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The Problem

Traffic Matrices

simply a matrix of traffic from A→ B

fundamental input for most network planning (invariant)

But good network data are notoriously hard to get, and inaccurate

measurements are an afterthought
I often you don’t get what you would like
I measurements aren’t calibrated
I missing data is a big issue

big data
I sampling, sketching, ...

prediction
I planning needs predictions, which have errors
I what about green fields planning?
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Existing Network Planning Solutions

Ignore the issue, and make a guess

Make a guess, and then add 50%

Oblivious routing
I routing scheme that works for any traffic matrix

Valiant network design
I network design that works for any traffic matrix

Are any of these used?
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Valiant network design [Val82, ZSM04, ZSM05]

access network

backbone node
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Valiant network design

Abstract the access network to have capacity C

C

C C

CC

C
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Valiant network design

Simple case (which can be generalized)

don’t know the traffic matrix tpq

assume access capacity C to each backbone node

this limits traffic matrix∑
q

tpq ≤ C and
∑
p

tpq ≤ C

route traffic demand tpq as follows
I divide it into |N| even groups
I route group i as follows p → i → q
I load balance across all of the possible 2 hop routes
I do the same for all p, q ∈ N
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Valiant network design

p

qi

p

q
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Valiant network design

compare to direct routing
I each packet traverses 2 hops
I 2× the bandwidth needed over optimal (a star)

but it is oblivious to the traffic matrix
I this design is provably the best oblivious network design [ZSM05]

(given a certain cost model).

it also has great advantages for survivability
I can survive any combination of node failures
I highly robust to link failures as well
I only need marginal increases in link capacities
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Better yet

both of the above approaches assume we know don’t know the traffic
matrix

I they are oblivious
I but that has a cost in terms of efficiency

but in reality we know something
I e.g. SNMP measurements of traffic on links
I e.g. partial netflow across network

can we design a network using the information we have, but
taking into account the information we are missing?

I obviously we can, but how?
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Mean-Risk Analysis in Finance

Reduce volatility (and hence risk) of a portfolio by including multiple
“uncorrelated” stocks

Overall risk is reduced by balanced portfolio
I no such thing as a free lunch
I lowers returns if we knew the future
I but in absence of predictions, we are overall better off
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Imagine we need to carry the traffic ti ,j
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t4D

optimal capacities
ci ,j = ti ,j

( School of Mathematical Sciences University of Adelaide [3mm] )Network-Design Sensitivity Analysis July 2, 2014 11 / 29



Now assume we don’t know the ti ,j exactly
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t4D

assign capacities
ci ,j = t̂i ,j + γσi ,j

I t̂i,j is predicted traffic
I σi,j is some estimate of possible errors
I γ is a over-build factor
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Issues

We can often get predictions t̂i ,j

Estimating errors σi ,j in predictions is harder

Choosing γ is hard
I it balances risk against efficiency
I it’s hard to choose because the balance is poor here
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So lets build it more like this
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C

it’s “less optimal” in one sense
I we have to build more links
I but shorter links are usually cheaper

the one long link multiplexes the traffic from left to right
I capacity on long link

C =
∑
i,j

t̂i,j + γσ
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Assuming independent errors

σ 6=
∑
i ,j

σi ,j

To determine σ we need an error model

very typically, people use IID Gaussian

σ2 =
∑
i ,j

σ2i ,j

e.g. if σi ,j above were 2

σ =
√

4 + 4 + 4 + 4 = 4 =
1

2

∑
i ,j

σi ,j

So when errors are large enough

C =
∑
i ,j

t̂i ,j + γσ <
∑
i ,j

ci ,j
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Multiplexing gain

The phenomena is called multiplexing gain
I its been well known for a long time
I but it doesn’t seem to be used (explicitly) in IP network design?

The analogy with finance is clear
I a portfolio decreases risk by including shares whose risks are (hopefully)

uncorrelated, so total risk is less
I multiplexing does the same

There is a cost for lack of knowledge
I it doesn’t have to be too bad
I but you don’t want to ignore data
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Networks

Networks are more complicated than the above example but same deal
applies

optimal when traffic is known isn’t robust (its sensitive)

optimizing separately is a bad idea

so some aggregation should happen
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Tricky bits

The goal to balance risk with optimality

What is risk here
I is IID Gaussian a good model for errors?
I how do we measure risk?

What is optimal
I lots of work on network design, so we will use a simple case

How do you balance them?
I stochastic optimization
I but still need a hook?
I we will do it using an ensemble of synthetic traffic matrices
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Traffic Matrix Synthesis 101

Simplest idea is IID, but Gaussian doesn’t work
I Log-normal [NST05]

F reasonable match to observed distribution
F doesn’t have any structure

Gravity model [Rou05], e.g.
I generate “populations” pi

I traffic ti,j
ti,j ∝ pipj

I matches some structure, and distribution
I certainly isn’t perfect

Not a lot of other research on the topic
I and we want to do something slightly different anyway
I we don’t want a completely random ensemble
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Our goal

Generate an ensemble of TMs “like” a predicted matrix

admissible
I satisfies constraints

F non-negative
F imposed by network

centered
I their average centers on the predicted matrix

controlled
I variance around the predicted matrix can be controlled
I linear parameter β
I similar to the role of σ in Gaussian case
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Typical methods

Form ensemble by adding noise zi ,j

usually IID

often Gaussian

Additive : yi ,j = ti ,j + σzi ,j ,
Multiplicative : yi ,j = ti ,j

(
1 + σzi ,j

)
,

Both have problems:

IID loses any structure

Allows negative values
I can truncate, but this introduces 0s, and de-centers

Scaling
I multiplexing means estimates of large elements should be relatively

more accurate
I neither of these have the correct scaling
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Constraints

Start with admissibility: describe by constraints

We use four sets of constraints

1 Non-negativity : ti,j ≥ 0, ∀i , j = 1, 2, · · · ,N,
2 Row sums:

∑
j ti,j = ri , ∀i ,

3 Column sums:
∑

i ti,j = cj , ∀j , and
4 Total traffic:

∑
i,j ti,j =

∑
i ri =

∑
j cj = T ,

Chosen to be exemplars
I Easier to measure/predict total in/out traffic at a PoP
I Matched to previous work on inference

Could have any convex constraints
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Spherically Additive Noise Model (SANM)

Let’s enforce fundamental constraints by design

Note that for non-negative traffic we can write it

ti ,j = a2i ,j

And total traffic constraints says∑
i ,j

a2i ,j = T ,

So traffic matrix sits on a N2 dimensional hyper-sphere
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Spherically Additive Noise Model (SANM)

So, add noise in the N2 dimensional space, along the hypersphere

form new matrix
yi ,j = (ai ,j + βzi ,j)

2

then scale back to hypersphere, i.e., like normalizing
I we are adding noise for a point on the hyper-sphere (hence the name)

use Iterative Proportional Fitting (IPF)
I finds “closest” TM on the hyper-sphere that fits the constraints
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Synthesis Analysis
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Network Design
We have looked at a few cases, but lets just take one here: redesign of
Abilene
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Conclusion

Good design needs robustness to errors in predictions
I extreme case is oblivious, but this is wasteful
I using a little bit of information can improve things

Mechanism to do so is to be able to generate synthetic traffic
matrices

I Spherically Additive Noise Model
I nice properties
I seems to work in practice
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, Designing a predictable Internet backbone with Valiant load-balancing,
Thirteenth International Workshop on Quality of Service (IWQoS) (Passau,
Germany), June 2005,
http://tiny-tera.stanford.edu/~nickm/papers/index.html.

( School of Mathematical Sciences University of Adelaide [3mm] )Network-Design Sensitivity Analysis July 2, 2014 29 / 29

http://tiny-tera.stanford.edu/~nickm/papers/index.html

