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ABSTRACT

Traffic matrices describe the volume of traffic between a
set of sources and destinations within a network. These
matrices are used in a variety of tasks in network plan-
ning and traffic engineering, such as the design of net-
work topologies. Traffic matrices naturally possess com-
plex spatiotemporal characteristics, but their propri-
etary nature means that little data about them is avail-
able publicly, and this situation is unlikely to change.
Our goal is to develop techniques to synthesize traffic

matrices for researchers who wish to test new network
applications or protocols. The paucity of available data,
and the desire to build a general framework for synthe-
sis that could work in various settings requires a new
look at this problem. We show how the principle of
maximum entropy can be used to generate a wide va-
riety of traffic matrices constrained by the needs of a
particular task, and the available information, but oth-
erwise avoiding hidden assumptions about the data. We
demonstrate how the framework encompasses existing
models and measurements, and we apply it in a simple
case study to illustrate the value.

Categories and Subject Descriptors

C.2.5 [Computer Communications]: Local andWide
Area Networks—Internet ; C.4 [Performance of Sys-
tems]: Modeling Techniques
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1. INTRODUCTION

A Traffic Matrix (TM) describes the traffic volume
between a set of sources and destinations in a network.
TMs are used as inputs in a variety of network planning
and traffic engineering tasks. For instance, new power
aware routing and traffic engineering algorithms [9] need
TMs for testing and validation. TMs are also required
for network traffic forecasting and planning [32] and
topology generation [5]. The lack of public TM data
remains an obstacle to researchers in these areas.
The main reason for this lack is the propriety nature

of TMs: network operators are reluctant to release such
data as they fear it may lead to the erosion of their
competitive advantage. Consequently, researchers re-
sort to testing network designs on limited public data,
such as from the Abilene [23] or GÉANT [41] networks.
These, however, are research and education networks,
leading to the possibility that they are not representa-
tive of commercial networks. Even the release of a sin-
gle commercial operator’s TM data would not quell the
question of representativeness – so we really need many
such datasets. Hence, the current deficit is unlikely to
be remedied in the foreseeable future.
Researchers also need multiple TMs to test ideas sta-

tistically and in order to have ground truth when test-
ing inference techniques. To do this, large ensembles of
TMs must be generated, so that confidence intervals on
the performance of these techniques be meaningful.
We can solve these issues by synthesizing TMs, but

how can we create a good model for synthesis without
first having data? The answer is to abandon the typical
network modeling approach – measure then model – and
think about the problem from first principles.
Additionally, we are not aiming here at the typical

target of past TM research: better inference of TMs
from limited data [14,22,35,45,48]. When we synthesize
a TM, we have different requirements:

• Control: A particular network protocol we aim to
test will make assumptions. We should be able to
generate TMs that match those assumptions to test
its performance. For completeness, we also need to
generate TMs that violate the assumptions, to test
what happens to the protocol in unfriendly situations.
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The required assumptions and constraints on TMs
will vary from setting to setting. However, in creating
TMs that satisfy some set of assumptions, we should
not be forced to introduce additional (often hidden)
assumptions about the traffic. We want to include
the desired constraints on the TMs but no others.

• Efficiency: We want to be able to generate potentially
large numbers of TMs computationally efficiently to
obtain clear statistical measures of performance.

• Consistency: We want to make apples to apples com-
parisons: two studies using the same model should
reach the same conclusions (regardless of specific ran-
dom values), so we need to be able to draw instances
from a well-defined, consistent ensemble of TMs.

• Simplicity: A model should be “as simple as it can be
– but not simpler” [7]. Simplicity has many virtues:
it improves our intuitive understanding, reduces the
complexity of parameter estimation, and prevents over
fitting. Part of simplicity is parsimony of parameters,
and part is having meaningful parameters.

Finally, we might like our TMs to be“realistic”, but that
might vary tremendously from setting to setting: for in-
stance it seems likely that Wide Area Network (WAN)
TMs are nothing like data center TMs. So realism is
context dependent, and our goal here is to create a
framework that can encompass and be adapted easily
to any such setting. Indeed, if some data is available to
populate a model in a particular context, we would like
our framework to be able to include that data.
Our approach is based on the principle of maximum

entropy (MaxEnt) [15]. Information theory and its dar-
ling entropy have been applied to inferring TMs in the
past with success [31, 45,46], but there are some subtle
differences between creating models for inference and
synthesis. Most notably, we don’t necessarily have any
data, though if we do, we would like to incorporate it.
The resulting MaxEnt framework encompasses and

extends most of the existing models for TMs, e.g., [31,
36]. The models it produces are conservative in the
sense that they do not assume anything about the TMs
beyond the given constraints. The framework also links
the constraints and assumptions directly to models, so
that we can learn from an existing model exactly what
minimal set of assumptions led to it.
A list of our contributions are as follows:

• a systematic methodology for generating controlled
synthetic TMs with prescribed properties, achieved via
the principle of maximum entropy,

• closed-forms of example models that would be useful
in testing various network algorithms (e.g., routing
protocols) and network designs,

• fast generation of ensembles of TMs with spatiotem-
poral properties, and

• a unification of previous TM models under the family
of maximum entropy models.

We examine the utility of our approach through its
use in topology generation [5]. Here, the topology is de-
signed around a set of TMs as input. Our case study’s
two chief findings are 1. although TMs have an impact
on the topology design, the impact of some TM fea-
tures is small, consistent with the findings of [5], and
2. optimizing a network around the peak TM is almost
as good an approach as optimizing with respect to a
whole-of-week pattern, supporting the common practice
of basing designs around a peak traffic measure such as
a busy hour.
Our code is at https://github.com/ptuls/MaxEntTM

2. BACKGROUND

2.1 The principle of maximum entropy

The principle of insufficient reason, often credited to
Pierre Simon Laplace in the late 18th century, states
that given an observation one should remain undecided
about all the potential events explaining the observa-
tion. In other words, one assigns equal probability to
each event. Laplace and Jacob Bernoulli considered the
concept to be intuitively obvious, seeing little need to
formalize it [37].
The principle of maximum entropy formally defines

and generalizes the principle of indifference. Proposed
by Jaynes [15] in the context of statistical mechanics the
principle advocates that, given data, we should choose
the distribution providing a plausible explanation of
the observations while making the fewest assumptions.
Jaynes showed that several models in statistical me-
chanics arise as a natural consequence.
The principle is defined in terms of Shannon infor-

mation entropy [10]. If X is a discrete random variable
taking values in set X with probability mass function
p(x), then Shannon’s entropy is defined as [10]

H(X) = −
∑

x∈X

p(x) log p(x), (1)

with the convention 0 log 0 = 0. Entropy measures the
average uncertainty of a random source, for instance,
if X is completely deterministic, H(X) = 0. Shan-
non’s entropy is used because it is the only measure that
nicely separates independent components in a joint dis-
tribution, and has a natural axiomatic derivation as a
measure of uncertainty [34].

The principle of indifference now arises as a special
case: when the only constraint is that p(x) be a prob-
ability distribution, the entropy is maximized by the
uniform distribution. Thus, maximizing entropy is con-
sistent with the intuitive notion of being least commit-
ted to any one outcome, i.e., indifference.
If additional observations exist, we describe them as

constraints on the data. MaxEnt states that the best
strategy is to choose a distribution that maximizes en-
tropy subject to these constraints. The solution is one
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that conforms to known observations about the data
and no more than that.
Jaynes [15] used the Shannon entropy to construct

the MaxEnt framework. Since we consider continuous
Random Variables (RVs) as an approximation of the
traffic volumes, we use the differential entropy [10],

h(f) = −

∫ ∞

−∞

· · ·

∫ ∞

−∞

f(X ) log f(X ) dX , (2)

of a random TM process X with distribution f(X ).
Suppose by experimental observation, there are L+1

constraints on the data E[φℓ(X )] = bℓ (where φℓ(·) is a
convex function and bℓ is a scalar value setting the con-
straint) are known. The constraint E[φ0(X )] = 1 is the
normalization constraint (that applies to all probability
distributions). The MaxEnt optimization problem is

max
f(X )

h(f), s.t. {E[φℓ(X )] = bℓ}
L
ℓ=0, and X � 0, (3)

where X � 0 denotes non-negativity, a constraint we
enforce on all TM models.
In the cases we primarily consider, the problem is

convex so any local maximum is the global maximum,
the solution being the maximum entropy model. Non-
convex functions are possible, but more effort is required
to search for the globally maximum model.
Boltzmann’s theorem [15] states that the optimal so-

lution takes the form of distributions from the exponen-
tial family, generically given by

f(X ) =
1

Z
exp

(

−
L
∑

ℓ=1

λℓφℓ(X )

)

, (4)

where the {λℓ}Lℓ=1 are the Lagrange multipliers obtained
via the Calculus of Variations applied to (3), and Z is
the normalization factor which incorporates the normal-
ization constraint.

2.2 Entropy and TM models

A general introduction to modeling TMs can be found
in [38]. We examine some of these models in detail here
so that we can discuss how they relate to our framework.
Zhang et al. [45, 46] used a technique referred to as

maximizing relative entropy to develop TM inference
methods. However, this is different from maximum en-
tropy modeling. Zhang et al.s’ approach was aimed at
finding a particular TM that matched data and was
close to a prior model (in their case the generalized grav-
ity model). Here we aim to create a model, not estimate
a particular TM. The output of our approach is a dis-
tribution, not a TM. The part of that work closer to
our own is in their prior model: we shall discuss gravity
models and their ilk at length here.
Roughan [31] proposed using a random gravity model

as a spatial model for TM synthesis, and Oikonomou
[25] noted that it is a MaxEnt model for traffic under a
certain set of assumptions. In fact, if one examines the

transportation literature, that insight is even older [28].
This is a single case of the framework presented here.
The work listed above considered spatial TMs only.

The only work of which we are aware specifically on
spatiotemporal synthesis was that of Nucci et al. [24],
who developed static, dynamic stationary and dynamic
cyclo-stationary models of TMs. Their spatial model
was simple: a log-normally distributed Independent and
Identically Distributed (IID) set of TM elements were
generated. However, their models’ raw outputs might
not conform to pre-specified constraints, such as link
capacities, necessitating adjustments to make them ad-
missible TMs. We show here how this IID model fits
into the MaxEnt framework, and how the framework
allows us to avoid this ad hoc mapping step.
Most other works proposing spatiotemporal TMmod-

els do so with the aim of improving inference accuracy,
rather than addressing the synthesis problem (though
occasionally, passing reference has been made to poten-
tial alternative uses of their models). Soule et al. [36]
proposed two models of Origin-Destination (OD) flows,
one stationary and the other cyclo-stationary. Roughan
et al. [33] developed a simple purely temporal model of
OD flows traversing backbone routers comprising of a
growth trend component, a seasonal component and a
component for sudden spikes in traffic due to anomalies.
Zhang et al. [48], exploiting new developments in signal
processing, developed a model under the assumption of
spatiotemporal low rankedness, enabling accurate TM
inference via convex programming [8, 30].
Another work addressing the synthesis problem is

[40], but its focus is entirely different. Our conceptual
model in that paper was to help a network operator
understand the effect of errors in predictions of TMs.
In that context, the idea was to generate an ensemble
of TMs centered around the prediction, whereas here,
we do not require prior data about the TM, only con-
straints on its general properties. Interestingly, as the
errors become large in that model, the results approach
a maximum entropy distribution, which is exactly what
we propose here: when little is known about the TM,
MaxEnt provides a natural path towards modeling.

Notation: The column vector of N ones is denoted
by 1N . Some common statistical distributions are used
here:

• An exponentially distributed RV X with mean 1/λ is
denoted X ∼ Exp (λ).

• The continuous uniform distribution in the interval
[a, b] is denoted by U(a, b).

• X ∼ N (µ,Σ) means that X is distributed as a nor-
mal distribution with mean µ and covariance Σ.

• X ∼ TNorm (µ,Σ) means that X is distributed ac-
cording to a truncated normal distribution with sup-
port I := [0,∞)N . Note that µ and Σ are the mean
and covariance after truncation.

We define all other notation when needed.



3. SPATIOTEMPORAL TM SYNTHESIS

Network traffic information is contained in the TM
X(t), which measures traffic between locations in a net-
work. Traffic is typically measured in discrete time in-
tervals, with 5 to 15 minutes. So a “traffic matrix” is
actually a series of matrices:

X(tk), k = 0, 1, · · · ,M − 1, (5)

where Xi,j(tk) denotes the average volume of traffic en-
tering node i and exiting node j in a measurement in-
terval [tk, tk+1).

Let X := {X(tk)}
M−1
k=0 denote the TM process. We

are concerned here with the distribution governing the
generation of X , denoted by f(X ). In general, mul-
tivariate stochastic processes are all governed by such
a distribution, which here define an ensemble of TMs.
However, all successful models simplify this high dimen-
sional construct in some (usually dramatic) way.
Although network traffic is discrete in nature (mea-

sured in bytes or packets), we model the TM entries as
continuous RVs. This assumption is reasonable where
we consider high volumes of traffic.
Spatial properties of the TMs refer to the statistical

properties between the TM entries either at a fixed t,
i.e., a snapshot X(tk), or over time, e.g., the average

TM 1
M

∑M−1
k=0 X(tk). We consider a network with N

locations, so each snapshot is an N ×N matrix.
Temporal properties refer to the statistical properties

only varying with t, either with fixed spatial indices,
i.e., the process Xi,j(tk), or some summary such as the
total traffic S(tk) =

∑

i,j Xi,j(tk) at each time point tk.

3.1 Maximum entropy models

In the introduction we discussed the qualities that
make a good synthesis model. In this section our pri-
mary foci are simplicity and controllability.
Testing does not (necessarily) require realistic input,

since the goal is to understand the effect a specific in-
put has on an algorithm. For instance, inputs could
be extreme cases, such as a TM with its total traffic
spread uniformly over all entries (called a uniform load
model [6,38]). What we do need is the ability to control
the input of an algorithm to perform systematic tests.
Chiefly, we need to incorporate what we believe about

the network. Different types of networks have different
properties and constraints. For instance, data centers
have entirely different traffic mixes from WANs [1, 16]
so there exists different constraints on their respective
TMs. The constraints we primarily consider here are
in the form of constraints on statistics of the TM: for
instance, a constraint on the average or expected value
E[·] of some aspect of the TM. Deterministic constraints
can also be added, but are rather simpler to analyze, so
we focus on the more difficult case.
Though we primarily focus on WANs, the general

methodology provides tools for researchers to develop
synthesis models for alternative networks. Part of the

Compute maximum
entropy distribution

Spatial
dimension N

Temporal
dimension M

Constraint set

Maximum
entropy distri-
bution f(X )

Sample from
distribution

Synthetic TMs
{X(tk)}

M−1
k=0

Figure 1: Methodology of the spatiotemporal synthesis of
the maximum entropy TMs. The rectangles denote the in-
puts and outputs at each stage, while the rounded rectangles
denote the stages of the process. The steps generate one run
of M matrices.

goal here is to provide a modeling framework for re-
searchers even before a new technology is deployed, to
understand its properties under various hypotheses.
Figure 1 presents an overview of our methodology.

The inputs are the set of constraints, and the spatial and
temporal dimensions N and M respectively. Solving
(3) gives the MaxEnt distribution f(X ), which entails
computing the Lagrange multipliers {λℓ}

L
ℓ=1. Gener-

ally, these can be computed using the Newton-Raphson
method (see [43]), but it is more instructive where we
can derive closed forms for the distributions, and so we
spend some effort here to derive a number of such mod-
els in a manner that is explanatory and extensible.
Finally, f(X ) is sampled to generate the synthetic

TM process X . Again, this can be achieved numeri-
cally, say via Markov Chain Monte Carlo (MCMC) tech-
niques, but we demonstrate several models for which
sampling can be performed much more efficiently. Con-
straints that often arise in TM research lead to closed
forms, which in turn provide fast sampling methods.
For all models, let R(tk) = X(tk)1N and C(tk) =

X(tk)
T1N , i.e., the row and column sum processes (to-

tal ingress and egress traffic), and S(tk) denotes the
total traffic in each interval tk.
Model derivations involve (sometimes) lengthy, but

standard derivations, and so in the interests of space we
omit the details. However, there are some simple facts
which should make the results somewhat intuitive:
1. Given the constraints of non-negativity and mean,

the MaxEnt distribution is the exponential [27].



2. With both a mean and variance constraint, the Max-
Ent distribution is the Normal distribution, and if we
add to this the requirement of non-negativity, then
the MaxEnt distribution is the truncated normal dis-
tribution [39].

3. Many other distributions arise from other moment-
based or otherwise constraints on the RVs [27].

4. If we have two (or more) RVs, the MaxEnt model is
that the RVs are independent (unless there is a joint
constraint on the RVs) [10].

3.2 Purely spatial models

We divide our models into three classes: purely spa-
tial, purely temporal, and spatiotemporal models. First
generation TM models such as the gravity model [45]
and the discrete choices model [22] are spatial, so we
start there, noting that if we have no temporal informa-
tion, the TM snapshots will be independent (Property
4), so we need only focus on a single interval and thus
we drop tk from our notation.

Independent entries model: In the absence of con-
straints on the joint distribution of TM entries Xi,j ,
by Property 4, these will be independent. If we also
have homogenous constraints, i.e., they don’t favor any
group of entries, then the entries will be IID.
There are many subcases of this type. For instance

if the mean or expected value of each entry is fixed,
i.e., E[Xi,j ] = X̄, then the MaxEnt model has entries
Xi,j ∼ Exp

(

X̄−1
)

. If we further impose control on each

entry’s variance by setting the variance to σ2 then the
MaxEnt model has entries Xi,j ∼ TNorm

(

X̄, σ2
)

. If
instead we only set bounds [DL, DU ] on each TM entry,
the MaxEnt model has IID entries Xi,j ∼ U(DL, DU ).
These models are perhaps oversimplified, but they

have been used! For instance, the Poisson model of
Vardi [42] and the log-normal model of Nucci et al. [24].

In the latter case we can derive an interesting insight.
The log-normal distribution is the result of constraints
on the average and variance of the log of entries [27].
The natural conclusion is that TM entries might be bet-
ter modeled in the log-domain.
However, the key takeaway message is not the log-

normal distribution, but rather that MaxEnt leads to a
link between the model and its hidden assumptions, and
these can provide potential insights into the data and/or
the validity of the model. Perhaps another model pro-
vides a slightly less tight fit to the data, but is simpler
and more intuitive when considered in this way, and
therefore has more explanatory power?

Outer product models: IID models are clearly lim-
ited. Real TMs have correlations. Two attempts to
build such correlations are the Random Gravity Model
(RGM) [31] and the mapping phase of [24].
Let us consider here a simple yet powerful method

of creating structure, which is to impose constraints on
the row and column sums of the matrix, an idea that

recurs through much of the TM literature1 (e.g., [14,
22,31,35,45,46]), and even into the realms of oblivious
design where TMs are assumed to be unknowable [49]
except for these constraints.
If we impose row and column constraints (only), then

the MaxEnt model is formed via an outer product: for
instance given non-negativity and the constraints

E[R ] =
T

N
1N , E[C ] =

T

N
1N , E[S] = T,

the MaxEnt model is given by the outer product

X =
T

N2
UV T, (6)

where Ui, Vj ∼ Exp (1). This case is in fact the RGM
of [31], and that illustrates how we can find new infor-
mation about minimal assumptions of a model. The
RGM was derived from data, but now we can under-
stand the hidden assumptions of the model.
More generally, given constraints E[R ] = r and E[C ] =

c, MaxEnt implies a model that has outer-product form

E[X ] =
1

T
rcT , (7)

and from this and the simple distributional arguments
above we can derive a set of rank-1 matrix models.
Much more can be said about outer-product mod-

els. There are many generalizations, many appearing in
older works in the transportation literature, for instance
MaxEnt models that include a distance friction term
that reduces traffic between distant locations. Such
terms have not had a clear justification in most Inter-
net studies, but can be included via a distance-cost con-
straint within the framework if needed [28].
One point, however, which we must make again is

that this type of approach applies to any matrix for
which we know row and column properties, and we will
reuse this idea in a moment.

3.3 Purely temporal models

An example of a purely temporal traffic model is that
proposed in [33], which focused on the long-term trends
and cyclical patterns in traffic. There are countless
other examples of such models, applied either to sin-
gle TM entries, link traffic or traffic totals. Our goal
here is not to describe the panoply of possible models,
but to present how these models fit within the MaxEnt
framework.
In the past, temporal models have chiefly been used

for traffic prediction2. Predictions generally estimate a
mean, and sometimes a variance around that mean.

1Row and column sums are really the ingress and egress
traffic volumes, hence their importance.
2It may appear that applications such as anomaly de-
tection are otherwise, but a closer look shows that most
such techniques revolve around predicting“typical”traf-
fic, and detecting outliers from these predictions.



As before, if only the mean of a set of (non-negative)
random variables is given, then the RVs will be inde-
pendent and exponentially distributed (Property 1). If
variance is also fixed, then the RVs will be indepen-
dent truncated normals (Property 2). More sophisti-
cated models are also possible, for instance, if the au-
tocovariances are also known [27], but these are rarely
reported in Internet studies so we won’t discuss these
models further except to note that they can be added
to the MaxEnt framework.
Thus, to derive a MaxEnt temporal model we might

choose a mean and variance as function of time and
then simulate from the truncated normal distribution.
The choice of mean and variance varies with the desired
network properties. Commonly, they would not be con-
stants but may include diurnal and weekly cycles.
It should be obvious that the above provides almost

too much flexibility. We can accommodate almost any
temporal model, so the question is how should it be re-
stricted to a reasonable set of models in practice. A very
simple case could arise from modeling cyclical behavior
using Fourier analysis, which is designed specifically for
that purpose. In this case we do so by choosing con-
straints on the Fourier coefficients of the traffic:

F

(

{

E[S(tk)− T ]
}M−1

k=0

)

= a. (8)

The coefficients a would be chosen to reflect the cycli-
cal nature of the traffic. Then the MaxEnt model is an
exponential model where the means at each time step
are given by E[S(tk)] = s̄(tk) = T+w(tk), {w(tk)}

M−1
k=0 =

F
−1(a) and F

−1 denotes the inverse discrete Fourier
transform. Notice that now the model generates values
that are only conditionally independent, not IID.
As in other cases, we could also control variances and

then would arrive at a truncated normal model.
Once again, note that the goal of this paper is to

show how knowledge can be exploited to construct a
temporal model, not to suggest that the above is the
only sensible approach. This approach, however, does
have the advantage that both Fourier transforms and
expectation are linear operators.

3.4 Spatiotemporal models

Now that we have both spatial and temporal mod-
els, we can combine ideas in those models to form spa-
tiotemporal models as follows.

Time modulated traffic: In most situations, we per-
haps know or can assume information about the spa-
tial and/or the temporal behavior. Many studies have
examined details of these two facets of network traf-
fic [19, 20]. Many more will no doubt follow, but also
remember that we wish to consider potential hypotheti-
cal future traffic sources, e.g., traffic in hosting centers.
It is often possible to reason about the temporal and
spatial properties of such hypothetical cases.

Importantly though, we rarely have information cor-
relating spatial to temporal behavior (though we will
note an important exception resulting from timezones
in the following model).
We proceed in this case using a common trick in TM

modeling (e.g., see [44, 48]). We stack the columns of
a single TM snapshot and then construct a new matrix
from the columns at each time interval, that is,

Y =









X∗,1(t0) X∗,1(t1) · · · X∗,1(tM−1)
X∗,2(t0) X∗,2(t1) · · · X∗,2(tM−1)

...
...

. . .
...

X∗,N (t0) X∗,N (t1) · · · X∗,N (tM−1)









(9)

The new matrix Y is also sometimes called the traffic
matrix, but now it is a N2 ×M spatiotemporal matrix.
We are then in the same situation as in generating

spatial models: we want to generate a matrix about
which we only have row and column constraints. A nat-
ural building block towards more complex spatiotem-
poral models is to consider a model with separate in-
dependent spatial and temporal components. Not sur-
prisingly, this has been studied by statisticians, and is
called a separable spatiotemporal model [11].

In our context, for instance, column-sum constraints
correspond to a model for the total traffic S(tk) at each
time tk, and row-sum constraints correspond to con-
straints on the average traffic per source/destination
X̄i,j . The logical construction then is to use the same
outer-product MaxEnt suggested for spatial models, i.e.,

E[Xi,j(tk)] = X̄i,j s̄(tk)/T, (10)

where T is the time average of s̄(·). When seen as a
matrix operation, this is just an outer-product of the
stacked vector version of X̄i,j and s̄(tk).
The MaxEnt model then takes the form Xi,j(tk) =

Gi,jP (tk), with E[Gi,j ] = X̄i,j and E[P (tk)] = s̄(tk)/T ,
i.e., separate spatial and temporal components. The ex-
act form of Xi,j(tk) depends on the constraints, again
with a constraint on means resulting in an exponen-
tial distribution, and constraints on mean and variance
resulting in a truncated normal. The decomposable na-
ture of the MaxEnt model allows mixing the two, using
one for space and the other for time.
We can also include detailed spatial structure. For

instance, we could have a model we refer to as the Mod-
ulated Gravity Model (MGM) where spatially we con-
strain the traffic by gravity-model-like constraints

1

M

M−1
∑

k=0

E[R(tk)] = r̄,
1

M

M−1
∑

k=0

E[C(tk)] = c̄, (11)

and temporally we require (8). The MaxEnt model is

X(tk) = TUV
TP (tk), (12)

Ui∼ Exp

(

T

r̄i

)

, Vj∼ Exp

(

T

c̄j

)

, P (tk)∼ Exp

(

T

s̄(tk)

)

,



where as before s̄(tk) := T + w(tk). Once again, if
we aim to control the variances, the relevant compo-
nents Ui, Vj and/or P (·) would follow appropriate trun-
cated normal distributions. The simplest choice is to set
Σr = Σc = σ2IN . Likewise, we can also control P (·)
by introducing a single variance parameter σp.

Note that these choices result in simple models, with
minimal parameters, and meaningful parameters that
can be directly related to network properties.
The model’s name comes from the fact that its con-

ditional mean is the RGM modulated by s̄(tk)/T , i.e.,

E[X(tk)] =
r̄c̄T

T

s̄(tk)

T
. (13)

Non-stationary conditionally independent model
(NCIM): Suppose the mean total traffic s̄(tk) is known,
but no temporal correlation information is available.
The MaxEnt model is non-stationary and conditionally
independent, with X(tk) independent ∀k, and

Xi,j(tk) ∼ Exp

(

N2

s̄(tk)

)

, ∀i, j, k. (14)

This model assumes no information on the row and col-
umn sums in each interval. If we also knew the mean
row and column sums, i.e., r(tk) and c(tk), ∀k then,

X(tk) = s̄(tk)U(tk)V(tk)
T, (15)

with Ui(tk) ∼ Exp
(

s̄(tk)
ri(tk)

)

and Vj(tk) ∼ Exp
(

s̄(tk)
cj(tk)

)

.

Including covariance information of r(tk) and c(tk) leads
once again to the equivalent truncated normal forms.
One interesting use of this model is for TMs of net-

works large enough that differing timezones distort traf-
fic patterns. Traffic cycles are determined by user be-
havior, which is in turn determined by timezones. In a
globe-spanning network, for example, users the side of
the world experiencing daytime might be transmitting
traffic, while users on the other side might not.
For instance, the Abilene network [23] spans North

America, with Points-of-Presence (PoPs) concentrated
on the East and West Coast of the United States. A
simple way to model the 3 hour difference in the traffic
cycle between the coasts is to set ri(tk) as a delayed,
or phase shifted, version of a base constraint r̃(tk) (and
similarly for cj(tk)). Once ri(tk) and cj(tk) have been
generated, we generate the NCIM using (15).
In §5, we study the spatiotemporal characteristics of

the above two models using Principle Component Anal-
ysis (PCA), which allows us to isolate traffic compo-
nents. We will find that the models emulate some char-
acteristics of real traffic, despite their simplicity.
In particular, these models are low rank, a property

shared by real TMs [3, 19, 20, 48]. The MGM actually
has a very good rank-1 approximation, and is in fact
a rank-1 (three dimensional) tensor [18]. The NCIM
model is hardly more complex, but the simple timezone
shift described above increases its rank. However, the
rank remains low.

Neither of these models can capture the spikes also
seen in real traffic, leading us to the next model.

Spike model: Anomalies occur in networks due to
worm propagation, distributed Denial-of-Service attacks,
or flash crowds, causing a sudden spike in demand of a
specific resource in the network [38]. These spikes have
been demonstrated to be a feature of actual traffic in
various studies [20,33]. Here, we present a simple model
for anomalies.
Under the constraint ‖X‖0 = K (and non-negativity),

i.e., exactly K entries of X are non-zero and all others
are zero, and setting the mean magnitude of the non-
zero entries to A, the MaxEnt model is

Xi,j(tk) ∼

{

Exp
(

A−1
)

, if (i, j, k) ∈ S,

0, otherwise,
(16)

where S is the support of non-zero entries of size K
sampled uniformly without replacement from the set
{1, 2, · · · , N}×{1, 2, · · · , N}×{0, 1, · · · ,M−1}. When
K = 1, the model is an example of the peak load model
[6] which is used to test network designs.

Traffic class constraints: Network traffic can often
be decomposed into several classes. For instance, dif-
ferent network services or applications possess different
characteristics, so naturally, there are separate informa-
tion about each. Assuming no dependencies, the prior
information on each of them are to be accounted for
separately by MaxEnt.
Several works provide strong evidence of distinct traf-

fic behaviors. Both [20, 33] showed that OD flows can
be divided into three groups: large flows with a strong
diurnal cycle, spike-like flows corresponding to anoma-
lies, and small, IID white noise-like flows. Suppose we
know that the TM process X = XD+X S+XN , where
XD comprises of large traffic flows with a distinct di-
urnal cycle, while X S and XN accounts for anomalies
(spikes) and small noise-like flows respectively. With
no correlation information between these components,
MaxEnt suggests that the processes XD, XS and XN

are independent. This means that we are free to solve
for the MaxEnt distributions of these processes sepa-
rately. To model large flows, we take XD to be the
MGM. The spiky traffic process X S is modeled by the
spike model and IID white noise process XN by the
independent entries model.
Traffic classes also apply to traffic traversing peer-

ing or access links in a network. For instance, let the
total traffic T (tk) be known for all k. Denote the ac-
cess and peer node sets as A and P respectively. Now
there are 4 classes of traffic: access-to-access (A,A),
access-to-peer (A,P), peer-to-access (P,A) and peer-
to-peer (P,P). Given the average total traffic con-
straints TA,A(tk), TA,A(tk), TA,A(tk) and TP,P(tk), with



∑

m,n∈{A,P} Tm,n(tk) = T (tk) [47], the model is

X(tk) = T (tk)
∑

m,n∈{A,P}

qm,n(tk)Um(tk)Vn(tk)
T,

(17)
such that

∑

m,n∈{A,P} qm,n(tk) = 1.

Here, source and destination nodes are independent
only within their traffic class. UA(tk) and UP(tk) are
equivalent to source independence stratified according
to access and peering nodes. There is independence
in the destination nodes through VA(tk) and VP(tk).
This form is equivalent to the generalized gravity model
[46,47], a successor to the gravity model [45], where in-
dependence is only assumed within each class of traffic,
leading to the notion of conditional independence.
Providing information on traffic classes is a natural

method to include additional data, and increase the
rank of the matrices if such is seen to be too low in
some problems.

General constraints: The constraints we have consid-
ered only scratch the surface of all possible constraints
on TMs, for instance, nonlinear constraints. In the
examples above, it is assumed that the information is
given without error. If one wasn’t confident about the
mean information of the TM, say, a mean squared error
(Frobenius norm) constraint could be used, i.e.,

E‖X(tk)− X̄‖F ≤ ǫ, ∀k, (18)

where ǫ > 0 is a scalar value. Essentially, this expands
the set of constraints from just linear to the more gen-
eral set of convex constraints.
Convex constraints guarantee that (3) has a unique

solution. Non-convex constraints may possibly arise in
certain applications. In this case, admissible solutions
have to be tested to find the global maximum of (3).
In practice, non-convex constraints are unlikely for

WANs. In fact, a priori information from measure-
ments can often be expressed as simple linear constraints,
since linear network measurements are easier to imple-
ment (e.g., internal router byte counts or SNMP mea-
surements). Linear constraints, besides guaranteeing
the existence of the MaxEnt model, typically result in
simple models with closed forms, so generating these
models are easy despite the high dimensionality of X .
However, in data centers, non-convex constraints might
arise due to entry sparsity and clustering constraints of
the server-to-server TMs [1, 2, 16].
Nonlinear constraints are unlikely to lead to analyti-

cally tractable closed forms of the distribution, but nu-
merical optimization methods can be used to compute
the Lagrange multipliers of (4) instead.

4. PROPERTIES

4.1 Model properties

We briefly remark about the models’ connection to
the axioms of MaxEnt. The seminal work of Shore and

Johnson [34] viewed MaxEnt as a natural consequence
of four (desirable) inference axioms:

A1 uniqueness : the solution of the inference problem
must be unique,

A2 consistent : either the optimal solution from a finer
set of constraints must also be an admissible solu-
tion in a coarser set of constraints, or there is no
solution at all in the finer set,

A3 system independence: information on several in-
dependent systems can be accounted either jointly,
or considered for each system separately, and

A4 subset independence: information of independent
subsystems (i.e., in a system) can be accounted
either jointly over the whole system, or separately
for each subsystem.

These axioms explicitly define the assumptions our
synthesis models satisfy. Generally, modeling relies heav-
ily on two principles: parsimony of parameters and in-
dependence between components. Both are inherent in
MaxEnt: parsimony is achieved by eliminating extrane-
ous assumptions, and information of components (and
subcomponents) are considered separately, in the ab-
sence of evidence that proves otherwise.
Thus, given convex constraints, Axiom A1 guaran-

tees a unique model. Models only get more refined as
new information is given, by Axiom A2. The indepen-
dence between the spatial and temporal processes arise
due to Axiom A3, since no correlation information be-
tween the spatial and temporal processes are known.
As an example, consider model (17). By Axiom A3,

each traffic class is an independent system. Since the
ingress and egress traffic of each traffic class is known,
by Axiom A4, the source and destination in each traf-
fic class are separated into subsystems. We then have
the notion of a hierarchical independence in the model:
independence between traffic classes (independent sys-
tems) and conditional independence within a class (in-
dependent subsystems).

4.2 Computational issues

Generating ensembles of TMs could be surprisingly
computationally expensive. For instance, given an arbi-
trary correlation structure, generating even simple nor-
mally distributed RVs would require specification of an
N4M2 covariance matrix, which might then need to be
inverted (depending on the method of generation).
Decomposing the correlation structure, and recom-

posing via simple matrix and vector products leads to
efficient methods for building the complete spatiotem-
poral correlation structure without ever having to rep-
resent this in memory.
Moreover, in our models, the distributions follow that

of (4), i.e., the exponential family of distributions. With
simple constraints, we need only generate classical dis-
tributions such as the exponential distribution, which
can be simply generated via von Neumann’s inverse
method [12], with a very low computational cost.
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Figure 2: Total traffic for one day of the MGM with σ2 = {1, 10}, σ2

p = {1, 100}, and PM ratios 1.5 and 2.

For more complicated distributions, we advocate the
use of the Hamiltonian Monte Carlo (HMC) [29], as
the method has the closest relationship to the expo-
nential family (4). For instance, the multivariate trun-
cated normal distribution is more efficiently generated
via HMC [26] compared to the standard Metropolis-
Hastings technique (further supported by our numeri-
cal experiments). HMC also avoids random walks, so
sampling from the distribution is far more efficient than
other canonical MCMC methods.
In addition, the independence property (Axioms A3

and A4), enables parallelization: independent model
components can be generated separately. For instance,
each independent traffic class can be synthesized in par-
allel, then combined to form the model.

4.3 An Example

Here, we demonstrate the synthesis of a series of TMs
from the MGM. To generate MGM, recall that we need
three components: the average incoming and outgoing
PoP traffic c and r respectively and the total traffic
T (tk) for times k = 0, 1, · · · ,M − 1. We set N = 20
and M = 672, which corresponds to 7 days with one
hour intervals.
The constraint for the temporal component is a sim-

ple one: a sinusoid with the frequency corresponding
to a daily cycle. This is a rough approximation of ac-
tual traffic, where peak traffic occur around mid-day
and troughs at night. The component has two parame-
ters: the mean traffic over the synthesis interval and the
peak-to-mean (PM) ratio, i.e., how high is the sinusoid’s
peak relative to the mean traffic. While simple, this ap-
proach has been used to test protocols for power-aware
routers [9].

The constraints r̄ and c̄ are set as proportions of

the mean traffic T̄ = 1
M

∑M−1
k=0 T (tk), i.e., r̄i = fiT̄

and c̄j = fj T̄ . The fractions fi are non-negative and
∑N

i=1 fi = 1, and they are generated randomly. We
use the truncated normal distribution for the spatial
and temporal components so as to allow control of their

variations. Independence between the components al-
lows them to be generated separately by the HMC.
Figure 2 presents the total traffic cycle for a day.

Note that the total traffic of the synthetic TMs vary
around the shape of the sinusoid. In Figure 2(b), in-
creasing the PM ratio from 1.5 to 2 results in a much
larger total traffic, as expected. The larger spatial vari-
ation (σ2 = 10) will cause large“swings” in traffic due to
a larger variation in the starting point i.e., the random
gravity model, for each run. As we vary σ2

p from 1 to
100, the generated traffic becomes “noisier”, so the total
traffic has more variations (Figure 2(c)). Note that the
constraints will be satisfied over whole ensembles of the
generated TMs, not necessarily in a single run.
Here, and in the examples to follow the TMs were

generated on a machine with a 3.06 GHz processor and
4 GB of RAM with both models coded in Matlab. Gen-
erating the TMs for this example took on average less
than a second. At M = 2, 016 in the next section, both
MGM and NCIM took about a second.

4.4 Model Analysis

Here, we want to know if our models replicate real
traffic properties, such as low-rank behavior. The mod-
els we test are the MGM and the NCIM with timezone
information (see §3.1).
We isolate the traffic components of the generated

TMs via PCA. PCA was used to analyze traffic in [19,
20] to show that there are three types of components of
OD flows, described in §3.4.

MGM: To construct constraint (8), we extracted the
23 largest Fourier coefficients from Abilene’s total traffic
[23], over a week starting 1st March 2003, measured
in 5-minute intervals, i.e., M = 2, 016. Besides the
coefficients, all other inputs, such as the mean row sums,
of the model were computed from the Abilene data.

NCIM: Base constraints r̃(tk) and c̃(tk) ∀k (time av-
erages r̃ and c̃) follow cycles derived from 23 Fourier
coefficients from the traffic of a PoP belonging to the
Abilene network located in New York (NY) over the
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(b) Largest component, σ2 = 10
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(c) Smallest component, σ2 = 10−5

Figure 3: Largest and smallest PCA components of the MGM and NCIM where 23 Fourier coefficients were extracted
from Abilene’s traffic. Both models were generated from multivariate truncated normal distributions with covariance matrix
Σr = Σc = σ2IN , and σ2

p = σ2. Control of the spatial and temporal variations is achieved by tuning σ2. Here, two examples

are shown with σ2 = {10−5, 10}.
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(b) σ2 = 10

Figure 4: Spatial PCA coefficients (25 out of N2 = 144) of the MGM and NCIM with variation control provided by
σ2 = {10−5, 10}. Only coefficient values above 10−2 are shown for clarity. Note the log scale of the y-axis. The MGM is
single rank, while the NCIM is almost full rank, with a handful of coefficients possessing large magnitudes.

same duration as before. All other constraints are de-
layed relative to the NY PoP. For instance, the traffic of
the Los Angeles (LA) PoP, is delayed by 3 hours, since
LA time is 3 hours behind NY time. The row and col-
umn sums are scaled by ri/r̃ and cj/c̃, ∀i, j, since time
averages ri and cj are known. Conservation of traffic
implies s̄(tk) =

∑

i ri(tk) =
∑

j cj(tk).
Both models’ spatial and temporal variations are con-

trolled through σ2, by setting Σr = Σc = σ2IN and
σ2
p = σ2.
Intuitively, we expect the MGM to be rank-1, so it

would be too simple to replicate the properties of real
traffic. The NCIM would then be a better choice since
it would still be low-rank, but with enough variations
to approximate a real TM process, since real TMs are
unlikely to be rank-1.
Figure 3 shows the coefficients of the PCA compo-

nents of the MGM and the NCIM with σ2 = {10−5, 10}.

For the MGM, we find that only the first component
(with the largest score) has a strong cyclic behavior.
Though not shown here, the cyclic behavior persisted
to more than one component for the NCIM, which is
closer to real traffic (such as Abilene’s) compared to
the MGM. Smaller components of both models behave
similar to white noise, e.g., the smallest component in
Figure 3(c).
In Figure 3(b), once σ2 = 10, we now find larger

variation in the coefficient magnitudes of both models,
though the diurnal cycles are still identifiable. Smaller
components are also much noisier. Clearly, the models’
components have parallels to the cyclic and noise-like
components of OD flows [19,20].

Figure 4 plots the spatial PCA coefficients of mod-
els. The contrast between both models is evident: the
MGM is rank-1, as expected, while the NCIM has a
larger rank. Incidentally, the largest coefficient of both



models coincide with the contribution from the average
gravity component r̄c̄T/T . The NCIM’s rank increases
as σ2 increases because σ2 increases the variety of gen-
erated TMs. We omitted showing the temporal PCA
coefficients as they match the spatial coefficients 3.
What’s interesting here is that just differences in phase

between the row and column sums lead to a larger rank,
rather than the addition of new traffic classes. This may
explain the low-rank (but not single rank) behavior of
real TMs observed by [19, 20, 48]. This relatively sim-
ple model reproduces complex properties such as cycles,
noise-like components and low-rank behavior.
Overall, the NCIM’s properties are closer to that of

real TMs than the MGM, but clearly require more de-
tailed information, i.e., the PoP locations.

5. CASE STUDY

In our case study, we apply our TM synthesis method-
ology to PoP-level network topology generation.
Real world PoP-level topologies are far from random,

as these topologies are designed depending on various
factors [21] such as demographic and geographical con-
straints, traffic demand, the designer’s experience, and
financial costs. Real designs have large variability, with
some as simple as a hub-and-spoke network, to more
complex and meshy ones [17]. They generally do not
reflect the properties of random graphs, such as the
Erdös-Rényi [13] model, so a realistic topology gener-
ator must account for the above-mentioned factors.
Topology design requires the TM as an input as it

determines the capacity of the links of a network. A
popular choice is the gravity model [45], with several
works employing a single instance of it [5, 21, 49].

First, we ask if using a series of TMs can help im-
prove a network’s robustness. “Robustness” here refers
to robustness to TM variation, not network survival un-
der node removals. Second, a key result of [5] was that
topology design is largely unaffected by certain facets
of TMs. However, their algorithm, Combined Opti-
mized Layered Design (COLD), used the random grav-
ity model [31]. We extend their work by using a wider
range of TMs.
We modified COLD to accept a series of TMs by

defining a new optimization scheme, though this new
scheme is general enough to be applied elsewhere. As
far as we are aware, there is no other work on designing
topologies using a series of TMs with prescribed spa-
tiotemporal properties.
Topology generation involves combinatorial optimiza-

tion, so COLD applies a genetic algorithm as a heuristic
to solve for the topology with the minimum cost, based
on a function with four cost parameters:

• k0-cost : cost for the existence of a link,

• k1-cost : cost for the physical length of a link,

3Spatial and temporal PCA are singular value decom-
positions performed on YY

T and Y
T
Y respectively.

• k2-cost : the bandwidth cost over the length of the
link, factoring in operating expenses, initial expendi-
tures on equipment etc., and

• k3-cost : complexity cost of a PoP with more than one
link, called a non-leaf or core PoP.

Let G(N,E) be the set of all undirected graphs with
N nodes and E links with sufficient capacity to carry
the traffic. Let NC be the set of non-leaf nodes i.e.,
degree > 1 and w := {wi | i ∈ E} be the bandwidth of
the links in E. We test the minimax scheme, i.e.,

min
G(N,E)

max
w∈W(X )

∑

i∈E

(

k0 + k1ℓi + k2ℓiwi

)

+ k3|NC |,

where W(X ) is the space of all possible link loads com-
puted over X , via OSPF (Open Shortest Path First)
routing. The minimax scheme seems like an improve-
ment as it factors in a range of TMs. We test this below.

5.1 Experiments and results

We first fix the locations of the PoPs in a 10 unit
by 10 unit square with N = 12 PoPs, so randomness
only enters via the input TMs. We then generated a
week’s worth of 5 minute interval TMs (M = 2, 016)
via the MGM (see §4.3) as input for COLD with the
recommended settings [4].

We also tested minimax with the Independent Entries
Model (IEM) with the constraint E[Xi,j(tk)] = αX̄ to
control the size of each entry. Note that we tested the
model with α = 1, 2, 4, but all results were similar, so
results from α = 1 were omitted.
The NCIM discussed in §4.3 was tested too, but we

obtained similar results to the MGM, so its results were
omitted. We explain the reasons for this below.
We defined the single peak scheme, where only the

TM with the largest total traffic out of the M TMs
is chosen as input in the topology design process, to
compete against the minimax scheme.
We measured the Global Clustering Coefficient (GCC)

of the topologies generated by the schemes. The GCC
is a metric on how well-connected (clustered) a PoP is
to its neighbors. The more well-connected, the more
choices OSPF has in routing traffic flows. The network
would then be more robust to variations in the TM.

Figure 5 show the GCC for the minimax and single
peak schemes under the MGM with σ2 = 10−5, and the
minimax scheme via the IEM with α = 2. Cost k0 = 5
and k1 = 1, while k3 = {0.1, 1, 10}. Each data point on
k2 = {0, 0.1, 1, 10, 102, 103} is an average of 20 trials.

The GCCs of minimax and the single peak schemes
(under the MGM) almost match. As k2 increases, the
difference between minimax and the single peak almost
vanishes as both topologies become clique-like. The
GCC for the IEM is lower with larger variance, espe-
cially at low k2. Even when σ2 = 10 and α = 4 in
Figure 6, results were similar. We also computed other
statistics such as the average shortest paths which de-
creases for all schemes and models as k2 increases. How-



10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

k
2

G
C

C

 

 

Minimax

Single Peak

IEM α = 2

(a) k3 = 0.1

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

k
2

G
C

C

(b) k3 = 1

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

k
2

G
C

C

(c) k3 = 10

Figure 5: GCC for the topologies generated by the minimax and single peak schemes via the MGM and minimax with IEM,
under three values of k3. The MGM has σ2 = 10−5, and the IEM has α = 2. Each data point is the average of 20 trials.
The 95% confidence intervals appear as vertical bars. Confidence intervals for minimax under MGM are very small that they
appear unnoticeable. For all models, GCC is 0 at k2 = 0.
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Figure 6: GCC for the topologies generated by the minimax and single peak schemes via the MGM and minimax with IEM,
under three values of k3. Both models have increased variance, i.e., the MGM has σ2 = 10, and the IEM has α = 4. Each
data point is the average of 20 trials. The 95% confidence intervals appear as vertical bars. Confidence intervals for minimax
under MGM are very small that they appear unnoticeable. For all models, GCC is 0 at k2 = 0.

ever, topologies under the MGM consistently have lower
average shortest paths than the IEM topologies, sug-
gesting better robustness for the former.
The implication here is that peak TMs dominate the

overall topology design. The contrast between the MGM
and the IEM topologies is due to the larger peak TMs
generated by the MGM. Another highlight is that the
minimax topologies show very little variation (non-noticeable
95% confidence intervals) compared to the single peak.
Interestingly, COLD is using a distribution of peak TMs
to converge on a design that is robust to a much wider
range of TMs.
We summarize two key lessons. First, PoP-level topol-

ogy design is largely unaffected by TMs, in line with the
result in [5]. TMs have an effect through k2 but k2 has
relatively minor impact. This is seen through the lit-
tle variation in the results even though variance in the
models were increased by increasing σ2 and α. More

extreme TMs with entries sampled from the Pareto dis-
tribution (which has heavy tails), studied by [5], also
had little impact on topology generation.
Second, only peak TMs matter in improving the ro-

bustness of a network. This is by no means surpris-
ing, as it is standard practice to design networks using
peak TMs. As the single peak scheme was competi-
tive with the minimax scheme, average case TMs are
not required. Instead, it would be better to use several
worse case TMs as input into the design. Models with
little variation such as the IEM are not useful here, in
contrast to the MGM (and similarly, NCIM) which do
generate peak TMs.

6. CONCLUSION

Synthesis of TMs with prescribed spatiotemporal prop-
erties is a challenging problem. A big obstacle is the
lack of publicly available data for researchers. Another



important issue is controllability, as researchers require
a way to generate ensembles of TMs with constraints to
test network algorithms and protocols.
Our approach goes back to first principles to avoid

the measure-then-model paradigm by applying the prin-
ciple of maximum entropy. MaxEnt allows for con-
trol of the TM properties by setting appropriate con-
straints on them, while avoiding extraneous assump-
tions. Our models are controllable and satisfy several
desirable characteristics, namely consistency and inde-
pendence between model components. Despite their
simplicity, they were able to replicate characteristics of
real TMs such as low rank behavior.
We evaluated our models on an application: PoP-

level network topology generation. We modified COLD,
a topology generator, to accept a series of TMs with pre-
scribed spatiotemporal characteristics. PoP-level topol-
ogy generation turns out to be largely unaffected by
TMs. We also found that only peak TMs are useful in
designing networks that are robust to TM variations.
Thus, the common practice of using busy period TMs
to design topologies is an excellent strategy.
Future work will focus on developing an algorithm for

sampling maximum entropy distributions handling gen-
eral constraints e.g., correlation constraints and cyclo-
stationarity, and studying the TMs of data centers.
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