

GATEway Symbiotic Inter-Domain Traffic Engineering

MATTHEW ROUGHAN AND YM ZHANG

<matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

A Cartoon of the Internet

THE UNIVERSITY

OF ADELAIDE

The Problem

- The Internet is a "Network of Networks"
 - Autonomous Systems (ASs) > 20,000 of them
 - There is a vast range of types of AS
- They are independently managed
 - No central authority
 - Operators can choose their own
 - topology (network design)
 - technology
 - routing protocols and policies
 - More like a federation of networks
- These networks are competitors
- But they must co-operate

The Prisoner's Dilemma

		Prisoner B	
		stays mum	squeals
Prisoner A	stays mum	6 months each	B: goes free A: 10 years
	squeals	A: goes free B: 10 years	Each serves 5 years

- Prisoner's are both better off if they co-operate
- Acting individually they are better off squealing
- Critical issue is trust

Network operators often find themselves in a similar situation (only better because no-one goes to jail).

Traffic Engineering

- Traffic engineering means optimizing the flow of traffic
 - often called simply "Load Balancing"
- Better distribution of traffic
 - network more efficient
 - can improve performance by alleviating congestion
- Many optimization approaches to solve different versions of this problem depending on
 - objective
 - available technology
 - other constraints

Shortest-path optimization

Standard intra-domain TE problem

- Objective: Minimize maximum load on links
- Technology: Shortest-path routing
 - many networks use shortest-path routing
 - internally
 - e.g. OSPF, IS-IS
 - "shortest" but link "distances" are arbitrary
 - routers balance load across equal-cost paths
 but this isn't critical to get good results
- standard approaches to optimization
 - aim to chose link distances such that routing balances traffic

Solutions

Shortest-Path Optimization Problem is NP-hard

- need heuristic solution technique
- there are several available
- We rolled our own
 - to make it work easily in what follows
- Genetic Algorithm
 - genes store link "distances"

Simulations

Traffic from a gravity model

Networks from Rocketfuel

ASN	Name	Nodes	Links
1	Genuity	24	74
701	UUNet	48	368
1239	Sprint	33	130
2914	Verio	47	176
3356	Level 3	46	536
3561	Cable & Wireless	59	592
7018	AT&T	35	136

based on measurements of real networks.

GA Opt. on a single network

THE UNIVERSITY

OF ADELAIDE

Inter-domain TE

Look at the simple problem of two networks

- Networks join at multiple points
 - balance loads internally, and across joins
- Routing is no longer shortest-path (BGP)
- The objective can be the same
- Co-operation is necessary to allow optimization
- Joint optimization requires revelation of information that competitors would rather keep secret!
 - network topology and routing
 - traffic loads

Selfish behaviour

- Typical providers behave selfishly
 - won't reveal information
 - separately optimize their own networks
 - e.g. hot potato routing
- The result is clearly worse than if they co-operate, but they need to establish a way of co-operating while maintaining secrecy of their private information
- There seems to be no solution

Another similar problem

Millionaires' problem

Bill Gates and Warren Buffet are trying to decide who should put more money into the Gates foundation (*)

they want to know who is richer

- But they are feeling rather secretive, and don't want to reveal their true wealth.
- how can they decide?

 $\left(\ast\right)$ - no real millionaires were harmed in the production of these slides

Secure-Distributed Computing

- general solutions to such problems exist
 - secure-distributed computing
 - privacy-preserving data-mining
- Yao developed a (2 party) protocol to solve all such polynomial time problems without revealing inputs
 - typically based on cryptomaths
 - Iots of extensions exist
- problem is making them efficient enough for real applications
 - our problem isn't even polynomial time
 - we have a different approach

Symbiosis

Symbiosis is a nice metaphor for privacy preservation

Given GA as a metaphor, let's include symbiosis

- each network keeps some of the "genes"
 - its own link distances
 - keep genes private
- share only information needed for fitness evaluation
 - most of this is publicly measurable anyway
 - allows joint selection
- use of same random seeds
 - allows same random selection and mutation decisions for both

Performance

Random pairs of networks

Other features

flexible

- alternative objective functions
- additional constraints
- tradeoff information leakage vs performance
 symbiotic 2
- approximately better for larger networks
- robust to errors in inputs
- better performance for more networks

Better with more networks

THE UNIVERSITY OF ADELAIDE

NUSTRALIA

Cost for privacy

some communications overhead (not huge)

computation times actually better!

•
$$O((N_1 + N_2)^3)$$
 vs $O(N_1^3 + N_2^3)$

and calculations are distributed

Privacy-max

- second approach reduces information leakage, but reduces performance
- can maintain performance, but cost is communications overhead

Approach	Comm.s cost	Av. Perf.
joint SP	$O(N^2 + EK)$	46.6%
symbiotic	$O(GPN_{\max}\log Q)$	51.5%
symbiotic 2	$O(GPN_{\max}\log Q)$	68.4%
privacy-max	$O(GPE^2N^2)$	51.5%
selfish	zero	91.2%

Notation

G is the number of generations of the GA P is the population size in the GA N is the total number nodes (N_{max} is the maximum of N_1 and N_2 the number of nodes in each network). E is the number of edges Q is the number of inter-AS edges Weight range $[0, 2^K - 1]$

Conclusion and Future Work

- We have an approach that can allow co-operation (to optimize load balancing)
 - preserves privacy of majority of secret information
 - analogous to symbiosis in biology
 - has some good properties
 - flexibility
 - robustness
- future
 - used semi-honest model here apply to more general antagonist
 - apply to more general optimization problems

Oblivious transfer

- there are various versions
- consider 1-in-n Oblivious Transfer (OT)
 - Alice has a list of numbers $\{a_1, a_2, \ldots, a_n\}$
 - Bob has an index β
 - **Bob wants to learn** a_{β}
 - Alice must not learn β , and Bob must not learn a_i for any $i \neq \beta$.
- Bob learns exactly one item from Alice's list, without Alice learning which item Bob discovered.

Applications

the millionaires problem

more generically: calculating a minimum

Assume Alice has wealth $w_A \in [1, n]$, and Bob has $w_B \in [1, n]$, where n is known to both

