Fundamental Bounds on the Accuracy of Network Performance Measurements.

Matthew Roughan
matthew.roughan@adelaide.edu.au

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

The problem

- Active performance measurements
- Send probe packets from $A \rightarrow B$ across the network
- e.g. measure the delays experienced by packets

- How many probe packets should we send?
- really we need to be a little more specific

Motivation

Another way to state the problem is how accurate will a set of N measurements be?

- What do I mean by accurate?
- not equipment accuracy!
- assume perfect infrastructure
- we mean statistical accuracy
- Can I achieve arbitrary accuracy?
- naively you might say yes: take $N \rightarrow \infty$
- In reality there are fundamental bounds

Related problems

Applications

- network quality control
- anomaly detection
- streaming playout buffer size estimation
- load balancing \& TE
- TCP RTO est.
- Vegas congestion meas.
- tomography (topology)
- location mapping

Measurements

- packet delay
- packet loss rate
- packet jitter
- packet reordering
- throughput

Statistical Accuracy

What do we mean by accuracy

- often individual measurements are inaccurate.
- implicit assumption of stationary ergodic process
\Rightarrow a time average converges to an ensemble average
- measurements over time can be averaged to give a better estimate of the mean delay
- variance can be directly quantified by the Central Limit Theorem
- assume Gaussian limit, quantify accuracy by confidence bounds for estimates.

Accuracy of estimates not individual measurements

Central Limit Theorem

Set of independent, identically distributed RVs X_{i} with sample mean

$$
\hat{X}=\frac{1}{N} \sum_{i=1}^{N} X_{i}
$$

then $E[\hat{X}]=E\left[X_{0}\right]$, and

$$
\sqrt{N}\left(\hat{X}-E\left[X_{0}\right]\right) \rightarrow N\left(0, \sigma^{2}\right)
$$

in distribution as $N \rightarrow \infty$, where $\sigma^{2}=\operatorname{Var}\left[X_{0}\right]$
So the 95th\% CIs of estimate \hat{X} are $\pm 1.96 \sigma / \sqrt{N}$

Example

White noise

Time is short

- Stationarity is at best an approximation
- approx. on short (e.g. <1 min.) intervals
- not true for long (e.g. >24 hour) intervals
- We need to detect problems quickly
- problems may be transient
- diagnose problems within minutes to fix
- Some applications aren't around long enough
- TCP RTT measurements
- Streaming playout buffer needs to be determined at start of stream.

Constrained time interval

- constrained measurement interval
- perfect measurements (no artifacts)
- passive measurements

How accurate can we be?

- To increase N, measure more frequently.
- Optimal is continuous measurements, $N \rightarrow \infty$.
- Does estimate variance go to zero?

Need a continuous-time version of the CLT

Central Limit Theorem: cont. time

Continuous time process $X(t)$ where the sample mean

$$
\hat{X}=\frac{1}{T} \int_{0}^{T} X(u) d u
$$

converges to the true mean $\hat{X} \rightarrow E[X]$, and

$$
\sqrt{T}(\hat{X}-E[X]) \rightarrow N\left(0, s^{2}\right)
$$

in distribution as $T \rightarrow \infty$, where

$$
s^{2}=2 \sigma^{2} \int_{0}^{\infty} r(u) d u
$$

where $\sigma^{2}=\operatorname{Var}[X]$, and $r(s)$ is the autocorrelation of $X(t)$.

What does it mean

- closer samples are more correlated
- less information gained per sample
- There is a limit as $N \rightarrow \infty$
- Captured in the asymptotic variance s^{2}
- Asymptotic results, but similar impact on short term measurements.
- Accuracy determined by T, σ and $r(s)$.

Impact of correlated measurements

EWMA: AR(1) process $Z_{t}=\alpha Z_{t-1}+(1-\alpha) X_{t}$

How to apply here

- Perfect measurements (measurement error zero).
- variability comes from queueing delays
- are queueing delays correlated? YES!

$M / M / 1$ queue

- Poisson packet arrivals (rate λ)
- Exponential service times (mean $1 / \mu$)
- Average queue length

$$
E[Q]=\frac{\rho^{2}}{1-\rho}
$$

- asymptotic variance for $M / M / 1$ (Whitt, 1989)

$$
s^{2} \simeq \frac{4 \rho^{2}}{(1-\rho)^{4}}
$$

- Correlations from excursions away from empty system
- heavy-load \Rightarrow long busy periods
- heavy-load \Rightarrow more correlation
$\square s^{2}$ is heavily load dependent

Results $M / M / 1$

Implications

1. there is a fundamental bound on the accuracy with which we can estimate queueing delays,

- it is dependent on the
- length of the measurements interval
- load on the queue

Active probing

- Everything until now has been passive
- Heisenberg effect
- measurements impact the system
- in turn this impacts the measurements.
- More rapid probing for more accuracy
- increases queue load
- increases correlations
- reduces accuracy
- can't be unravelled
- once again we can quantify
- we can compute optimal probe rate

Optimal Probing

Implications

1. there is a fundamental bound on the accuracy with which we can estimate queueing delays,

- it is dependent on the
- length of the measurements interval
- load on the queue

2. active probing increases the load

- increases correlations
- reduces the estimator accuracy.

3. you can't do better by probing more quickly

- in fact you do worse
- forms a bound like Heisenberg's uncertainty principle

The scale of the problem is big

- passive sampling
- M/D/1 queue
- OC48 (2.48 Gbps)
- 1500 byte packets
- p is proportion of arriving packets sampled
- ρ is normalized load
- desired accuracy $\pm 1 \mathrm{~ms}$

Implications

- Faster measurements don't help much
- Active probes should be fairly low rate
- Passive delay measurement can sample
- TCP RTT measurements?
- BSD only tried to get $\pm 500 \mathrm{~ms}$
- TCP Reno encourages large buffers
- bad for Vegas \& TCP Fast, in competition?
- load sensitivity is very bad
- adaptive routing
- will see oscillation for certain parameters
- problems for detecting network problems
- can't do it quickly

Mitigation

- it's all OK for lightly loaded network
- current networks
- hence success for many experiments
- maybe we should keep them lightly loaded
- ECN might be good
- limit queue excursions
- might just force correlations to edge
- Look at less correlated data
- differences, not averages
- e.g. look at queue growth
- Look at traffic, not queues
- measure arrival rate, not queue

Conclusion

There are fundamental bounds that can't be broached

- need to understand for Internet measurement
- also need to understand for other Internet systems

Unanswered

- how important are local measurements vs global
- maybe congestion control only needs transient info?
- what do applications really need to know?
- what does this look like with real data?
matthew.roughan@adelaide.edu.au

Extra Slides

Discrete samples

- Correlations are not only a continuous time problem
- Discrete (uniform) samples (interval δt)

$$
s^{2}=\sigma^{2}\left[1+\sum_{i=1}^{\infty} r(k \delta t)\right]
$$

- Poisson samples (rate λ)

$$
s^{2}=\sigma^{2}\left[\frac{1}{\lambda}+2 \int_{0}^{\infty} r(u) d u\right]
$$

Results M/M/1

$\rho=0.5$

Results M/M/1

$$
\rho=0.7
$$

Results M/M/1

$\rho=0.9$

Generalizations

- M/G/1 queue (Whitt 1989)

$$
s^{2} \simeq \frac{\rho\left[1-(1-\rho) c_{c}^{2}\right]\left(1+c_{s}^{2}\right)^{3}}{2(1-\rho)^{4}}
$$

- Networks: worst bottleneck
- RBM approximation (many queues)
- LRD traffic input to queues
- generalized CLT
- no known auto-correlations (asymptotic results only)
- let's use simulation

Simulation for LRD queue

Simulation for LRD queue

Optimal Probing

