guarantees of pC and pD.

3.2 Security Policies

We consider here access-control policies in a network.
The policy arbiters would be traffic filtering devices
(e.g., firewalls, SDN switches). The endpoints could
be zones or user groups. Imagine we want to enable
only SSH traffic from S1 to S4 (Figure 1(a)). The
high-level policy can be expressed as S1→ S4: ssh
with an implicit deny-all in place.

With parallel traffic filtering devices (e.g., topol-
ogy between S1 and S2 in Figure 1(a)), the resultant
security policy (pR), has meaning — all packets that
can possibly be allowed through — and is the union of
the packet sets allowed by the individual devices. We
take union conservatively because intrusions and at-
tacks are usually carried out through permitted traffic.
So, if pA and pB allows packet sets Q and T respec-
tively, then pR = pA⊕ pB = pQ∪T .

When the devices are in series, the resultant pol-
icy permits the intersection of the packet sets V,W
allowed by the policies of C, D respectively, i.e.,
pR = pC⊗ pD = pV∩W .

With security policies, it is often useful to have
endpoints that group systems with similar security re-
quirements. Doing so, allows to define a single pol-
icy for all members of an endpoint. But, a generic
(endpoint-pair, edge) abstraction cannot capture such
network-security specific concepts precisely.

So, we need concrete definitions for what an end-
point and an edge means for each policy context to
capture policy-specific intricacies. We will show later
how to define these concretely for security policies.

3.3 Traffic Measurement Policies

Traffic measurement policies help implement, for in-
stance, NetFlow (v9) on the network in Figure 1(a).

The policy arbiters A,B, ...,F here, would be NetFlow
capable devices (usually routers or switches). The
endpoints could be subnets or zones in the network.

Considering the parallel routes between S1 and
S2, the resultant policy (pR) has meaning — flows
guaranteed to be captured by the topology (without
sampling) — and constitutes of the intersection of the
packet sets of A and B. So, if pA and pB capture packet
sets Q and T respectively, then pR = pA⊕ pB = pQ∩T .

We also showed when the devices are in series, the
resultant policy captures the union of the packet sets,
i.e., pR = pC⊗ pD = pV∪W .

Thus, policies can be composed using the generic
semantics ⊕ and ⊗ in different policy contexts. The
actual meaning of these operators is policy-type de-
pendant. For instance, with QoS policies, ⊗ repre-
sented minimum while here it has meaning of union.

Policy Mapping Vs Routing: Our discussion above
on mapping policies to network devices, relates to
network paths or routes. This is no accident. Our
target problem has many parallels with routing.

But, the aim in routing is to determine the path
that optimises a given path-metric (e.g., shortest-path
routing finds a minimum-distance path between end-
points). Our target problem is different: we need to
determine the arbiters in a network a given policy
should be implemented on. So, constructing all fea-
sible paths is crucial because, for instance, a security
policy between two endpoints can only be correctly
implemented (e.g., to block all Telnet traffic) if all re-
dundant paths between them are taken into account.

In routing, the number of endpoints (e.g., individ-
ual gateways) can be high for a large network, so,
distributed means to computing a solution is essen-
tial (requiring de-centralised protocols like OSPF and
BGP). In contrast, we expect a relatively low number
of endpoint groups when mapping policies to devices.
This low count makes our policy-mapping algorithm
computationally tractable (see § 5). So, a logically-
centralised implementation can be considered.

Current meta-routing algebras (Dynerowicz and
Griffin, 2013), allow to provably choose paths that op-
timise various path-metrics. These algebras support
specification of link properties, but, not the specifica-
tion of node properties such as traffic transitivity.
We described earlier, the need to define endpoints and
edges concretely to incorporate policy-specific intri-
cacies. We illustrate the idea next using security poli-
cies and their concretised (endpoint-pair, edge) ab-
straction: the Zone-Conduit model.
The Zone-Conduit Model: Lack of internal-network
segmentation contributes to the fast propagation of
cyber threats in a network (Byres et al., 2005). So,
ANSI/ISA have proposed the Zone-Conduit model as

4

a way of segmenting and isolating the sub-systems in
a SCADA network (ANSI/ISA-62443-1-1, 2007).

A zone logically or physically groups systems
with similar security requirements allowing a single
zone policy to be defined. A conduit provides the se-
cure communication path between two zones, enforc-
ing the policy between them (ANSI/ISA-62443-1-1,
2007). A conduit could consist of multiple links and
firewalls but, logically, is a single connector.

The Zone-Conduit model is a concrete instance
of the (endpoint-pair, edge) abstraction for high-level
security policy specification. Zones and conduits de-
fine endpoints and edges concretely. These definitions
allow important network-security characteristics such
as a single zone-policy, to be captured concisely.

The ISA Zone-Conduit model in its original de-
scription lacks precision for policy specification. We
use the extensions proposed in (Ranathunga et al.,
2015) to increase its precision, e.g., we add Firewall-
Zones to specify firewall-management policies.

Zone-Conduit Policies: A conduit policy is an or-
dered set of rules [p1, p2, ..., pn] that act on packet
sequences to accept, deny, or in some cases, modify
them. In our related work (Ranathunga et al., 2016a),
we have identified properties and constraints required
in a Zone-Conduit based policy description to make
the rules implementation- and order-independent.

To summarise, we adopt a security whitelisting
model, i.e., we restrict policies to express positive
abilities1 and deny all inter-zone flows that are not ex-
plicitly allowed (Ranathunga et al., 2015). Doing so,
renders the rule order irrelevant and allows consistent
conversion of policy to heterogeneous firewalls. Thus
the underlying vendor can change without requiring
policy alterations. By being explicit, we also prevent
services being accidentally enabled implicitly.

Directed- vs Undirected-Conduit Policy: The policy
on an undirected-conduit can be expressed using two
directed-conduit policies. Directed-conduits are im-
portant in understanding how policy should be imple-
mented on device interfaces. For instance, an undi-
rected conduit can only map a security policy to a fire-
wall interface. But, to implement the policy correctly,
we additionally need to know if it should be imple-
mented inbound or outbound on these interfaces. A
directed-conduit provides this directionality.

But, analysis using directed-conduits can also lead
to problems. For instance, directed-conduit paths
that may seem feasible may require traffic to tra-
verse a firewall interfaces twice (illustrated in de-
tail in the longer version of the paper). We inval-
idate such paths via a mapping h : F → W where

1Refers to the ability to initiate or accept a traffic service.

F = {directed f irewalls} and W = { f irewalls}.
A directed-firewall in the Zone-Conduit graph G =
(Z,C) is defined as
Definition 1 (Directed firewall). A directed firewall
ti j is a firewall t ∈W that filters traffic on directed-
conduit (i, j) ∈C.
Then we can check if the directed-firewalls in a path
map to the same physical firewall (i.e., h(A13) =
h(A31) = A) and deem that path invalid.

4 MAPPING ALGEBRA

We outline here, our proposed algebra to map policy
to network devices by first making the distinction be-
tween primary and secondary policy-edges.

4.1 Firewall-path Construction

A policy-edge can be classified as primary or sec-
ondary based on how it arbitrates policy. A primary-
edge enforces policy using arbiters (e.g., firewalls)
only. A secondary-edge enforces policy using arbiters
and one or more endpoints (e.g., a zone).

We demonstrate the idea using the simple Zone-
Conduit graph G = (Z,C) in Figure 2(a). The firewall
composition of each primary-conduit in the model is
shown (Figure 2(b)). The example secondary-conduit
C13 filters traffic flow from zone 1 to 3, using several
directed-firewalls and transit zones 2, 4. The set of all
directed-conduits are given by DC = {Ci j | (i, j)∈C}.

A policy-graph is essentially an automation that
moves traffic packets from one endpoint to another us-
ing policy-edges. So, regular expressions (the natural
language of finite automata), can capture the packet-
processing behaviour of this model; a path encoding
is a concatenation of directed-devices (i.e., policy-
arbitration steps pq) and a set of paths is encoded as
a union of paths. Past work (Anderson et al., 2014)
has shown, all single-path encodings stem from the
Kleene star operator (*) on the set of directed-devices.

In a security policy context, the automation means
that a single firewall-path encoding is a concatenation
of directed-firewalls. Each path depicts a sequence of
traffic filtering steps and is an element of F∗.

But, the Zone-Conduit model is a logical repre-
sentation, so, every firewall-path encoding in F∗ may
not be valid. We define single firewall-path concate-
nation to filter-out invalid paths
Definition 2 (Single firewall-path concatenation).
Take a ∈ F∗ s.t. a = td1d2td2d3td3d4 ...tdndn+1 where
tdid j ∈ F. Also take b ∈ F∗ s.t. b =
sg1g2sg2g3sg3g4 ...sgmgm+1 where sgig j ∈ F. Then
firewall-path concatenation from F∗×F∗→ F∗ is

5

(a) Zone-Conduit model with pri-
mary and secondary conduits.

(b) Firewall-paths of the primary-conduits
in (a).

Figure 2: Zone-Conduit model depicting primary-conduits Ci j and a secondary-conduit C13 enabled by the transit zones 2
and 4 are shown in (a). The firewall-paths of the primary-conduits are shown in (b).

ab =


td1d2 ...tdndn+1sg1g2 ...sgmgm+1 if dn+1 = g1

and gi 6= d j; ∀i, j, i > 1
and h(tdid j) 6= h(sgkgl); ∀i, j,k, l

φ, otherwise.

and aφ = φa = φ; ∀a ∈ F∗.
Concatenation defined above is a binary operation

that constructs only elementary firewall-paths. These
paths do not allow traffic to traverse a particular fire-
wall interface more than once and also prohibit traffic
flow through a non-transit zone (e.g., Firewall-Zone).

Consider two directed-firewalls X ,Y with policies
pX and pY that accept packet sets R and T . The re-
sultant policy of the concatenated firewall-path XY
is that of sequential firewalls and can be denoted as
(pX⊗ pY)(s) = pR∩T (s) where s is a packet sequence.

We define a set of directed-firewall paths as a
union of elements in F∗. Again, consider our
directed-firewalls X ,Y from before. If these described
two distinct paths, then the resultant policy of the
path union X ∪ Y is that of parallel firewalls, i.e.,
(pX⊕ pY)(s) = pR∪T (s) where s is a packet sequence.

We also extend concatenation in Definition 2 to
S = {Power-set of F∗}
Definition 3 (Multiple firewall-path concatena-
tion). Take a,b ∈ S s.t. a = {a0,a1...,ax},b =
{b0,b1, ...,by} where ai,b j ∈ F∗. Then firewall-path
concatenation from S×S→ S is given by

ab = {aib j}; ∀i j

Definition 3 allows to construct all possible firewall-
path sets from the union of elements in S. Then
(S,∪, ·, 0̂, 1̂) is an idempotent semiring with

0̂ = φ; empty set; and
1̂ = {ε}; empty-string set where ε is the identity

element of the concatenation operation.
The properties of the operators ∪ and · actually dic-
tate rules for firewall-path construction. So, these se-
mantics must be preserved when composing firewall-

paths. For instance, ∪ is commutative while · is not.
So, the order of the directed-firewalls matter, when
constructing a single firewall-path, but, are irrelevant
when constructing multiple paths.

Similarly, we can construct single and multiple
device-paths for other policy contexts and obtain the
semiring result for (S,∪, ·, 0̂, 1̂) per security policies.

4.2 Mapping Policy to Arbiters
We described how the semiring (S,∪, ·, 0̂, 1̂) con-
structs sets of device-paths between policy-graph end-
points. The sequential (i.e., ⊗) and parallel (i.e., ⊕)
policy-composition operators in §3 can now construct
the policies of these paths. Assume we have to imple-
ment a high-level policy pi j on arbiters qkl that lie in
the paths from i to j. All applicable device-paths from
i to j can be constructed as per § 4.1 and given by
Si j = {qa1a2qa2a3 ...qan−1an ,,qb1b2qb2b3 ...qbm−1am}.
Then, the high-level policy p′i j derived from the in-
dividual arbiter policies p′kl is

p′i j = (p′a1a2
⊗ p′a2a3

...⊗ p′an−1an)

⊕ (....................................)

⊕ (p′b1b2
⊗ p′b2b3

...⊗ p′bm−1bm
). (1)

Mapping policy pi j to the arbiters is now a mat-
ter of finding p′i j for all arbiters such that p′i j = pi j.
But deriving such a mapping is non trivial because ⊕
and ⊗ have policy-context dependent meanings. For
instance, with security policies ⊕ means union and ⊗
means intersection. So, a simple solution supporting
defence in depth would implement the access-control
policy pi j on every sequential firewall across all paths.

For another instance, ⊕ means summation and
⊗ means minimum in QoS policies. So, a required
bandwidth guarantee pi j can be split across multiple
paths with sequential arbiters in each path guarantee-
ing only a portion of the total bandwidth.

Irrespective of the policy context, the underlying
requirement when mapping policy to network devices
is to adhere to the semantics of (1).

6

4.3 Computation of All Firewall-paths

We reduced the policy-to-device mapping problem to
the semantics of (1) in the previous section. We now
develop an algorithm to compute the device-paths of
(1) efficiently. Again, we demonstrate the idea using
security policies and the Zone-Conduit model.

We can represent the primary-conduit firewall-
paths using a generalised Adjacency matrix A. Here,
A(i, j) is the firewall-path of primary conduit Ci j ∈
DC. For our example in Figure 2(b), A =


Z1︷︸︸︷
{ε}

Z2︷ ︸︸ ︷
{A12,B12}

Z3︷︸︸︷
φ

Z4︷ ︸︸ ︷
{E14}

{A21,B21} {ε} {C23,D23} φ

φ {C32,D32} {ε} {F34,G34}
{E41} φ {F43,G43} {ε}


(2)

Then, the solution to the problem of finding all
valid firewall-paths between zones is a matrix A∗ s.t.

A∗(i, j) = {valid primary- and secondary-conduit
firewall-paths from zone i to j} (3)

We developed the following theorem to compute
A∗, inspired by algorithms in meta-routing (Dynerow-
icz and Griffin, 2013).

Theorem 4 (A∗ calculation). A∗ can be calculated us-
ing the right iteration algorithm

A<k+1> = (A<k>T ∪ I)A where A<0> = I.

T and I are the zone-transitivity matrix and
the multiplicative-identity matrix (of semiring
(S,∪, ·, 0̂, 1̂)) respectively.

Proof. See the longer version (Ranathunga et al.,
2016b) of this paper.

The zone-transitivity matrix T is defined as

T (i, j) =

{
{ε} if i = j and transitivity(i) = 1
φ, otherwise.

(4)

and I is the multiplicative-identity matrix

I(i, j) =

{
1̂ if i = j
0̂, otherwise.

(5)

For bounded semirings we only iterate n−1 times
to converge to A∗, where n is the number of nodes in
the Zone-Conduit model, i.e., A∗ = A<n−1>.

We have defined T , A∗ and the right-iteration al-
gorithm for a security-policy context, but these can
equally be defined for other policy contexts.

If we apply our algorithm in Theorem 4 to the ex-
ample in Figure 2(b), n = 4, so, A∗ = A<3> and for
simplicity assume that all zones are transitive, then

T =

{ε} φ φ φ

φ {ε} φ φ

φ φ {ε} φ

φ φ φ {ε}

 (6)

and we see that I = T in this instance.
We calculate A∗ = A<3> ={ε} η κ θ

µ {ε} ν β

γ λ {ε} ρ

ξ δ ζ {ε}

 (7)

All valid firewall-paths from zone 1 to 3 are given by

κ = {A12C23,A12D23,B12C23,B12D23,E14F43

E14G43} (8)

Let’s now assume that zone 4 is non-transitive,
then transitivity(4) = 0, we re-calculate A∗ =

 {ε} {A12,B12} η θ

{A21,B21} {ε} {C23,D23} µ
γ {C32,D32} {ε} ρ

ξ δ ζ {ε}

 (9)

The updated firewall-paths from 1 to 3 are given by

η = {A12C23,A12D23,B12C23,B12D23} (10)

In comparison to (8), we see that the paths via
zone 4 (i.e., E14F43,E14G43) have now been removed
as the zone is no longer transitive. A∗ can similarly be
calculated for other policy contexts to determine all
valid device-paths between endpoint pairs.
We describe next our implementation of the algorithm
in Theorem 4. The implementation allows the use of
these algebras to map policy to real network devices.

5 IMPLEMENTATION

Our policy mapping system is depicted in Figure 3,
and we outline it’s details below. The system is cur-
rently implemented in Python, and allows mapping of
high-level policies written in our own policy specifi-
cation language, to network devices. We will make
the system open source in the near future.
High-level security policy: The topology-
independent policy input file created using our
high-level policy specification language.
Network topology: The input network topology de-
scribed in GraphML. The file holds information of
all devices in the network and their interconnections.
The crucial aspects are the details of the topology near
the policy arbiters (e.g., firewalls).

7

Figure 3: Policy to network-device mapping process.

Map policy to network: Compiles high-level policy to
an Intermediate-Level (IL), generates the policy graph
(e.g., Zone-Conduit model) of the input network and
computes A∗ as per § 4.3 to map high-level policy to
the devices (e.g., firewalls) in the network.
Policy-to-device map: The primary output depicting
policy breakdown by device, interface and direction.
Verification output: Secondary output specifically
suited for verification (e.g., policy errors).

Our system implements a high-level policy on a net-
work instance by coupling the two. We outline here,
the computation of A∗ to map policy to network de-
vices (see the longer paper version for a detailed im-
plementation). We illustrate our system using security
policies and the Zone-Conduit model, but it can like-
wise be used in other policy contexts.

5.1 A∗ Calculation

We compute A∗ using the algorithm in Theorem 4.
A centralised implementation is used (given typically
low n), but, it could be distributed across multiple
nodes performing parallel computations.

Our implementation algorithm has time complex-
ity O(n4) (Ranathunga et al., 2016b). So, specifying
policy per individual host (i.e., large n) in top-down
configuration makes policy mapping extremely inef-
ficient. Better is to create network groups and specify
policy between them, so, a reasonably low value can
be maintained for n. For instance, we will see in § 6
that in a SCADA network typically n < 25.

We considered all valid paths between zone-pairs
in calculating A∗. The decision allows us to per-
mit or block traffic along all possible communication
paths between a zone pair, providing redundancy and
defence-in-depth in the network. We also map pol-
icy uniformly to every firewall in a single-path, fur-
ther boosting defence-in-depth. These decisions col-
lectively create a robust defence against cyber attacks.

But, in other policy contexts, it may be useful to
select a subset of all valid paths or just a single path
(e.g., shortest path) instead. Doing so, could improve
the time complexity of the algorithm in Theorem 4
(e.g., shortest paths yield O(n3)). This path pruning
can be done, for instance, by incorporating a sparse
matrix in the algorithm.

6 A SERIES OF CASE STUDIES

We now show the use of our developed algebras,
through real SCADA-firewall configuration case stud-
ies summarised in Table 1. The data was provided by
the authors of (Ranathunga et al., 2015).

The seven Systems Under Consideration (SUCs),
involve various firewall architectures and models. We
use them to demonstrate several properties, most no-
tably that the computational complexity of our policy-
to-device mapping algorithm is tractable.

An important feature depicted in Table 1 is the
number of security zones in each network. This num-
ber is small (i.e., ≤ 21) relative to the maximum (po-
tential) number of hosts per network (i.e., ≤ 67580).

This is to be expected, a zone groups a set of hosts
or subnets with identical policies. If every host had a
distinct policy then a large number of firewalls would
be needed to enforce a real separation between the
hosts, making it impractical. By grouping hosts into
zones, we reduce policy complexity, so their specifi-
cation becomes easier and less error-prone.

We identified incorrectly assigned ACL rules in
each case study by parsing the firewall configurations
as per (Ranathunga et al., 2015). We then classed the
errors into three groups: incorrect-firewall, incorrect-
interface and incorrect-direction errors (Table 1).
Incorrect-firewall errors are ACL rules that are as-
signed to the wrong firewall to begin with, i.e., the
desired traffic filtering could not be achieved by plac-
ing the ACL rule in any of that firewall’s interfaces.
Incorrect-interface errors are ACL rules that are as-
signed to the correct firewall but to the wrong firewall-
interface, i.e., the desired traffic filtering could not be
achieved by assigning the rule inbound or outbound
of that firewall-interface. Incorrect-direction errors
comprise of ACL rules that are assigned to the cor-
rect firewall and firewall-interface, but in the wrong
direction (e.g., outbound instead of inbound).

As (Table 1) suggests, on average there were 10
ACL rules allocated to the wrong firewall, 8 rules al-
located to the wrong firewall-interface and 15 rules
allocated in the wrong interface-direction, per case
study. We automatically mapped the high-level policy
in each case to it’s network using our system. There
were zero incorrectly allocated policy rules, when the

8

Table 1: SCADA case study summary adapted from (Ranathunga et al., 2015) (# ACL rule allocation error).

SUC Fire-
walls

Zones Cond-
uits

Max.
hosts

ACLs Average
rules

per ACL

Incorrect
firewall#

Incorrect
interface#

Incorrect
direction#

Run-
time
(s)

1 3 7 11 67580 8 237 15 13 19 40
2 6 21 81 2794 12 16 3 2 5 70
3 4 10 17 886 8 6 2 1 4 43
4 3 9 16 2038 3 80 5 12 13 61
5 3 12 19 2664 12 677 15 8 26 47
6 3 13 21 3562 8 1034 21 15 19 63
7 6 15 22 3810 17 724 9 5 17 49

policy was mapped to the firewalls using our algebras!
Through correct policy deployment, we reduce vul-
nerability of these SCADA networks to cyber attack,
preventing potentially-catastrophic outcomes.

7 CONCLUSIONS

Various obstacles hinder the precise mapping of
policies to network devices. Most prominent is the
lack of decoupling between policy and network which
makes policy sensitive to network-intricacies and ven-
dor changes. Policies can also have complex seman-
tics including node and link properties.

Our research addresses these challenges and pro-
poses a mathematical foundation for mapping policies
to network-devices. We use it to deploy real-world se-
curity policies to network firewalls provably correctly,
so, that administrators can be confident of the protec-
tion provided by their policies for their networks.

ACKNOWLEDGEMENTS

This project was supported by an Australian Post-
graduate Award, Australian Research Council Link-
age Grant LP100200493 and CQR Consulting.

REFERENCES

Anderson, C. J., Foster, N., Guha, A., Jeannin, J.-B., Kozen,
D., Schlesinger, C., and Walker, D. (2014). NetKAT:
Semantic foundations for networks. ACM SIGPLAN
Notices, 49(1):113–126.

ANSI/ISA-62443-1-1 (2007). Security for industrial au-
tomation and control systems part 1-1: Terminology,
concepts, and models.

Bartal, Y., Mayer, A., Nissim, K., and Wool, A. (2004).
Firmato: A novel firewall management toolkit. ACM
TOCS, 22(4):381–420.

Byres, E., Karsch, J., and Carter, J. (2005). Good practice
guide on firewall deployment for SCADA and process
control networks. NISCC.

Cisco Systems Inc. (2014). Cisco Virtual Security Gateway
for Nexus 1000V Series Switch Configuration Guide.
San Jose, CA 95134-1706, USA.

Dynerowicz, S. and Griffin, T. G. (2013). On the forward-
ing paths produced by Internet routing algorithms. In
ICNP, pages 1–10.

Foster, N., Freedman, M. J., Harrison, R., Rexford, J.,
Meola, M. L., and Walker, D. (2010). Frenetic: a
high-level language for OpenFlow networks. In ACM
PRESTO, pages 21–27.

Guttman, J. D. and Herzog, A. L. (2005). Rigorous auto-
mated network security management. IJIS, 4:29–48.

Heorhiadi, V., Reiter, M. K., and Sekar, V. (2016). Sim-
plifying software-defined network optimization using
SOL. In USENIX NSDI, pages 223–237.

Howe, C. D. (1996). What’s Beyond Firewalls? Forrester
Research, Incorporated.

Prakash, C., Lee, J., Turner, Y., Kang, J.-M., Akella, A.,
Banerjee, S., Clark, C., Ma, Y., Sharma, P., and Zhang,
Y. (2015). PGA: Using graphs to express and automat-
ically reconcile network policies. In ACM SIGCOMM,
pages 29–42.

Ranathunga, D., Roughan, M., Kernick, P., and Falkner, N.
(2016a). Malachite: Firewall policy comparison. In
IEEE ISCC.

Ranathunga, D., Roughan, M., Kernick, P., and
Falkner, N. (2016b). The mathematical foun-
dations for mapping policies to network devices,
http://arxiv.org/abs/1605.09115. Technical Report.

Ranathunga, D., Roughan, M., Kernick, P., Falkner, N., and
Nguyen, H. (2015). Identifying the missing aspects
of the ANSI/ISA best practices for security policy. In
ACM CPSS, pages 37–48.

Reich, J., Monsanto, C., Foster, N., Rexford, J., and Walker,
D. (2013). Modular SDN programming with Pyretic.
USENIX login, 38(5).

Smolka, S., Eliopoulos, S., Foster, N., and Guha, A. (2015).
A fast compiler for NetKAT. In ACM SIGPLAN,
pages 328–341.

Soulé, R., Basu, S., Marandi, P. J., Pedone, F., Kleinberg,
R., Sirer, E. G., and Foster, N. (2014). Merlin: A
language for provisioning network resources. In ACM
CoNEXT, pages 213–226.

9

