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ABSTRACT

Traffic matrices are used in many network engineering tasks,
for instance optimal network design. Unfortunately, mea-
surements of these matrices are error-prone, a problem that
is exacerbated when they are extrapolated to provide the
predictions used in planning. Practical network design and
management should consider sensitivity to such errors, but
although robust optimisation techniques exist, it seems they
are rarely used, at least in part because of the difficulty in
generating an ensemble of admissible traffic matrices with a
controllable error level. We address this problem in our pa-
per by presenting a fast and flexible technique of generating
synthetic traffic matrices. We demonstrate the utility of the
method by presenting a methodology for robust network de-
sign based on adaptation of the mean-risk analysis concept
from finance.

Categories and Subject Descriptors

C.2.1 [Computer Communications]: Network architec-
ture and design; C.4 [Performance of Systems]: Model-
ing Techniques

Keywords

Mean-risk analysis; network design; network planning; sen-
sitivity analysis; traffic matrix synthesis

1. INTRODUCTION
Network planning is a crucial task for maintaining the

operational status quo of an existing network, as well as in-
tegration of future link expansions and technology into the
network. Examples of some planning tasks include optimis-
ing the capacity of links and assigning an optimal routing
plan based on the network topology and link capacities. All
these tasks require a key input: the traffic matrix.
Unfortunately, the traffic matrix is not easy to measure

accurately [26]. Inferring the traffic matrix from indirect
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measurements is an ill-conditioned, underconstrained prob-
lem, resulting in errors. Direct measurement methods are
rarely economically viable, and sampling introduces errors.
Moreover, planning must be performed using predicted traf-
fic matrices, and planning horizons may be as long as a
year in advance. Prediction errors may therefore be sub-
stantial, even when good data is available. In green-fields
planning [19], predictions may be highly inaccurate.

As a result, an alternative set of ideas have been proposed:
oblivious routing [1], and Valiant network design [31], which
seek to design a network and its routing so as to work well
with any traffic matrix. These network designs are oblivious
to the traffic matrix, i.e., the network performance is guar-
anteed for any matrix. The penalty is a loss of efficiency, as
the network must be over-engineered by as much as a factor
of two.

In reality, there is some information about the network be-
forehand, and this is useful in constraining the set of likely
traffic matrices. The information allows operators to make
informed guesses even in green-fields planning. The infor-
mation may be coarser than needed and certainly contains
errors, so we need an approach that finds the middle ground
between complete ignorance and omniscience.

The other issue for oblivious approaches is that different
operators may have different degrees of risk aversion. There
is a continuous tradeoff between over-engineering to allow
for potential unknowns, and the risk of congestion and its
resultant performance degradation. Some operators may be
sanguine about congestion, allowing it on occasion in order
to provide a cheaper service, whereas others may wish to
provide a “gold-class” service, with guaranteed SLAs, and
are prepared to pay the extra cost required.

We start with the simple idea that operators should at
least understand the sensitivity of their designs to predic-
tion errors, and take these into account as part of planning.
Arguably, the simplest approach requires a method to gen-
erate an ensemble of traffic matrices that model the errors
in the predicted matrix. Such matrices must be:

• admissible, i.e., that satisfy some set of constraints
(e.g., non-negativity);

• centred, i.e., their average centres on the predicted ma-
trix; and

• controlled, i.e., their variance around the predicted ma-
trix can be controlled, ideally through a simple, linear
parameter.

The canonical example of such an ensemble in many prac-
tical situations is IID (Independent Identically Distributed)
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Gaussian additive noise. However, in our problem, simple
additive noise fails the first two criteria. We present here a
method satisfying these criteria.
In addition, we wish the ensemble to be as realistic as

possible, though this is intrinsically hard to test given the
fact that we can’t (by the nature of the problem) obtain a
complete ensemble of such data against which to compare
the synthetic matrices. Instead, here we test the usefulness
of our model1 in the network capacity planning problem.
We do not aim to provide novel optimisation algorithms,

but simply to demonstrate the importance and utility of an
ensemble of “error” matrices. We do so through a proposed
framework to optimise traffic engineering metrics of a net-
work in a systematic way. Our framework is based on mean-
risk analysis ideas, commonly used in finance for portfolio
management. The key idea here is to develop both a utility
function and simple model of risk averseness of a network
operator with regard to chosen traffic engineering metrics
against which we can optimise.
To summarise, our main contributions are:

• a fast, flexible and simple algorithm to generate an
ensemble of synthetic traffic matrices around a pre-
dicted traffic matrix possessing desirable criteria such
as admissibility, centredness and controlled by a single
linear parameter,

• theoretical results on the performance of the algorithm,
which are empirically validated on real traffic,

• evaluation of the sensitivity of important network de-
signs with respect to edge capacity prediction errors
via the use of our synthetic traffic matrices, and

• a simple framework for network design optimisation
incorporating robustness into the design using our syn-
thetic traffic matrices.

We validated our results using real traffic from the Abilene
network [15].

2. BACKGROUND

2.1 Traffic Matrices
A traffic matrix describes the volume of traffic (typically

in bytes) from one point in a network to another during some
time interval. Its natural representation is a three dimen-
sional array T(τ) with elements ti,j(τ) that represent the
traffic volume from source i to destination j during the time
interval [τ, τ+∆τ). Time intervals depend on the time reso-
lution of measurements, and the aim is to be able to observe
a stationary sequence of measurements. Typical intervals
are of the order of minutes to hours (5, 15, and 60 minutes
are very common). In our applications, the locations i and
j will either be routers or, more typically Points-of-Presence
(PoPs), and we only consider Ingress/Egress (IE) traffic ma-
trices here (not underlying Origin/Destination (OD) matri-
ces as these are usually unobservable). We will denote the
number of ingress and egress points by N . Throughout the
paper, we concentrate on a single snapshot of the traffic
matrix at time τ , so we will omit the time index for conve-
nience. For a much more complete description of all of the
issues involved in such a matrix please see [26].

1 We remind the reader of the quote “Essentially, all models
are wrong, but some are useful.” [2, p. 424]

The best current practice for measuring a network’s traffic
matrix is to use sampled flow-level measurements (e.g., [7]).
These measurements provide traffic matrices on a time gran-
ularity on the order of minutes, but these matrices will con-
tain errors. Such errors arise from sampling and from lack
of synchronisation in time intervals used in measurements.
Control and calibration of the size of these errors, as far as
we are aware, is not currently implemented. However, one
might hope they were fairly small, say at the level of a few
percent, in a well-engineered measurement system.

Alternative approaches to direct (sampled) collection in-
clude a body of research [13, 28–30] devoted to developing
traffic matrix inference methods from more easily collected
link-load measurements. These methods, however, are lim-
ited by the underconstrained nature of the problem, so av-
erage errors on the order of 10–20% are possible. Despite
these errors, [22] showed that traffic engineering tasks, such
as routing, can certainly benefit from an inferred traffic ma-
trix as compared to having no knowledge whatsoever.

More importantly, one of the underlying themes of that
research is that it is much easier to measure the traffic vol-
umes on links than it is to determine where that traffic is
going (and hence the traffic matrix). As a result, it is quite
easy to measure values such as the row sums of the traffic
matrices ri =

∑

j ti,j (which tell us the total traffic coming

into a PoP) and the column sums cj =
∑

i ti,j (which tell us
the total traffic leaving through a PoP).

Network planning requires forecasting future traffic ma-
trices to the date relevant for the plans, the time in advance
often called the planning horizon. The prediction process
may vary, but it will inevitably introduce prediction errors.

Common sources of error are

• Statistical inference errors: due to stochastic variabil-
ity within the model, i.e., the model for the data is a
good approximation, but the particular realisation we
observed varies from that predicted.

• Large, short-term fluctuations from the prediction:
e.g., routing changes (either caused by internal link
failures, or external routing policy changes), can al-
ter the egress points of traffic, altering the IE traffic
matrix (even if the underlying OD matrix remains un-
changed) [25]; or flash-crowds can cause large, short-
term changes to traffic. Some of these changes might
be considered simple stochastic variation (as above),
but some are larger, and more sudden than can be ac-
counted for by normal variation, and their causes can
often be identified as singular events.

• Modelling errors: resulting from use of a prediction
technique whose underlying model is inaccurate over
the prediction period. For instance, growth in traffic
may appear to be exponential over some period, but
actually be logistic (appearing exponential early on,
but slowing as demand becomes saturated).

Modelling errors should be preventable by careful analysis
of sufficient periods of historical data. The other two fluctu-
ations are intrinsically hard to prevent, and it is these that
we primarily focus on here.

The level of aggregation of traffic is often a large factor
in the size of these stochastic prediction errors. Large ag-
gregates of traffic are more predictable because they statis-
tically aggregate the behaviour of many more sources. It
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is natural then to expect errors to have some dependence
on the size of traffic matrix element. Traffic matrix el-
ements have a somewhat skewed distribution (with many
small values, and few large) though not formally heavy-
tailed [17, 18, 24], implying that we have a large group of
smaller, more inaccurate predictions, and a smaller group of
large, but comparatively accurate predictions. The Norros
model [16], empirically tested in [20] and somewhat based
on equivalent assumptions to the independent flow model [6]
proposed for traffic matrices, proposes that variance should
be proportional to the mean of the traffic. Moreover, the
model has consistent variances for aggregated traffic. We
need an error model satisfying this property, which we call
proportional error variance aggregation, or PEVA.
We might also reasonably assume that prediction errors

for aggregates such as the 2N row and column sums of
a traffic matrix will be smaller than for the N2 elements.
Moreover, prediction of PoP (in/out) volumes can take ad-
vantage of demographic, marketing, business and financial
predictions much more easily than can the ti,j .
The point we are making is that traffic matrix (and related

data) contains considerable value, but it must be assumed
that it contains errors. However, these errors are not com-
pletely arbitrary. Larger matrix elements have smaller rela-
tive errors, and aggregates (such as row and column sums)
often have much smaller errors than those in the traffic ma-
trix elements themselves.

2.2 Mean-Risk Analysis
The literature on network planning (and related optimi-

sation problems) is vast (for instance see [3]), and we do
not aim to survey it here. However, relatively few network
operators seem to use formal optimisation as part of their
design process, and none that we are aware of use robust
optimisation (where robust is used here to mean that the
solutions are not sensitive to uncertainty in the inputs).
The approach we adopt here extends the ideas of mean-

risk analysis – one approach for the analysis of the potential
volatility in financial portfolio returns.
Generally, operators are interested in maximising the util-

isation of the network, but at the same time, providing
enough capacity to meet network policies and quality of ser-
vice (QoS) constraints for the customers’ applications. A
common approach to allow for uncertainty (say, because of
prediction errors) is to include some engineering overhead,
or over-dimensioning. That is, instead of designing a net-
work to carry the predicted traffic, the network is designed
to carry this traffic, multiplied by some safety factor.
A simple tradeoff arises here: if the network is over–

engineered with a high factor, there is much lower risk in
the sense that it is able to cope with unexpected traffic, but
at a higher cost. Different operators use different factors,
based on experience and their degree of risk aversion. Yet,
few if any operators formally calculate risk, and specify pre-
cisely what their degree of risk aversion is. Our approach –
mean-risk analysis – makes this tradeoff explicit through the
calculation of an appropriate measure of risk for networks.
To the best of our knowledge, a direct application of mean-

risk analysis to network design has not been developed. One
paper introducing a measure of risk in the context of routing,
called the bit risk mile, is [5]. Risk here is directly related to
the geographic distance and the expected outage between a
source and a destination PoP on a particular path. Although

a concept of risk was used, their definition is not the same
as ours, as they study routing, whereas here we study the
network design, which requires the traffic matrix.

The closest work to introduce some of these ideas, in
the context of maximising bandwidth revenue of a network,
is [14]. The paper discussed how a network operator can
balance between wholesale and retail bandwidth revenue
against his risk averseness by formulating an optimisation
problem and studying the properties of the solution. How-
ever, it was assumed the underlying distribution of the rev-
enue (a truncated Gaussian distribution) is known, and the
network operator is thus able to compute the mean and stan-
dard deviation. Such an assumption is common in finance
problems.

However, the multi-dimensional nature of traffic matrices,
and the constraints on these matrices prevent us from pro-
viding a closed-form for the distribution of these matrices.
Instead, we use our synthetic model to calculate risk, and it
is this we describe next.

3. TRAFFIC MATRIX SYNTHESIS
Our main goal is to generate an ensemble of traffic ma-

trices to test a network design. Not every matrix, however,
can be a traffic matrix. As noted in the introduction such a
traffic matrix must be admissible, which means that it sat-
isfies some set of constraints. There are multiple possible
constraints, but for illustration purposes in this paper we
will focus on 4 simple, intuitive, and yet reasonably power-
ful constraints. For a matrix T = [ti,j ], we have

(i) Non-negativity : ti,j ≥ 0, ∀i, j = 1, 2, · · · , N ,

(ii) Row sums:
∑

j ti,j = ri, ∀i,

(iii) Column sums:
∑

i ti,j = cj , ∀j, and

(iv) Total traffic:
∑

i,j ti,j =
∑

i ri =
∑

j cj = T ,

where row and column sums are summarised in vectors r
and c respectively. The last constraint is actually redun-
dant given the previous constraints, but we include it for its
explanatory value.

The constraints above are motivated by the fact that the
row and column sums represent the total ingress and egress
traffic of a network, which are relatively easy to obtain from
SNMP information [26]. We aim to preserve the row, col-
umn and total traffic constraints because these will allow
us to make fair comparisons between different network de-
signs (see case studies in Sections 4 and 5). In general we
might replace the row, column and total traffic constraints
with any set of linear (or more generally, convex) constraints
on the matrix, but we use the single constraints above for
illustration because of their clear meanings in context.

Previous work [17, 18] focussed on generating such ma-
trices, with the additional aim of matching some statistical
properties of empirically measured matrices. The main dif-
ference between those papers, and ours is that we also aim
to generate matrices which are centred 2 around a predicted
matrix, with controlled variation around that matrix.

2 It is perhaps more common to refer to “centring” as lack
of bias, but we prefer the term here as we shall use it to
mean lack of bias with respect to particular functions of
expectation, not simple expectation.
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For instance, the most commonly used noise models are
additive, or multiplicative white noise, i.e., we generate a
matrix Y from prediction T by either

Additive : yi,j = ti,j + σzi,j ,

Multiplicative : yi,j = ti,j
(

1 + σzi,j
)

,

where the zi,j are IID random variables forming the er-
ror or noise matrix Z. In many cases, the zi,j would be
Gaussian distributed with mean zero, and variance 1, i.e.,
zi,j ∼ N (0, 1), thus the parameter σ controls the variance of
the errors, and both are centred (with respect to the average,
or the average of the log, respectively).
However, simple generation methods are subtly difficult.

We immediately see that with zi,j ∼ N (0, 1) the two mod-
els above may generate inadmissible matrices, because they
may violate non-negativity. Naturally, we truncate the dis-
tribution to prevent this, but that results in a significant
number of “zero” elements of the resulting matrix, and this
uncentres the matrix. Moreover, the resulting matrices no
longer satisfy the row, column or total traffic constraints.
So the question remains: how can we generate a ran-

domised traffic matrix satisfying the set of constraints? There
are many possible noise models, and procedures for fitting
constraints, however, we shall aim here to provide an ap-
proach which is intuitively well-matched to traffic matrix
generation, as well as simple and fast (speed is important,
as traffic matrices inhabit a high-dimensional space, so sen-
sitivity analysis may require generation of a large number of
these matrices to explore this space adequately).

3.1 Error Model and Non-Negativity
The goal of our approach is to guarantee the admissi-

bility constraints are (at least in part) automatically sat-
isfied by any matrix we generate. To do so we divide the
constraints into particular constraints (the summation con-
straints, which are dependent on the particular network),
and universal constraints (non-negativity), which all traffic
matrices should satisfy.
Given the non-negativity, it is possible to write any traffic

matrix T = [ti,j ] in the form

T =
[

a2
i,j

]

,

where ai,j =
√
ti,j . The modification seems trivial, but given

real values ai,j , the matrix is now inherently non-negative.
Moreover, the total traffic matrix constraint becomes

∑

i,j

a2
i,j = T,

so we can see the ai,js as lying on the N2-dimensional hy-

persphere with radius
√
T .

Our approach, therefore, is to perturb the matrix by find-
ing a new point on this hypersphere via an approximately
additive model. This allows us to add noise in a controlled
and centred manner, while preserving the universal con-
straint.
Our Spherically Additive Noise Model (SANM) is

yi,j = (ai,j + βzi,j)
2, for all i, j, (1)

where zi,j ∼ N (0, 1), and β ∈ [0,∞) is a parameter we can
use to tune the strength of the noise. We chose a simple
IID noise process, as we have no a priori reason to assume
correlations in the noise.

Although we allow the possibility of large β, as we shall
see, there is a restricted range of reasonable values of β in
practice. However, large β is not a detriment, as the model
saturates to the gravity model as β →∞, see [27]. We will
discuss this in-depth below.

The beauty of the simplicity of this model is that it guar-
antees non-negativity without truncation, and so not only
does it not introduce zeros into the matrix, it is also simple
to analyse. Since zi,j ∼ N (0, 1), independent of ai,j , we get

E[yi,j ] = E
[

(ai,j + βzi,j)
2]

= E
[

a2
i,j + 2βai,jzi,j + β2z2i,j

]

= ti,j + 2βE[ai,jzi,j ] + β2
E
[

z2i,j
]

= ti,j + 2βai,jE[zi,j ] + β2

= ti,j + β2.

This is not ideal (yet), because the resulting matrix clearly
doesn’t satisfy the centring condition, so a procedure is needed
to force the matrix to satisfy the additional constraints.

3.2 Iterative Proportional Fitting (IPF)
The matrixY no longer sits on the hypersphere defined by

the total traffic constraints (or the manifolds defined by the
other constraints). Intuitively, what we need is a procedure
to project the perturbed solution onto the space defined by
the set of constraints. We use the Iterative Proportional
Fitting (IPF). Algorithm 1 and 2 outline our method. The
algorithm is very simple indeed, with the only complication
occurring in the implementation of IPF, which we detail
below.

Input: T, the predicted traffic matrix
Input: β, noise variance
Input: r, c, row and column sum constraints
Input: ǫ, tolerance for IPF
Output: S, the synthetic traffic matrix
1 Generate Z, with zi,j ∼ N (0, 1)

2 Generate Y, where yi,j = (t
1/2
i,j + βzi,j)

2

3 S = IPF(Y, r, c, ǫ) /* See Algorithm 2 */

Algorithm 1: Traffic Matrix Perturbation

IPF was originally developed to adjust contingency tables
in statistics such that their marginals, given by the row and
column sums, satisfy known constraints [4]. This is almost
exactly what we aim to do, the only difference being termi-
nology, where we apply IPF to traffic matrices instead. More
recently, IPF has been adapted to work with an arbitrary set
of measurement constraints (provided the constraints lie in a
convex set) [11]. This implies that many types of constraints
in network design can be incorporated into IPF. Here, we re-
strict our attention to only row and column sum constraints
which naturally map to our current problem.

IPF consists of iteratively scaling the rows and columns of
the matrix until the scaled row and column sums match the
objective row and column sums (see Algorithm 2). Here, ∗
denotes a wildcard to specify the rows or columns of the ma-
trix at once. The typical test for convergence is to compare
the row and column sums of the iterate S(k) to r and c at the
end of each iteration k. Once the total difference falls below
some required tolerance ǫ, the algorithm has converged.
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Input: Y, the raw perturbed traffic matrix
Input: r, c, row and column sum constraints
Input: ǫ, tolerance for IPF
Output: S, the synthetic traffic matrix
1 S(0) ← Y
2 k ← 1
3 while (not converged) do
4 /* Scale the rows */

5 for i← 1 to N do

6 S
(k−1/2)
i,∗ ← S

(k−1)
i,∗ ri/

∑

i S
(k−1)
i,∗

7 end
8 /* Scale the columns */

9 for j ← 1 to N do

10 S
(k)
∗,j ← S

(k−1/2)
∗,j cj/

∑

i S
(k−1/2)
∗,j

11 end
12 k ← k + 1

13 end

Algorithm 2: Iterative Proportional Fitting (IPF)

IPF has a strong connection to the generalised Kullback-
Leibler (GKL) divergence used in non-negative matrix de-
composition [10]. IPF is an iterative, fixed-point solution to
the problem of minimising the GKL divergence between the
input to the final solution, subject to constraints (see proof
in [27]). More complex algorithms can be used to solve this
problem, but IPF’s simplicity and fast convergence are ideal
here.
An additional property of IPF worth mentioning is that

it is guaranteed to converge to a solution satisfying the row
and column constraints only if the initial input matrix is
non-negative [4]. Our error model is guaranteed to be non-
negative, so convergence is assured.
Moreover, IPF preserves zeros [4, 23]. Thus problematic

zeros introduced by truncation (if a simplistic error model
was used) would be retained by this step. This is undesir-
able, as real traffic matrices generally do not have many zero
elements. Our model is unlikely to have zero elements for

β > 0. Such an event occurs only if t
1/2
i,j = −βzi,j , but since

zi,j is a continuous random variable, this would occur with
probability 0. So our noise model creates elements that are
almost-surely positive (simulations confirm this, the results
of which we omit here in the interest of space). Therefore,
IPF’s outputs are also positive.
IPF isn’t novel, even in the context of traffic matrices,

where it has been used to enforce row and column con-
straints before [29]. However, in the cases we are aware of,
the method was being used as part of an inference technique,
whereas here it is being used for synthesis.

3.3 Discussion
In this synthesis problem, we are essentially finding a set of

random matrices S = T+W that satisfy a set of constraints

A(S) = b.

The operatorAmight represent a set of measurement opera-
tions, where b are observed measurements, or in the preced-
ing section we considered A to take row and column sums
and b to be the specified values of those sums.
In general, however, we consider linear operators A, and

hence we are requiring that A(T) = A(S) = A(T + W) =

A(T) +A(W) = b, or

A(W) = 0,

i.e., the noise W must lie in the null space of A, though with
the additional complication of requiring non-negativity.

One method of finding such matrices is by defining a mani-
fold on which all valid traffic matrices reside and forming the
above additive model on this manifold. However, that re-
quires (i) defining invertible maps between the manifold and
the generated traffic matrices and (ii) search algorithms on
manifolds (which are much slower than IPF). For instance,
see [8] for an example of a manifold and its relationship to
IPF. So the approach we propose is solving a more general
problem, but in a fast, easy to implement manner.

Although some measurements are more accurate, they
are not perfect. For example, the row and column sums
may contain errors, albeit small. The row and column sums
themselves may be subject to variations in traffic over time.
Either way, regularisation methods may be used to han-
dle variations of these measurements, but a simpler way we
adopt in the paper is to add a small amount of noise to the
constraint values b prior to traffic matrix generation. For a
valid traffic matrix, the constraints must be self-consistent,
for instance, the total of the row and column sums must
be equal to the total traffic traversing the network, but this
is easy to ensure. So the SANM allows controllable errors
in the constraints as well as the generated traffic matrices
themselves. We test SANM on variations of the row and
column sums in a case study in Section 4.2.

It is worth noting that our method does not constraint the
individual elements of the traffic matrix directly. One mo-
tivation for direct constraints occurs between the different
customers of an ISP, as each may have different SLAs, and
are therefore each sensitive to different variations in traf-
fic. To capture these variations, ideally, one would have to
define a distribution to specify the traffic variations. It is
possible to do so in our model, however, this would (i) re-
quire additional work in specifying the type of noise used in
SANM, as the noise may no longer be IID, and (ii) define
new constraints in IPF.

3.4 Properties
Two criteria for this model were that it be centred and

controllable. The SANM is nonlinear, and hence somewhat
hard to analyse, but intuitively, IPF is finding the closest
point on the appropriate manifold to project the perturbed
solution to, so we might hope for these properties.

Analytically, we consider the simplest case where the row
and column constraints are ignored, and only the total traffic
constraint is included (for more complex row and column
problems we quantify the effect in the following section). In
the simple case, IPF will scale the values so that the total
is correct, i.e.,

E[si,j ] = cE[yi,j ] = c
(

ti,j + β2) .

The scaling constant c will be chosen so that
∑

i,j si,j = T ,
so we know that

E

[

∑

i,j

si,j

]

= cE

[

∑

i,j

ti,j + β2

]

= c
(

T +N2β2) = T,

and so

c =
1

1 +N2β2/T
.
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Take the average matrix element to be t̄ = T/N2 and we get

E[si,j ] =
ti,j + β2

1 + β2/t̄
= ti,j + β2

(

1− ti,j
t̄

)

+O(β4).

So, in expectation, larger elements of the matrix become
smaller, and smaller elements become larger, but the effect
is O(β2), and so for small values of β the non-linearity is
negligible. We therefore have approximate centring of the
synthetic matrices.
In addition, we can consider the variance of the synthetic

matrix about the predicted matrix by looking at the variance
of si,j and noting that, at least approximately this is the
same as the variation around ti,j :

Var[si,j ] = E
[

s2i,j
]

−E[si,j ]2 ≃ E
[

s2i,j
]

−t2i,j = E
[

(si,j − ti,j)
2] ,

and

E
[

s2i,j
]

= c2E
[

y2
i,j

]

=
E

[

(

ai,j + βzi,j
)4
]

(1 + β2/t̄)2

= t2i,j + β2ti,j

(

6− 2
ti,j
t̄

)

+O(β4), (2)

so the standard deviation of the variability around the pre-
dicted matrix is approximately linear in β, for small β. Av-
eraging over the whole matrix to obtain a relative measure
of standard deviation around matrix elements we get

√

√

√

√

1

N2

∑

i,j

E
[

s2i,j
]

− t2i,j
t2i,j

≃ β

√

1

N2

∑

i,j

6

ti,j
− 2

t̄
. (3)

We will examine the range of linearity of this approxima-
tion empirically for the more general case including row and
column constraints in the following section. We find the ap-
proximation to be very good in the range 0 ≤ β ≤ 0.2, and
reasonable for β up to 0.4.
Finally, as the noise level increases, i.e., β → ∞, and

the errors are very large, Y becomes less informative as a
prior, as useful information from T is overwhelmed by noise,
resulting in a saturated response of each si,j . We prove that
this response approaches the response of the gravity model
rcT/T in [27].
This well-behaved asymptotic behaviour is another ad-

vantage of our model over the additive and multiplicative
models. As the noise strength increases for the latter mod-
els, the generated traffic matrices depart significantly from
realistic traffic matrices, due to the presence of a large num-
ber of zeros (the effect of truncation). In contrast, with our
model, even with high noise, the generated traffic matrices
can be used to study network designs under high uncertainty,
i.e., when predictions are way off the mark.

3.5 Validation
In the following results, the predicted traffic matrix T is

a single snapshot from the Abilene [15] data, the average
traffic over time 0200 to 0205 hours, 1st March 2004.
We first test the approximation (2). In Figure 1, we set

β = 0.2 and plot approximation (2) against empirical mea-
surements of E

[

s2i,j
]

(which also includes the row and col-
umn sum constraints), averaged over 1000 trials. The middle
solid line denotes the equality between elements, i.e., if the
approximation equals E

[

s2i,j
]

. We find that the fit is very
good indeed, as the data points lie close to the solid line,
despite the fact the approximation did not try to account
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Figure 1: Testing the approximation (2) against
IPF’s output E

[

s2i,j
]

on a single snapshot from the
Abilene [15] data, the average traffic over time 0200
to 0205 hours, 1st March 2004, with β = 0.2.

for the row and column sum constraints. We have tested
this with various predicted traffic matrices with similar re-
sults. The approximation is fair up to β = 0.4, beyond which
the approximation quality degrades. This is not surprising
since with small noise, there is less distortion to the row and
column sums of Y, so the total traffic and non-negativity
constraints have a bigger effect on the final output of IPF.

Our model also coincides with the intuition about the
modelling of aggregated flows per the Norros model [21]. In
real traffic, as flows are combined, the aggregated flow has a
higher variance, and this variation is modelled to be propor-
tional to the size of the aggregated traffic flow in the Nor-
ros model. These larger flows would naturally have larger
measurement error. From approximation (2), we find the er-
rors scale in proportion to ti,j , aligning with the intuition of
the Norros model. In the SANM, the error would therefore
scale proportional to the size of the predicted traffic ma-
trix’s elements. We call this the proportional error variance
aggregation (PEVA) property.

Another consideration is how far the generated traffic ma-
trices are from the original input. Since the SANM is non-
linear, will there be significant distortions of the matrices?

We measure the distortion using the Mean Relative Square
Error (MRSE) of the generated traffic matrices to the input
T, defined by

MRSE(β) =

√

1

N2

∑

i,j

(si,j(β)− ti,j)2

t2i,j
.

The metric quantifies the effect of the perturbation of IPF’s
solution to the predicted traffic matrix. Ideally, we would
like a linear relationship between β and the MRSE, imply-
ing that si,j is proportional to ti,j , and this is predicted for
small β by (3), but without row and column sum constraints.
Here, we include those constraints and test the MRSE re-
sponse.

We examine the MRSE response of IPF in Figure 2. The
solid curve is the average response of the generated traffic
matrices. The curve was generated from 200 data points,
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Model Parameter Mean % zeros Admissible Centred Controlled PEVA

Additive σ = t̄ ≈ 50.0 ✓ ✗ ✓ ✗

Multiplicative σ = 1 13.6 ✓ ✗ ✓ ✗

SANM β = 0.2 0.0 ✓ ✓ ✓ ✓

Table 1: Comparing the (truncated) additive, multiplicative and SANM over several important criteria.
PEVA implies that the error of the generated matrix elements scale in proportion to the size of the predicted
traffic matrix element as noise increases. Model parameters were chosen so that their MRSEs are roughly 1.
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Figure 2: MRSE as a function of β. The solid curve
is the average response of IPF’s output over 1000
trials per data point. The predicted traffic matrix
T is from Abilene data, the average traffic over time
0200 to 0205 hours, 1st March 2004. The dashed and
flat lines show the approximation for small β (see
approximation (3)) and large β (see details in [27]).

each data point an average of 1000 trials. The sloped dashed
line is the response of the approximation (3) for the small
β regime, while the flat line is the response of the gravity
model for the large β regime.
In Figure 2, the response of the MRSE to β is almost

linear up to about β = 0.4 before starting to saturate to the
response of the gravity model (see [27]).
Table 1 compares the SANM against the (truncated) ad-

ditive and multiplicative models across several important
criteria. Their parameters were chosen so that their MRSEs
are roughly 1. The SANM satisfies all the required criteria.
Also, because the other models produce a high number of
zeros, convergence of IPF based on their inputs is not guar-
anteed. In contrast, our model has both theoretical and
empirical convergence guarantees.
In practice, the saturation is not a handicap in any way.

Since we are mostly interested in variations around T in the
MRSE range (0, 1], so β does not have to exceed 0.2 in most
cases. If there are large errors present in traffic measure-
ments, then the measurements essentially convey no infor-
mation in the first place. Our model handles large errors
gracefully, since it produces a positive matrix almost surely,
so IPF is guaranteed to converge to a solution, and that so-
lution is the gravity model which is a reasonable choice in
the absence of other information.

4. CASE STUDY 1: DESIGN COMPARISON
It is intrinsically difficult to determine whether our test

matrices are “accurate”. We are generating an ensemble of
synthetic traffic matrices to model variability WRT a single
real traffic matrix, so we don’t have anything to compare
against. Instead, we opt to demonstrate that they are useful
via two simple case studies.

In our first study, we consider the question of whether
oblivious design is wasteful given some, potentially flawed,
information about the traffic matrix. Our approach is to
test five design strategies:

Abilene: We will perform our test using the Abilene net-
work data (from 2004), and so our baseline design will be the
actual Abilene network, but rather than use the actual link
capacities, we choose link capacities that are the minimum
required to carry T, the predicted TM. Note that although
these are not the real network capacities, this choice is made
so that we can perform a fair comparison across all designs.

Robust Abilene: The previous network design assumed
that we knew the traffic matrix T accurately, and chose ca-
pacities accordingly. Now we use the same set of links, but
choose capacities to allow for errors in the traffic predictions.
This is common practice in network design: first optimise
the network according to an objective, then over-engineer to
allow a margin of safety. In practice, the over-engineering
may appear in the form of a constant factor determined em-
pirically. Here, we shall explicitly use our synthesis method-
ology to determine how much over-engineered capacity is
required. We generate a set of 100 synthetic matrices and
set the link capacities so that we can carry any of these.
This robust design then allows for errors in the traffic ma-
trix inputs, but with some extra “overhead” capacity, which
we will assess below as a function of β. Note that when
β = 0, this design will be the same as the Abilene design.

Star: Also known as a “hub-and-spoke” design, it consists
of a single central node with all other nodes connected to it.
The central node has the highest access capacity as it needs
to handle all incoming traffic from the other nodes. All traf-
fic flows on this network travel at most two hops. The star
design, with clever link capacity choices and load balancing,
is the design with the minimum capacity required to serve
any admissible traffic matrix with prescribed edge capaci-
ties, i.e., row and column sums. It is therefore the optimal
oblivious network. Although a common design amongst en-
terprise level networks, backbone networks do not use the
star design as failure of the central node leads to catastrophic
failure of the entire network.

Valiant (oblivious) design: The key idea here is a design
of a network that can carry, without congestion, any admis-
sible traffic matrix [31] with some failure resilience. This
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may sound impossible, but it does so by using the clever
idea of indirect routing from switching. The network de-
sign is a clique (with links between all pairs of routers), and
each packet is routed along two hops, rather than travers-
ing a direct route. The first hop is spread amongst all of
the available routers and the second is to the destination
router. In [31], the authors show that this type of network
design and load balancing combination can guarantee that
any possible traffic matrix (given access link capacities) can
be carried as long as sufficient capacity is allocated to the
links. Moreover, they presented an algorithm for selecting
the proportions of traffic which go to each intermediate node
(oblivious of the actual traffic matrix) and for designing the
correct network capacities. We apply this technique to de-
rive a set of link capacities in a network, using the row and
column sums of the traffic matrix to derive lower bounds
on the access link capacity. We use the row and column
sums of the predicted traffic matrix in our capacity plan-
ning rather than an arbitrary access link capacity because
this will produce a tighter network design, and allow for
a fairer comparison against other capacity planning tech-
niques. The capacity of link connecting i to j is calculated
according to [31]

xi,j =

(

N
∑

k=1

wk

T − 2wk

)

−1
(

wiwj

T − 2wj
+

wiwj

T − 2wi

)

, (4)

where wi := max(ri, ci). The total capacity of the Valiant
design is at most twice that of the star design.

Robust clique: If one seeks to minimise the bandwidth-
distance product on a network, the optimal network design
is a clique, where traffic only ever has to traverse a single
hop. Although this is an obvious simplification of real costs,
it provides a simple comparison against the Valiant design,
which also uses a clique. The minimal link capacities are
given by the corresponding traffic matrix element. However,
as noted, we will not use the capacities determined by one
traffic matrix, but rather, choose capacities that can carry
any of our synthetic traffic matrices.

4.1 Experiment 1: Fixed c and r
We test the five designs with traffic matrices from Abilene

[15]. The 2004 network had N = 12 PoPs. We draw one
week of Abilene traffic matrices, starting from the first week
of April 2004, aggregated into 168 one-hour traffic matrices,
and we use these matrices as if they were the predicted traffic
matrices T. For each predicted matrix, we generate M =
100 synthetic matrices (using the procedure described above,
assuming the c and r given by the matrix are correct), and
calculate the total bandwidth × distance product for the
network.
According to the simple optimisation used here, an effi-

cient network would have a low bandwidth × distance prod-
uct. When the errors in the prediction are zero (i.e., β = 0)
the clique will produce the optimal design, and so we use the
bandwidth-capacity product of this network as a baseline,
and measure all other networks as a factor of this capacity,
hence the minimum possible value is 1. Thus we see the de-
gree of “over-build” required by each strategy, as a function
of the size of the prediction errors.
Figure 3(a) plots the total bandwidth miles (bandwidth
× distance) for the different network designs.

Observe that the Valiant, star and Abilene network de-
signs are constant WRT to β. The overbuild of the Valiant
network is slightly over two because our choice of the base-
line is not the star design. However, it is within a factor of
two compared to the star design (about 1.3), confirming the
results in [31]. These designs are two extremes: the first two
assume no knowledge, and the second takes no account of
errors, so neither changes WRT to β. Obviously, the Abi-
lene strategy needs a much smaller overbuild, at the cost of
being sensitive to errors in the inputs.

The second curve to note is the robust clique, whose per-
formance stretches from optimal for β = 0 (as expected,
though it might be surprising that the Abilene design does
almost as well), to being quite poor for large β. This type of
result is the key motivation for approaches such as Valiant
design, which achieves much better performance when there
is no information about traffic.

The big surprise is that the robust Abilene design is even
more efficient than both of the alternative robust designs
when there are significant prediction errors. What is hap-
pening here is that the shared nature of many of the main
paths through the Abilene network allows errors in the traf-
fic matrix to balance out (a fact that we shall make further
use of below). In any case, we can see that for this relatively
simple network, the designers did a pretty good job. More
to the point, the completely oblivious approach is wasteful,
given even moderately accurate data about traffic.

4.2 Experiment 2: Row/column variations
In the Valiant and star designs, the total access capacity at

each PoP is assumed known. However, networks do evolve
over time, say, as customers upgrade links or depart the
network, so the total access capacity will change. Thus,
there can be errors in predictions of the edge capacities.
As with other designs, both the Valiant and star designs
could accommodate such errors by over-engineering, and so
in this section we compare robustness of the different designs
allowing both variations in the traffic matrix, and variations
in the row and column sums.

We chose a simple model for the errors in the predictions of
the edge capacities by simply adding IID Gaussian noise to
the row and column sums in our constraints. We scale these
errors by β/

√
N , intentionally simulating that predictions

for total incoming and outgoing traffic of a PoP are likely to
be more accurate in comparison to predictions of individual
traffic matrix elements.

Figure 3(b) plots the %–change WRT to the results in
Figure 3(a). Most designs behave almost as before. The
prediction errors in rows and columns are small compared
to those in the traffic matrices, and so have little effect.

The robust clique has the highest variation, which is ex-
pected, because there is greater variation in generated traffic
matrices due to the row and column sum variations.

The Valiant and star designs must account for these ex-
plicitly to remain oblivious, and hence their overall capacity
requirement increase as the errors in the edge capacities in-
crease. Although the star design maintains a total capacity
less than twice that of the Valiant, its confidence intervals
are larger. Due to prediction errors, the “optimal” central
node chosen according to predictions may not be the optimal
central node based on the true traffic matrix. One mistake
would disrupt the carefully planned traffic load balance.
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Figure 3: Network design tests based on an average of performance over 168 Abilene traffic matrices relative
to the optimal design. 95th percentile confidence intervals are given for the data. In (a), in most cases are so
small as to be almost unobservable. In (b), the %-change over the fixed case is plotted, with little statistical
variation except for the Valiant and star designs.

Both designs demonstrate a near linear relationship with
β. These designs allocate capacities proportional to the to-
tal T . The assigned capacities would scale linearly with β,
since we assign capacities by choosing the design with the
maximum total capacity, which is a Gaussian distributed
random variable with a standard deviation of O(β), due to
the prediction errors.
The example illustrates an interesting principle of robust-

ness. Both designs attempt to carefully optimise the net-
work, not against a particular traffic matrix, but all matri-
ces given the edge capacities. They have strong protection
against errors in individual elements of the traffic matrix,
provided the measurement of edge capacities are accurate.
When this assumption is violated, the performance of these
designs degrade.
We point out that there are a number of simplifications

here in our cost model and system constraints (typical link
capacities are symmetric and constrained to take a fixed
set of values). However, we have shown how the choice of
network design algorithm can be influenced by the nature of
the data we have available, and that illustrates very simply
the value of being able to generate an ensemble of potential
matrices to use in planning.
However, for all these approaches, there is no ability to

tradeoff risk and value. Network operators would have to
design the network to allow for any possible traffic generated
by the model. In reality, operators have different degrees of
risk aversion, and we consider network design in that context
in the following section.
Moreover, our design approaches are only robustified ver-

sions of existing designs, i.e., we choose the link capacities,
but don’t assess where the links should be. In the next case
study we will allow for a full design process.

5. CASE STUDY 2: RISK TRADEOFFS

5.1 Mean-Risk Analysis and Network Design
The fundamental ideas of portfolio analysis trace back to

Markowitz’s famous work [12]. The objective was to con-
struct a portfolio of financial assets yielding a better overall
return compared to the individual assets at lower overall risk
by selecting assets whose risk and return profiles are uncor-
related to balanced the total risk of the portfolio. In net-
work design, we might consider multiplexing multiple traffic
matrix elements on the same links to reduce the relative
variance of the link flows to achieve a similar effect.

Mean-risk analysis is a simple, but useful approach within
the (much larger) field of portfolio design. The goal (as
suggested by the name) is to optimise the portfolio with
respect to the average risk and utility. The assumption is
that risk is bad, and so portfolio managers are risk averse,
but to different degrees, so we aim solve the problem

max
x

Ey[U(x,y)]− δ Ey[R(x,y)] ,

where x is a set of decision variables, and y are the potential
outcomes (expectations are across the space of outcomes),
and the optimisation may also contain some constraints.
The parameter δ > 0 allows the portfolio manager to tune
their tradeoff between utility U and risk R. In the context
of portfolios, utility is a given function of return (sometimes
simply just the return itself), and there are various notions
of risk, depending on context, often based on the variance
or the standard deviation of the utility function.

It is worth noting, though, that choice of risk metric is
non-trivial, and there is a considerable body of work on this
factor alone in finance. Here, we propose a rudimentary
mean-risk analysis for network design and management. A
network operator wants to maximise a certain objective, say,
the utilisation of the entire network, given a predicted traffic
demand. In this case, the decision variables are the link
capacities (which we will denote by x, noting that xℓ > 0
indicates that a link ℓ is present), the outcomes are the L
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link traffics y, and the utility function is the total utilisation
of the network

U(x,y) =
∑

xℓ>0

yℓ/xℓ.

Note that high utilisation of the network is important be-
cause high utilisation lowers the network cost per unit bit,
and increases profits for given transit charges.
However, total utilisation is not the only metric that can

be incorporated into the framework. Depending on the op-
erator’s objective, other metrics such as total link delay can
certainly be included.
Risk is slightly harder to define. Simplistically, the risk

here is that the bandwidth will be insufficient to accommo-
date traffic, resulting in congestion. The cost of congestion
is that performance will suffer, and so SLAs may not be
satisfied, or disappointed customers will leave the network,
but quantification of these risks is difficult, so we aim to
simply provide a measure of congestion. In finance, several
decades of research has not yielded a perfect risk metric and
this suggests there is potential for much further research on
network risk metrics. We chose two simple alternatives for
this case study, without claiming that either is the perfect
choice. The two are:

• Hard threshold: R(x,y) =
∑

xℓ>0[yℓ/xℓ − γ]+, where

[z]+ = max(z, 0). This measure enforces a hard thresh-
old, with a tuneable translation parameter γ > 0 de-
termining the placement of the threshold.

• Soft threshold: R(x,y) =
∑

xℓ>0 yℓ/(xℓ − yℓ), though
we improve performance by using the piece-wise lin-
ear approximation of R(x,y) developed for optimis-
ing OSPF weights [9], a relaxed version of the former.
This measure provides more incentive to avoid heav-
ily over-utilised links, and thus balance overall traffic
more evenly across the network.

Note that these risk measures deal with correlation in traffic
variations in very different ways, and the resulting network
design would be reflective of the chosen risk measure. One
could imagine all admissible traffic matrices as stocks in a
portfolio, with link capacities as the allocation proportion
for the entire network to form a joint portfolio. The hard
threshold risk measure caps variations at each link to achieve
overall lower utlisation, but the soft threshold allows some
links with lower capacity to be sacrificed, i.e., allowing more
variations for a small number of links, while ensuring a low
global utlisation. The former risk measure is similar to uni-
formly limiting the volatility of aggregates of stocks, while
the latter is akin to proportionally allocating more to the
best stocks in a portfolio. This will be clearer in our case
study below.
Our optimisation problem is

max
x

Ey[U(x,y)]− δ Ey[R(x,y)]

s.t. x ≥ 0, and y = Ax(S), S ∈ STM ,
(5)

where STM is the set of admissible traffic matrices, and
Ax(S) represents the link loads resulting from routing the
traffic matrix S across the network with capacities x (x ≥ 0
denotes element-wise non-negativity).
The optimisation is, in theory, performed on the expecta-

tion of our metrics over all admissible traffic matrices. Un-
fortunately, this is impractical as we don’t know their true
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Figure 4: Flow chart of the design methodology with
mean and risk tradeoffs. The rectangles denote the
inputs and outputs at each stage, while the rounded
rectangles are the stages in the methodology. Here,
y∗

ℓ denotes the load on link ℓ with the true matrix
T∗. Labels on outputs match to Figures 5 and 6.

distribution, and even if we did the optimisation would likely
be computationally intractable. Instead, our approach is to
use our synthesis algorithm to generate an ensemble of traf-
fic matrices, over which the solution to both problems can be
approximated. This has a two-fold effect: first, performance
of the most likely variations around the predicted traffic ma-
trix can be assessed, and second, the time required to obtain
a solution can be controlled by the number of generated traf-
fic matrices.

5.2 Experiments
We test the idea presented above as shown in Figure 4,

though the reader should note that this is not intended to
be a full exposition on network optimisation, but rather an
example of how to use the synthetic matrices.

We start by using a predicted traffic matrix T to generate
an ensemble of traffic matrices {Si}Mi=1 with noise strength
β. In order to make the scenario somewhat realistic, we
will once again use the traffic matrix data from Abilene [15]
(from 0000 to 0005 hours on the 1st March 2004), but this
time the network designers do not have access to the true
traffic matrix. They are only given a forecast on the in-
coming and outgoing traffic of the network, and they form a
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predicted matrixT∗ using the gravity model [29]. This is the
natural estimate given no other information [30], though it
certainly does contain errors [29]. The tests below are over
a range of 40 values of β ∈ (0, 0.4], each with M = 100
matrices.
The real errors between T and T∗ are known to us and

we can calibrate the meaning of the results. The real MRSE
is 1.33, which corresponds to βerr ≃ 0.17, well within the
approximate linearity range, i.e., β ≤ 0.2. Note T∗ here is
not the same as that in Figure 2 and βerr was computed
using approximation (3).
Once we have an ensemble of possible matrices, we per-

form the network design. We do so for the two risk functions
described above (with γ = 1 in the hard threshold), and a
range of risk averse parameters δ. Optimisation was per-
formed by using the Matlab function fmincon. Despite the
non-convex nature of the optimisation problem, the time
taken to generate the 100 synthetic matrices and compute
the optimal capacity design was approximately 2 minutes on
a machine with a 3.06 GHz processor and 4 GB of RAM.
As the optimisation problem is non-convex, there is the

possibility that the optimisation performs badly, so our first
set of figures tests the quality of the optimisation. Although
we optimise against total utilisation and risk, we assess per-
formance here against maximum utilisation. We do so for
two reasons: (i) the maximum provides a worst case mea-
sure of how badly the overall design can fail, and (ii) we wish
to avoid the circularity of testing against exactly the same
criteria against which we optimise. Figures 5(a) and 6(a)
show the maximum utilisation across the whole ensemble.
One immediately notes that for all δ, this increases almost
linearly with β. This is entirely reasonable – as the variety
in the ensemble increases (approximately linearly with β),
the optimisation finds it harder to both ensure high average
utilisation, and low maximum utilisation, and the maximum
utilisation increases.
Importantly, however, the maximum utilisation decreases

as we become more risk averse, and it is precisely this effect
we are trying to achieve by tuning the parameter δ.
The performance of the network designs on the true traf-

fic matrix is more important than the performance across
the artificial ensemble. Figures 5 and 6 plots (b) and (c)
show two performance metrics: the maximum and average
utilisations for the network design, given the true Abilene
traffic matrix T∗. The maximum is a worst case measure
of the risk (lower is better), and the average utilisation is a
measure of the utility achieved (higher is better).
The maximum utilisation (for the true matrix) generally

decreases with increasing risk aversion, though surprisingly
there is little difference for the hard threshold between δ = 5
and 10. As δ increases, we see that the average utilisations
decrease. This is simply because as we become more risk
averse, we provide more excess capacity to provide for inac-
curacies, and so overall utilisation decreases.
Moreover, the maximum utilisation roughly decreases as

β increases. Increasing β indicates that we have less confi-
dence in our estimate, and so again we need to allow more
headroom to allow for errors in predictions. Consequently
we see that as β increases the average utilisation decreases.
However, note that we aren’t just providing extra capac-

ity to account for errors. As the parameters δ and β change,
the actual network designs change. When we are more risk
averse, or less sure about the accuracy of predictions, it

makes sense to multiplex larger streams of traffic onto fewer
links to reduce the relative variance of the link loads. We
can see this in the non-smooth, non-linear nature of these
functions. We can also see this in the fact that for the hard
threshold, and moderate degrees of risk aversion, e.g., δ = 5,
the average network utilisation is relatively insensitive to β,
even as the maximum utilisation decreases. This is highly
desirable, as we might only be able to estimate the predic-
tion errors approximately.

The choice of risk metric obviously has a large effect on
the results, though neither is universally better.

The Fortz-Thorup risk penalises heavy over-utilisation,
but this depends on the load of the link. For links with
small loads, a compromise is accepted where these links are
allowed to be congested, as long as the overall network has a
favourable average utilisation. Links with large loads mat-
ter more under this risk measure, so their utilisation is kept
below 1. This can be seen in Figure 6(b) when β is small
with δ = 1, where the maximum utilisation with T∗ only
stabilises after β = 0.1, as the traffic matrix has a pro-
portion of small elements. Once β increases, elements of
the synthetic ensemble get larger, so the subsequent designs
are over-provisioned as there are less links with small loads
that can be “sacrificed”. Thus, designs using this risk metric
maintain average utilisation below 1, but may sacrifice some
links in an effort to do so.

In contrast, the hard threshold penalises all overloads lin-
early, without normalising according to load size. Designs
using the hard threshold would attempt to keep maximum
utilisation near 1 for all links. So we see a more uniform
response of the maximum and average utilisation across β
when tested on T∗.

Overall, for most given network designs the Fortz-Thorup
risk is therefore larger, forcing both the maximum and av-
erage utilisations lower for a given δ. It also shows more
sensitivity to the parameter β for maximum utilisation, and
less for average, due to its sensitivity to the more extreme
utilisations resulting from the traffic matrix ensemble.

Although increasing β and δ have somewhat similar effects
(to decrease the risk, and to compensate, the overall utilisa-
tion also decreases), the parameters have different meanings.
The parameter β is a technical measure of the accuracy of
our predictions, while the parameter δ is a business param-
eter expressing the degree of our concern about congestion.

Finally, the main point of this given the actual prediction
errors for Abilene, βerr ≃ 0.17, is that we could use the
above to start to choose between designs. Given δ we can
examine for the given risk metrics the designs based on a
prediction, and use these to build a network robust against
prediction errors, while still as efficient as possible.

6. CONCLUSION AND FUTURE WORK
In this paper, we examined the generation of synthetic

traffic matrices for sensitivity analysis of network design al-
gorithms. The main point we aim to get across is that all
measurements contain errors and likewise with predictions.
To further compound the problem, there are no “valid” traf-
fic matrices and obtaining a ground truth to evaluate a net-
work design with is nearly impossible. Thus, we advocate
using fast, simple traffic matrix synthesis models so as to al-
low testing of network designs under variations around the
predicted traffic matrix.
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Figure 5: Evaluating the network design with risk averseness δ = {1, 5, 10} using the hard threshold risk, with
γ = 1, in the network optimisation for (a) the maximum utilisation over an ensemble of M = 100 synthetic
matrices per data point, (b) the maximum utilisation and (c) average utilisation, when the true traffic matrix,
a single snapshot taken from Abilene in 2004, is used in the network. βerr = 0.17 denotes the required noise
strength to match the MRSE with respect to the true matrix T∗.
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Figure 6: Evaluating the network design with risk averseness δ = {1, 5, 10} using the Fortz–Thorup risk in the
network optimisation for (a) the maximum utilisation over an ensemble of M = 100 synthetic matrices per
data point, (b) the maximum utilisation and (c) average utilisation, when the true traffic matrix, a single
snapshot taken from Abilene in 2004, is used in the network. βerr = 0.17 denotes the required noise strength
to match the MRSE with respect to the true matrix T∗.

The results in our paper demonstrate the usefulness of
our approach. We can use our synthetic traffic matrices to
understand network designs better, such as Valiant’s lack
of sensitivity to variations in incoming and outgoing traffic.
Moreover, we can design networks with a degree of robust-
ness to input errors. We have shown how robust versions of
existing network designs can often be more resilient when
faced with significant changes in the traffic matrix.
We further advanced a mean-risk analysis framework for

network design. The rationale is that different network op-
erators have different risk averseness. We used simple utility
and risk functions, coupled with our traffic matrix synthesis
algorithm to assign capacities to links of a network. These
ideas were tested on real data and simulations. Future work
will further extend and validate the framework with more
traffic snapshots, and study other risk measures.
Sensitivity of network design algorithms to errors is im-

portant but is often ignored. If sensitivity and robustness to

error receive more care, network optimisations might receive
more attention from the operator community.
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