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Controlled Synthesis of Traffic Matrices
Paul Tune and Matthew Roughan, Senior Member, IEEE

Abstract—The traffic matrix (TM) is a chief input in many
network design and planning applications. In this paper, we
propose a model, called the Spherically Additive Noise Model
(SANM). In conjunction with Iterative Proportional Fitting (IPF),
it enables fast generation of synthetic TMs around a predicted
TM. We analyse SANM and IPF’s action on the model to show
theoretical guarantees on asymptotic convergence, in particular,
convergence to the well-known gravity model.

Index Terms—Internet traffic matrix, Iterative Proportional
Fitting, sensitivity analysis, synthetic generation

I. INTRODUCTION

THE traffic matrix (TM) is an important input in a variety
of tasks required in operating a backbone network. Chief

amongst these tasks include network planning [20], network
design [36], and traffic engineering [10], [23]. All these tasks
are important to ensure that the network runs efficiently under
various traffic demands.

In practice, there exists prior information about networks.
The information may come from historical operational data
for existing networks, or from user demand and demographic
data for new networks. These data are then utilised to form
predicted TMs that are used as input into the design of a
network. However, the data contain noise, so the predictions
are likely to contain errors.

One approach to deal with errors is to design a network
that is oblivious to the TM. For instance, the Valiant network
design [36] is designed to serve TMs with specific total
ingress and egress traffic. Oblivious design avoids the need
for predictions. However, the cost of TM agnosticism is that
prior information is ignored, resulting in inefficient designs.

Instead, we would like a technique that incorporates infor-
mation, but allow for errors. A network design based on this
technique has an advantage over oblivious design, and also
accounts for possible contingencies due to errors in prediction.

One idea to incorporate prediction errors is to generate
an ensemble of TMs around the predicted TM to simulate
prediction errors. Generated matrices should be
• admissible: they satisfy some set of constraints (e.g., non-

negativity);
• centred: they are perturbations around the predicted ma-

trix; and
• controlled: their variance around the predicted matrix can

be controlled, ideally through a simple, linear parameter.
The centred property could be thought of as the dual of
unbiasedness of an estimate in estimation theory; here, we
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want ensembles to revolve around a prediction. If we didn’t
want matrices centred around a prediction, then we must have
additional information about the noise model that should be
incorporated clearly, instead of by accident. So, ‘centredness’
is the sensible default position to start any such model.

Synthesis of TMs has been done before. Nucci et al. [16]
proposed a heuristic-based method of generating TMs, with
entries distributed according to the lognormal distribution.
Roughan [19] instead generated TMs using the gravity model.
These schemes, however, were proposed to alleviate the
paucity of available public data of TMs, not simulate pre-
diction errors. They do not fit the needs described above.

Moreover, the canonical example of TM ensembles in many
practical situations is to add IID (Independent Identically
Distributed) Gaussian noise to the prediction. However, in
our problem, simple additive noise fails the first two criteria
i.e., admissibility and centredness, necessitating an alternative.

In this paper, we propose a simple scheme to generate
an ensemble of random TMs. The main contribution of this
paper is the Spherically Additive Noise Model (SANM) for the
prediction errors of TMs around the predicted TM. To ensure
that the model conforms to the constraints, we use Iterative
Proportional Fitting (IPF). Our proposed scheme satisfies all
three criteria outlined above.

Furthermore, the method is fast and has a sound theoretical
basis. In particular, the generated TMs have an information
theoretic interpretation and are connected to the gravity model
[33]. Additionally, they possess a property called Proportional
Error Variance Aggregation (PEVA), which means that the
magnitude of the prediction errors of the entries in the TMs
are proportional to the size of the traffic demand, inline with
prediction errors in practice. These useful properties make our
scheme flexible and powerful enough to be used for a variety
of simulation tasks encountered by network operators.

Our work is useful because it is the first contribution towards
generating ensembles of TMs taking prediction errors into
account. The results can be used in a variety of tasks that
require the TM as input, allowing testing of the robustness of
algorithms to solve these tasks.

The present paper is a companion to our previous work
published in [29], where we showed how our scheme can
be applied to perform sensitivity analysis to network design
algorithms, illustrating that some designs perform poorly for
TMs they are not designed for. We also showed that we
could create efficient, robust optimisation procedures. Rather
than optimise the design over the space of all admissible
TMs, we generate ensembles of TMs around the predicted
TM (to account for prediction errors) as input to the network
optimisation problem. In contrast, our emphasis here in is on
theoretical properties of SANM and IPF, details of which were
omitted from [29].
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II. BACKGROUND

A traffic matrix (TM) describes the volume of traffic
(typically in bytes) from one point in a network to another
in a time interval. Its natural representation is a three di-
mensional array T(τ) with elements ti,j(τ) that represent
the traffic volume from source i to destination j during
the time interval [τ, τ + ∆τ). Time intervals depend on the
time resolution of measurements. Typical intervals are of
the order of minutes to hours (5, 15, and 60 minutes are
very common). In our applications, the locations i and j
will either be routers or, more typically Points-of-Presence
(PoPs), and we only consider Ingress/Egress (IE) TMs here
(not underlying Origin/Destination (OD) matrices as these are
usually unobservable). We will denote the number of ingress
and egress points by N . Throughout the paper, we concentrate
on a single snapshot of the TM at time τ , so we will omit the
time index for convenience. For a more complete description
of TMs see [28], and for spatio-temporal models see [30].

The best current practice for measuring a network’s TM
is to use sampled flow-level measurements (e.g., [8]). These
measurements provide TMs on a time granularity on the order
of minutes, but these matrices will contain errors. Such errors
arise from sampling and from lack of synchronisation in
time intervals used in measurements. Control and calibration
of the size of these errors, as far as we are aware, is not
currently implemented. However, one might hope they were
fairly small, say at the level of a few percent, in a well-
engineered measurement system.

Alternative approaches to direct (sampled) collection in-
clude a body of research [13], [32–34] devoted to developing
TM inference methods from more easily collected link-load
measurements. These methods, however, are limited by the
underconstrained nature of the problem, so average errors on
the order of 10–20% are possible. Despite these errors, [23]
showed that traffic engineering tasks, such as routing, can
certainly benefit from an inferred TM as compared to having
no knowledge whatsoever.

More importantly, one of the underlying themes of that
research is that it is much easier to measure the traffic volumes
on links than to determine where that traffic is going (and
hence the TM). It is quite easy to measure values such as the
row sums of the TMs ri =

∑
j ti,j (which tell us the total

traffic coming into a PoP) and the column sums cj =
∑

i ti,j
(which tell us the total traffic leaving through a PoP).

Network planning requires forecasting future TMs to the
date relevant for the plans. The time in advance is often
called the planning horizon. The prediction process may vary,
but it will inevitably introduce prediction errors. Here, we
concentrate on purely spatial TMs, as in the applications we
target such as network capacity planning, we have shown that
the worst case (spatial) TM is most important [31].

Common sources of prediction error are

• Statistical inference errors: due to stochastic variability
within the model, i.e., the model for the data is a good
approximation, but the particular realisation we observed
varies from that predicted.

• Large, short-term fluctuations from the prediction:
e.g., routing changes (either caused by internal link
failures, or external routing policy changes), can alter
the egress points of traffic, altering the IE TM (even
if the underlying OD matrix remains unchanged) [27];
or flash-crowds can cause large, short-term changes to
traffic. Some of these changes might be considered simple
stochastic variation (as above), but some are larger, and
more sudden than can be accounted for by normal varia-
tion, and their causes can often be identified as singular
events.

• Modelling errors: resulting from use of a prediction
technique whose underlying model is inaccurate over the
prediction period. For instance, growth in traffic may
appear to be exponential over some period, but actually
be logistic (appearing exponential early on, but slowing
as demand becomes saturated).

Our primary goal is to develop a method of generating TMs
that takes these prediction errors into account. We do this by
generating controlled perturbations around the predicted TM.
As modelling errors should be preventable by careful analysis
of sufficient periods of historical data, we focus on the other
two fluctuations which are intrinsic to prediction.

The level of aggregation of traffic is often a large factor in
the size of the statistical prediction errors. Large aggregates of
traffic are more predictable because they statistically aggregate
the behaviour of many more sources. It is natural then to
expect errors to have some dependence on the size of TM
element. TM elements have a somewhat skewed distribution
(with many small values, and few large) though not formally
heavy-tailed [16], [19], [26], implying that we have a large
group of smaller, more inaccurate predictions, and a smaller
group of large, but comparatively accurate predictions. The
Norros model [15], empirically tested in [21] and based on
similar assumptions to the independent flow model [7] pro-
posed for TMs, proposes that variance should be proportional
to the mean of the traffic. Moreover, the model has consistent
variances for aggregated traffic. We need an error model
satisfying this property, which we call proportional error
variance aggregation, or PEVA.

We might also reasonably assume that prediction errors
for aggregates such as the 2N row and column sums of a
TM will be smaller than for the N2 elements. Moreover,
prediction of PoP (in/out) volumes can take advantage of
demographic, marketing, business and financial predictions
much more easily than can the ti,j .

The point we are making is that TMs contain considerable
value, but it must be assumed that it contains errors. How-
ever, these errors are not completely arbitrary. Larger matrix
elements have smaller relative errors, and aggregates (such as
row and column sums) often have much smaller errors than
those in the TM elements themselves.

III. SYNTHESIS ALGORITHM

Our objective is to generate an ensemble of TMs with
controlled perturbations around a predicted TM. We focus on
generating Ingress/Egress (IE) TMs, which are important and
practical at the Points-of-Presence (PoP) level.
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There are prescribed constraints on these matrices, so not
every matrix is a valid TM. Although there are many choices
for the constraints, in this paper we will focus on 4 simple,
intuitive, and yet reasonably powerful constraints. For a matrix
T = [ti,j ], we have

(i) Non-negativity: ti,j ≥ 0, ∀i, j = 1, 2, · · · , N ,

(ii) Row sums:
∑

j ti,j = ri, ∀i,
(iii) Column sums:

∑
i ti,j = cj , ∀j, and

(iv) Traffic conservation:
∑

i,j ti,j =
∑

i ri =
∑

j cj = T ,

where row and column sums are summarised in vectors r and c
respectively, which for the moment we consider to be constant.

The constraints above are motivated by the fact that the
row and column sums represent the total ingress and egress
traffic of a network of PoPs, which are relatively easy to obtain
from SNMP information [28]. Moreover, these constraints are
a natural fit in inference problems, where one might use them
to construct the gravity model [33] as a first order estimate.
The constraints also provide a way to fairly compare the
performance of valid network designs, as in [29].

Generally, we might replace the row, column and total traffic
constraints with any set of linear (or more generally, convex)
constraints on the matrix, but we use the constraints above for
illustration because of their clear meanings in context.

A. Spherically Additive Noise Model

The goal of our approach is to guarantee the admissibility
constraints are (at least in part) automatically satisfied by any
matrix we generate. To do so we divide the constraints into
particular constraints (the summation constraints, which are
dependent on the particular network), and universal constraints
(non-negativity and traffic conservation), which all traffic
matrices should satisfy.

A standard error model, the additive noise model, adds white
noise to the entries of T, i.e.,

yi,j = ti,j + σzi,j , ∀i, j, (1)

where zi,j ∼ N (0, 1), i.e., the standard normal distribution,
and σ > 0 controls the noise strength. While this model is
controllable by a single parameter σ, there is a major problem.
The entries yi,j may not be non-negative, so a preprocessing
step is required: projecting the entries onto the non-negative
plane. Optimisation theory tells us that this projection is
equivalent to setting any negative entry to zero [4]. As a result,
with large noise, i.e., large σ, many entries are zeroed out, or
truncated. The model after truncation is no longer centred and
generates unrealistic TMs. Another standard error model is the
multiplicative model, defined by

yi,j = (1 + σzi,j)ti,j , ∀i, j, (2)

but it suffers from the same problems as the additive model.
We aim to develop a model that avoids truncation. Given

the non-negativity, it is possible to write any TM T = [ti,j ]
in the form

T =
[
a2i,j
]
,

where ai,j =
√
ti,j . The modification seems trivial, but given

real values ai,j , the matrix is now inherently non-negative.
Moreover, the total TM constraint becomes∑

i,j

a2i,j = T,

so we can see the ai,js as lying on the N2-dimensional hyper-
sphere with radius

√
T (see Figure 1). This transformation has

been used before in optimisation literature for similar reasons.
Our approach, therefore, is to perturb the matrix by finding

a new point on this hypersphere via an approximately additive
model. This allows us to add noise in a controlled and centred
manner, while preserving the universal constraints.

Our Spherically Additive Noise Model (SANM) is

yi,j = (ai,j + βzi,j)
2, ∀i, j, (3)

where zi,j ∼ N (0, 1), and β ∈ [0,∞) is a parameter we
can use to tune the strength of the noise. We chose a simple
IID noise process, as we have no a priori reason to assume
correlations in the noise.

Typically, the size of the noise β would take small values,
but we show in Section III-D that the model behaves correctly
as β →∞. For large β, it approaches the gravity model, which
is the natural model when we have little information except
for the row and column sums.

The beauty of the simplicity of this model is that it guaran-
tees non-negativity without truncation, and so not only does it
avoid artificial zeros in the matrix, it is also simple to analyse.
Since zi,j ∼ N (0, 1), independent of ai,j , we get

E[yi,j ] = E
[
(ai,j + βzi,j)

2
]

= E
[
a2i,j + 2βai,jzi,j + β2z2i,j

]
= ti,j + 2βE[ai,jzi,j ] + β2E

[
z2i,j
]

= ti,j + 2βai,jE[zi,j ] + β2

= ti,j + β2.

This is not ideal (yet), because the resulting matrix doesn’t
satisfy the centring condition, so a procedure is needed to
force the matrix to satisfy this, and the additional constraints.

B. Iterative Proportional Fitting (IPF)

The matrix Y does not sit on the hypersphere defined by
the total traffic constraints (or the manifolds defined by the
other constraints). Intuitively, what we need is a procedure
to project the perturbed solution onto the space defined by
the set of constraints. We use Iterative Proportional Fitting
(IPF). Figure 1 presents geometric representation of how the
perturbed matrices Y1 and Y2 from SANM are projected to
the set of matrices satisfying the constraints.

Algorithms 1 and 2 outline our method. The algorithm is
very simple indeed, with the only complication occurring in
the implementation of IPF, which we detail below.

IPF was originally developed to adjust contingency tables
in statistics such that their marginals, given by the row and
column sums, satisfy known constraints [5]. This is almost
exactly what we aim to do, the only difference being termi-
nology, where we apply IPF to TMs instead.
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Fig. 1. Illustrating the action of SANM and IPF on the hypersphere of non-
negative matrices with a total sum of T . After perturbation from T, the
resulting matrices Y1, and Y2 no longer sit on the hypersphere, especially
if β is large. This necessitates the use of IPF to enforce constraints and the
resulting projections are S1 and S2 respectively. Note that S1 and S2 are
members of the restricted set of matrices satisfying the row and column sum
constraints.

Input: T, the predicted traffic matrix
Input: β, noise variance
Input: r, c, row and column sum constraints
Input: ε, tolerance for IPF
Output: S, the synthetic traffic matrix

1 Generate Z, with zi,j ∼ N (0, 1)

2 Generate Y, where yi,j = (t
1/2
i,j + βzi,j)

2

3 S = IPF(Y, r, c, ε) /* See Algorithm 2 */

Algorithm 1: SANM

IPF has been used extensively in the transportation litera-
ture. Activity-based travel models require the use of synthetic
populations to generate microsimulations of traffic. There is,
therefore, a direct analogy between the population and TMs.
The earliest use of IPF in transportation studies is to combine
different sources of data (for instance, population census data
and metropolitan transportation surveys) to estimate socioeco-
nomic variables of interest [6].

Beckman et al. [1] used IPF to generate synthetic popu-
lations via the following procedure: sample a subpopulation
from a census dataset with desired demographic properties,
then use IPF to fit this subpopulation to a set of marginal
constraints (like the row and column sums corresponding to
total population of demographic groups). In this sense, their
technique has similarities with our work, but here we first
developed a model (SANM) as an input to IPF, whereas they
used empirical data as their input. Beckman et al. ’s techniques
were incorporated into TRANSIMS [25], a microsimulation
software based on cellular automata.

More recently, IPF has been adapted to work with an arbi-
trary set of measurement constraints (provided the constraints

Input: Y, the SANM output
Input: r, c, row and column sum constraints
Input: ε, tolerance for IPF
Output: S, the synthetic traffic matrix

1 S(0) ← Y
2 k ← 1
3 while (not converged) do
4 /* Scale the rows */
5 for i := 1 to N do
6 S

(k−1/2)
i,∗ = S

(k−1)
i,∗ ri/

∑
j S

(k−1)
∗,j

7 end
8 /* Scale the columns */
9 for j := 1 to N do

10 S
(k)
∗,j = S

(k−1/2)
∗,j cj/

∑
i S

(k−1/2)
i,∗

11 end
12 k ← k + 1
13 end

Algorithm 2: Iterative Proportional Fitting

lie in a convex set) [12]. This implies that many types of
constraints in network design can be incorporated into IPF.
Here, we restrict our attention to only row and column sum
constraints which naturally map to our current problem.

IPF consists of iteratively scaling the rows and columns
of the matrix until the scaled row and column sums match
the objective row and column sums (see Algorithm 2). Here,
∗ denotes a wildcard to specify the rows or columns of the
matrix at once. The typical test for convergence is to compare
the row and column sums of the iterate S(k) to r and c at the
end of each iteration k. Once the total difference falls below
some required tolerance ε, the algorithm has converged. We
use the convergence criterion∑

i

∣∣∣∑
j

si,j − ri
∣∣∣+
∑
j

∣∣∣∑
i

si,j − cj
∣∣∣ < ε,

which measures the deviation of the matrix’s row and column
sums from r and c [18].

IPF has a strong connection to the Kullback-Leibler (KL)
divergence [2], defined as

D(P ||Q) =
∑
i,j

pi,j log
pi,j
qi,j

, (4)

between the probability distributions P and Q, where
pi,j , qi,j ∈ [0, 1] for all i, j and

∑
i,j pi,j =

∑
i,j qi,j = 1 (we

use the standard convention log(0/0) = 0). Let T =
∑

i ri =∑
j cj . IPF is an iterative, fixed-point solution to the problem

of minimising the general KL divergence, defined by

DGKL(X ||Y) = T ×D
(

1

T
X

∣∣∣∣∣∣∣∣ 1

T
Y

)
−
∑
i,j

xi,j +
∑
i,j

yi,j

(5)
between the input to the final solution, subject to constraints
[3], [11]. The proof of IPF’s convergence can be found in [3].
More complex algorithms can be used to solve this problem,
but IPF’s simplicity and fast convergence are ideal here.
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An additional property of IPF worth mentioning is that it is
guaranteed to converge to a solution satisfying the row and
column constraints only if the initial input matrix is non-
negative [5]. Our error model is guaranteed to be non-negative,
so convergence is assured.

Moreover, IPF preserves zeros [5], [24]. Thus problematic
zeros introduced by truncation (if a simplistic error model was
used) would be retained by this step. This is undesirable,
as real TMs do not have many zero elements. SANM is
unlikely to have zero elements for β > 0. Zeros occur only if
t
1/2
i,j = −βzi,j , but since zi,j is a continuous random variable,

this happens with probability 0. So our noise model creates
elements that are almost-surely positive (simulations confirm
this, the results of which we omit here in the interest of space).
Therefore, IPF’s outputs are also positive.

IPF isn’t novel, even in the context of TMs, where it has
been used to enforce row and column sum constraints before
[33]. However, besides [1] in transportation literature, in the
cases we are aware of, IPF was used as part of an inference
technique, whereas here it is being used for synthesis.

C. Discussion

In this synthesis problem, we are essentially finding a set
of random matrices S = T + W, where T is the predicted
TM and W are the prediction errors, such that the S satisfy
a set of constraints

A(S) = b.

The operator A might represent a set of measurement opera-
tions, where b are observed measurements, or in the preceding
section we considered A to take row and column sums and
b to be the specified values of those sums. In general, we
only require linear operators A, and linearity implies that
A(T) = A(S) = A(T + W) = A(T) +A(W) = b, or

A(W) = 0,

i.e., the noise W must lie in the null space of A, with the
additional complication of requiring non-negativity.

Note that, although the noise matrix Z is IID, the subsequent
matrix W will not be, because of this requirement.

One method of finding such matrices is by defining a
manifold on which all valid TMs reside and forming the above
additive model on this manifold. However, that requires

(i) defining invertible maps between the manifold and the
generated TMs, and

(ii) search algorithms on manifolds (which are much slower
than IPF).

For instance, see [9] for an example of a manifold and its
relationship to IPF. So the approach we propose is solving a
more general problem, but in a fast, easy to implement manner.

Although some measurements are more or less accurate, few
are perfect. For example, the row and column sums may be
subject to variations over time. Regularisation methods may
be used to handle variations of these measurements, but a
simpler way we adopt in the paper is to add a small amount
of noise to the constraint values b prior to TM generation. For
a valid TM, the constraints must be self-consistent, for e.g., the

total of the row and column sums must be equal to the total
traffic traversing the network, but this is easy to ensure. So the
SANM allows controllable errors in the constraints as well as
the generated TMs themselves. We test SANM on variations
of the row and column sums and demonstrate their usefulness
in network sensitivity design in [29].

It is worth noting that our method does not constrain the
individual elements of the TM directly. One motivation for
direct constraints occurs between the different customers of
an ISP, as each may have different SLAs, and are therefore
each sensitive to different variations in traffic. To capture these
variations, ideally, one would have to define a distribution to
specify the traffic variations. It is possible to do so in our
model, however, this would

(i) require additional work in specifying the type of noise
used in SANM, as the noise may no longer be IID, and

(ii) define new constraints in IPF.
Although feasible, more care has to be taken when specifying
the noise and new constraints in the context of the problem.

D. Properties and Asymptotic Behaviour

In this section, we discuss the theoretical properties of the
centredness, convergence, variation around the predicted TM
and asymptotic behaviour of our algorithm.

Centredness. The SANM inherently generates admissible
matrices. Two other criteria for this model were that it be
centred and controllable. The SANM is nonlinear, and hence
somewhat hard to analyse, but intuitively, IPF is finding
the closest point on the appropriate manifold to project the
perturbed solution to, so we might expect these properties.

Analytically, we consider the simplest case where the row
and column constraints are ignored, and only the total traffic
constraint is included (for more complex row and column
problems we quantify the effect in the following section). In
this simple case, IPF will just scale the values so that the total
is correct, i.e., on average,

E[si,j ] = cE[yi,j ] = c
(
ti,j + β2

)
.

The scaling constant c will be chosen so that
∑

i,j si,j = T ,
so we know that

E

∑
i,j

si,j

 = cE

∑
i,j

ti,j + β2

 = c
(
T +N2β2

)
= T,

and so
c =

1

1 +N2β2/T
.

Take the average matrix element to be t̄ = T/N2 and we get

E[si,j ] =
ti,j + β2

1 + β2/t̄
= ti,j + β2

(
1− ti,j

t̄

)
+O(β4).

So, in expectation, larger elements of the matrix become
smaller, and smaller elements become larger, but the effect
is O(β2), and so for small values of β the non-linearity is
negligible. We therefore have approximate centering of the
synthetic matrices.
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In addition, we can consider the variance of the synthetic
matrix about the predicted matrix by looking at the variance
of si,j and noting that at least approximately this is the same
as the variation around ti,j :

Var[si,j ] = E
[
s2i,j
]
−E[si,j ]

2 ' E
[
s2i,j
]
−t2i,j = E

[
(si,j − ti,j)2

]
,

and

E
[
s2i,j
]

= c2E
[
y2i,j
]

=
E
[(
ai,j + βzi,j

)4]
(1 + β2/t̄)

2

= t2i,j + β2ti,j

(
6− 2

ti,j
t̄

)
+O(β4), (6)

so the standard deviation of the variability around the predicted
matrix is approximately linear in β, for small β. Averaging
over the whole matrix to obtain a relative measure of standard
deviation around matrix elements we get√√√√ 1

N2

∑
i,j

E
[
s2i,j
]
− t2i,j

t2i,j
' β

√
1

N2

∑
i,j

6

ti,j
− 2

t̄
. (7)

We will examine the range of linearity of this approximation
empirically for the more general case including row and
column constraints in the following section. We find the
approximation to be very good in the range 0 ≤ β ≤ 0.2,
and reasonable for β up to 0.4.

Convergence. A known result, Theorem 3 of [18], states that
IPF converges to a unique solution if and only if there exists
a final matrix generated by IPF matching the zeros of any
predicted TM generated by SANM, its row and column sums
matches r and c, and that the traffic conservation constraint is
satisfied. Given that the row and column sums are equal to the
total traffic and since every matrix generated by SANM has
positive entries, there exists such a matrix: rcT/T (the gravity
model), which matches r and c. Since a solution exists, IPF
is guaranteed to converge.

Variation around the predicted TM. The synthetic TMs
generated by our algorithm are guaranteed to be full rank
almost surely. Rank is an important consideration here as IPF
doesn’t necessarily return a unique solution if the input matrix
has a particular structure, because while the KL divergence
(4) is convex in X, it is not strictly convex. For instance, if
the input matrix has entries yi,j = uivj , with ui, vj > 0 ∀i, j,
i.e., the matrix is positive and single rank, then by running IPF,
the solution is exactly the gravity model. Following Algorithm
2, in step 1/2,

s
(1/2)
i,j =

riuivj
ui
∑

k vk
=

rivj∑
k vk

.

By step 1, we have

s
(1)
i,j =

rivjcj∑
k vk

∑
k vk

vj
∑

` r`
=
ricj
T
.

Thus, with single rank matrices, IPF converges within a step
to the gravity model.

To prove full rankedness, we first require the following
result:

Theorem 1: IPF preserves the rank of the input matrix.
Proof: There exists two diagonal matrices D1 and D2

with positive entries such that the solution has the form X =
D1YD2 [3, Corollary 3.3]. IPF preserves the rank of the input
matrix: rank(X) = rank(D1YD2) = rank(Y), since both D1

and D2 are full rank.

The joint distribution of the entries of output of SANM,
matrix Y, has an absolutely continuous density, because its
cumulative distribution function is continuous. The set of
singular matrices, i.e., Y := {Y | det(Y) = 0} has positive
codimension (since the matrices contain a dependent row or
column and would not be full rank) so the set has measure
zero in the Lebesgue measure. Since Y’s entries have an
absolutely continuous density in the Lebesgue measure, Y
is almost surely full rank. Finally, by Theorem 1, since IPF
preserves the rank, then the synthetic TMs generated by our
model are full rank almost surely.

Our result shows that with the various inputs from SANM,
the output from IPF will not be the gravity model almost
surely. This proves that our algorithm generates variations
around the predicted TM. We want this property because
testing network designs for robustness require an ensemble
of TMs with variations.

Asymptotic behaviour. Although IPF’s output is not the
gravity model almost surely, the average of the synthetic TM
ensemble, as β → ∞ is well-approximated by the gravity
model. In the limit β → ∞, yi,j ' β2z2i,j , where z2i,j is
IID according to the chi-squared distribution with a degree
of freedom of one, so E[Y] = β21N1T

N . As a result, the
average of S is approximated by the gravity model, which is
the solution of IPF when E[Y] is IPF’s input (since it is a
single rank matrix). We defer a more detailed proof of this to
Appendix A.

IV. EVALUATION

Our earlier work [29] was focussed on demonstrating the
usefulness of SANM through two case studies. The goal of
these was to show how network design benefitted from the
ability to generate an ensemble of matrices. The results showed
that some networks that were designed to serve TMs with a
specific r and c, such as the Valiant [36] and star network
designs, were not as robust to TM variations.

The main lesson from our previous work was that if the
assumptions on the type of TMs the oblivious network designs
were meant to serve were violated, then these designs require
far more capacity than they should. In this sense, these net-
works are sensitive to their design assumptions. Surprisingly,
the Abilene design [14] did very well under variety of TMs,
proving that Abilene’s designers did a thorough job.

Our previous work also proposed a risk-based framework
for designing networks. Here, there are two competing objec-
tives in network design: risk and utility. Risk can be thought
of as the cost of overexploiting resources of the network (for
e.g., bandwidth). Utility is an quantity the network operator
wants to maximise, such as revenue. Thus, the goal is deliver
a design that meets the trade-off between risk and utility.
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Fig. 2. Testing the approximation (6) against IPF’s output E[s2i,j ] on a single
snapshot from the Abilene [14] data, the average traffic over time 02:00 to
02:05 hours, 1st March 2004, with β = 0.2.

Trying to find a network design that possesses the best
trade-off between the utility and risk requires an exhaustive
search over all TMs, which is hard to do. Instead, we used
our algorithm to generate ensembles of TMs to search for
an acceptable network design over a range of variations on a
predicted TM.

Instead of replicating the case studies here, we instead in-
vestigate the properties of SANM in-depth. Readers interested
in the applications of SANM are referred to [29].

A. Tests

In the following results, the predicted TM T is a single
snapshot from the Abilene [14] data, the average traffic over
time 02:00 to 02:05 hours, 1st March 2004.

We first test the approximation (6). In Figure 2, we set
β = 0.2 and plot approximation (6) against empirical mea-
surements of E

[
s2i,j
]

(which also includes the row and column
sum constraints), averaged over 1000 trials. The middle solid
line denotes the equality between elements, i.e., if the approxi-
mation equals E

[
s2i,j
]
. We find that the fit is very good indeed,

as the data points lie close to the solid line, despite the fact the
approximation did not try to account for the row and column
sum constraints. We have tested this with various predicted
TMs with similar results. The approximation is fair up to
β = 0.4, beyond which the approximation quality degrades.

Our model also coincides with the intuition about the
modelling of aggregated flows per the Norros model [22].
In real traffic, as flows are combined, the aggregated flow
has a higher variance, and this variation is modelled to be
proportional to the size of the aggregated traffic flow in the
Norros model. These larger flows would naturally have larger
measurement error. From approximation (6), we find the errors
scale in proportion to ti,j , aligning with the intuition of the
Norros model. In the SANM, the error would therefore scale
proportional to the size of the predicted TM’s elements. We
call this the proportional error variance aggregation (PEVA)
property.
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Fig. 3. MRSE as a function of β. The solid curve is the average response
of IPF’s output over 1000 trials per data point. The predicted TM T is from
Abilene data, the average traffic over time 02:00 to 02:05 hours, 1st March
2004. The dashed and flat lines show the approximation for small β (see
approximation (7)) and large β (see details in the Appendix A).

Another consideration is how far the generated TMs are
from the original input. Since the SANM is nonlinear, will
there be significant distortions of the matrices?

We measure the distortion using the Mean Relative Square
Error (MRSE) of the generated traffic matrices to the input T,
defined by

MRSE(β) =

√√√√ 1

N2

∑
i,j

(si,j(β)− ti,j)2
t2i,j

.

The metric quantifies the effect of the perturbation of IPF’s
solution to the predicted TM. Ideally, we would like a linear
relationship between β and the MRSE, implying that si,j is
proportional to ti,j , and this is predicted for small β by (7),
but without row and column sum constraints. Here, we include
those constraints and test the MRSE response empirically.

We examine the MRSE response of IPF in Figure 3. The
solid curve is the average response of the generated TMs. The
curve was generated from 1000 trials. The sloped dashed line
is the response of the approximation (7) for the small β regime,
while the flat line is the response of the gravity model for the
large β regime.

In Figure 3, the response of the MRSE to β is almost linear
up to about β = 0.4 before starting to saturate to the response
of the gravity model (see Appendix A).

In Figure 4, we fixed β = 0.2 to illustrate the variation
around the same predicted TM as before by plotting the his-
togram of the MRSE, computed from 1000 trials of synthetic
matrices. We see that although most synthetic TMs are close
to the predicted TM, the MRSE variance around the average
response is large, so our error model generates variation which
is useful in applications. The point that we make here is
that our scheme does not produce TMs that have little to no
variation from the predicted TM.

Table I compares the SANM against the (truncated) additive
(1) and multiplicative (2) models across several important
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Model Parameter Mean % zeros Admissible Centred Controlled PEVA

Additive σ = t̄ ≈ 50.0 3 7 3 7

Multiplicative σ = 1 13.6 3 Almost 3 7

SANM β = 0.2 0.0 3 3 3 3

TABLE I
COMPARING THE (TRUNCATED) ADDITIVE, MULTIPLICATIVE ERROR MODELS AND SANM OVER SEVERAL CRITERIA. PEVA IMPLIES THAT THE ERROR

OF THE GENERATED MATRIX ELEMENTS SCALE IN PROPORTION TO THE SIZE OF THE PREDICTED TM ELEMENT AS NOISE INCREASES. MODEL
PARAMETERS WERE CHOSEN SO THAT THEIR MRSES ARE ROUGHLY 1.
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Fig. 4. MRSE variation around the predicted TM with β = 0.2. The predicted
TM T is from Abilene data, the average traffic over time 02:00 to 02:05
hours, 1st March 2004. The histogram is based on 1000 trials. Although many
synthetic TMs are close to the predicted TM, there is a noticeable variability
from the predicted TM.

criteria: admissibility, centredness, controllability and whether
they satisfy PEVA. For a fair comparison, their parameters
were chosen so that their MRSEs are roughly 1, by setting
parameters to the values in the second column of the table.
We conducted 10,000 trials of each model for testing.

Only SANM satisfies all the required criteria. Also, as seen
in the third column, because the other models produce a high
number of zeros, convergence of IPF based on their inputs is
not guaranteed. For instance, in our trials, the additive model
produces 2 inputs that do not converge with IPF. We didn’t
observe this problem for the multiplicative model, but SANM
has a theoretical convergence guarantee that it lacks.

By computing the average of the 10,000 trials, we found
that the multiplicative model is almost centred. PEVA is not
satisfied for the additive and multiplicative models. Both can
be explained by truncation effects: the restriction of TMs to
the non-negative plane results in generated entries that are
asymmetric around T’s entries, so there are generally more
values that are greater than the predicted TM’s entries. In
contrast, SANM’s generated entries are symmetric around T’s
entries, as it produces non-negative matrices for IPF.

In practice, the saturation to the gravity model in the high
β regime is not a handicap in any way. Since we are mostly
interested in variations around T in the MRSE range (0, 1],
so β does not have to exceed 0.2 in most cases.

If there are very large errors present in traffic measurements,
then the measurements essentially convey no information. Our

model handles large errors gracefully, since it produces a
positive matrix almost surely, so IPF is guaranteed to converge
to a solution, and that solution is the gravity model which is
a reasonable choice in the absence of other information.

Under more general convex constraints, IPF converges to the
maximum entropy model. When very large errors are present,
the prior distribution becomes uninformative and is no better
than the uniform distribution, so the KL divergence reduces
to the Shannon entropy [2]. Minimising the KL divergence to
the uniform distribution is equivalent to maximising Shannon
entropy.

Real TMs are known to be approximately low rank [35].
We therefore test if our synthetic TMs are approximately low
rank. The distribution of the TMs’ singular values σk are
shown in Figure 5 for β = 0.2 and 1, representing low- and
high-noise regimes. The predicted TM T from the Abilene
data has approximately low rank. We see that in both cases,
the generated TMs have similar rank structure. From the bars
i.e., the 95% confidence level, we also see that there is more
variation in the singular values when β = 1. Also shown, in
both cases, are the singular values of an instance of a synthetic
TM from SANM, which lie within the 95% confidence level.

We see here that if T is approximately low rank, and if
the noise does not change the approximate low-rank nature,
the generated TMs are approximately low rank. Moreover,
even with β = 1, the TMs remain approximately low rank,
though the singular values no longer track those of T’s
as closely. Unless β is set to extremely high values, the
approximate low-rank property should remain as long as T
itself is approximately low rank. Though not shown here due
to space constraints, the property is preserved for various other
TMs taken from Abilene data.

V. CONCLUSION

Predictions of a TM, although useful, include errors which
may impact the applications they are used for. In this paper,
we proposed a method to generate synthetic TMs around
a predicted TM to account for the variations due to pre-
diction errors. The method is admissible, centred and more
importantly, controllable by a single parameter. Our method is
also fast, satisfies the PEVA property, and preserves the rank
structure of real TMs on which we validated our method. The
method has been applied to the design of networks and their
sensitivity analysis to TM variations, as well as the design of
networks based on risk measures in [29]. Future work includes
generating ensembles of TMs satisfying prescribed moment
information and studying IPF’s action on random non-negative
matrices.
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Fig. 5. Comparing the ensemble mean singular values σk of TMs generated by SANM to the predicted TM T from Abilene and an instance of a single
synthetic TM from SANM. The bars represent 95% confidence intervals on the means. The predicted TM T is from Abilene data, the average traffic over
time 02:00 to 02:05 hours, 1st March 2004. All generated TMs are approximately low rank, and the singular values in the low noise regime (a) are closer to
the predicted TM’s than in the high noise regime (b). Note that the singular values of a synthetic TM instance is well-within the 95% confidence interval.
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APPENDIX A
ASYMPTOTICS OF THE SANM

Here we obtain intuition on the average behaviour of the
SANM in the limit of large β. The limit corresponds to
the case where we have very inaccurate TM predictions.
The matrices must still satisfy admissibility constraints: non-
negativity, row and columns sums, and conservation, but
otherwise we have essentially no information about these
matrices. In this limit, it would make sense to use a maximum
entropy model, that is, to use a model that postulates the
minimum additional assumptions about the traffic matrix, in
the absence of any prior beliefs beyond the explicit constraints.
Prior work [17], [34] has shown that the maximum entropy
model for a TM under these constraints is the gravity model.
We indeed found that this was a reasonable approximation for
the limiting distribution of our matrices, and so we seek to
explain it intuitively in this appendix.

We are interested in E[S] when β → ∞. The major
complication is the nonlinear action of IPF on Y, making
it difficult to analyse the output of IPF. Moreover, since
the input are random matrices, DGKL(X ||Y) is itself a
random quantity (in this sense, it is not the same as the
canonical KL divergence), so minimising DGKL(X ||Y) is
only deterministic conditioned on knowing Y.

Recall that IPF is minimising (5), so

E[S] = E

[
argmin
X∈RN×N

DGKL(X ||Y)

]
, (8)

subject to the usual admissibility constraints.
First, as β → ∞, the predicted traffic matrix has an

insignificant effect on the matrix Y, so we find that the yi,j
are distributed as scaled χ2 random variables, with one degree
of freedom, and that E[yi,j ] ' β2, i.e., (3) leads to

yi,j ' β2z2i,j , (9)

where zi,j ∼ N (0, 1), and hence E[Y] = β21N1T
N , where

1N is the vector of N ones.
We next show that β does not affect the final IPF solution

beyond the first half step. Let Beta(a, b) denote the Beta
distribution with scale parameters a, b > 0. We express (9)
as

yi,j ' β2Xi,j , (10)

where Xi,j := z2i,j . In the first half step i.e., k = 1/2, we
have, ∀i,

s
(1/2)
i,j = ri

βXi,j

β
∑N

j=1Xi,j

= ri
Xi,j∑N
j=1Xi,j

,

where the random variable
Xi,j∑N
j=1Xi,j

∼ Beta
(

1

2
,
N − 1

2

)
.

The mean of this quantity is 1/N , so E
[
s
(1/2)
i,j

]
= ri/N .

Clearly, after this half step onwards, the parameter β has been
cancelled out, so we don’t need to consider it henceforth.

It is may be possible to compute the distribution of the out-
put of IPF beyond step 1/2, but this would entail deriving the
distribution of the ratios of random variables (the distribution
of the ratio of Beta distributed random variables is needed),
but this distribution does not have a closed form.

Instead, we consider the problem

S̃ = argmin
X∈RN×N

DGKL

(
X
∥∥E[Y]

)
, (11)
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subject to the admissibility constraints, which is the solution of
the optimisation problem for the average matrix E[Y]. Since
E[Y] ' β21N1T

N and is therefore a single rank matrix, then
by the discussion in Section III, S̃ = rcT/T .

The solutions of (8) and (11) are not equal, but we can
argue that they are close in the limit. First, note that the yi,j
are IID random variables, so Y is composed of an ensemble
of N2 IID random variables. The Asymptotic Equipartition
Theorem [2, Ch. 3], guarantees that asymptotically the typical
set of instances of Y will have probability near one, and
elements of this set will have approximately constant prob-
ability. So we can loosely think of the ensemble Y as being
largely composed of typical instances, each equiprobable. The
constraints in the problem are linear, so the space onto which
we are projecting is a linear subspace of RN×N . Moreover,
the optimisation is to minimise the “distance” to this subspace,
and so we can think of it as projecting the ensemble Y onto
the subspace. Finally expectation is a linear operator itself, so
for N2 large and β →∞, we have S̃ ∼ E[S].

Intuitively, once the noise overwhelms any prior beliefs
of the network’s traffic obtained from the predicted matrix,
the IPF defaults to a solution with maximum entropy, which
matches the empirical results.
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