
T. Magedanz et al. (Eds.): TridentCom 2010, LNICST 46, pp. 3–18, 2011.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011

How to Build Complex, Large-Scale Emulated Networks

Hung Nguyen1, Matthew Roughan1, Simon Knight1, Nick Falkner1,
Olaf Maennel2, and Randy Bush3

1 University of Adelaide, Australia
2 University of Loughborough, United Kingdom

3 IIJ, Japan

Abstract. This paper describes AutoNetkit, an auto-configuration tool for com-
plex network emulations using Netkit, allowing large-scale networks to be
tested on commodity hardware. AutoNetkit uses an object orientated approach
for router configuration management, significantly reducing the complexities in
large-scale network configuration. Using AutoNetkit, a user can generate large
and complex emulations quickly without errors. We have used AutoNetkit to
successfully generate a number of different large networks with complex
routing/security policies. In our test case, AutoNetkit can generate 100,000
lines of device configuration code from only 50 lines of high-level network
specification code.

1 Introduction

Emulation is a key enabling technology in network research. It allows experiments
that are more realistic than simulations, which would otherwise be expensive to con-
struct in hardware. Hardware networks are also difficult to reconfigure if multiple
different test networks are needed for a large-scale experiment.

However, it is almost as hard to build large-scale, complex networks in emulation
as it is in hardware. Emulation removes issues such as the need to physically place
interconnecting wires, but still requires configuration of many devices, including
routers and switches. Router configuration is particularly difficult in complex networks
[2, 3, 8]. Manual configuration is the root of the problem, because it introduces the
possibility of human error, and lacks transparency as it is not self-documenting.

We will be examining large-scale networks, which may contain thousands of
routers. Although this could involve hundreds or thousands of configuration files, the
amount of data which differs between these files is often relatively small, and typi-
cally limited to areas such as IP configuration, community attributes, and small
changes to routing weights and policy. The majority of complex configuration
changes are reserved for BGP policy implementations on the network’s edge. For
instance, in a small Netkit network of only 14 routers, configuration files for these
routers can be compressed by a factor of 40 (using gzip), showing a large amount of
redundancy and repetition in these files. We wish to focus on only those items of data
which are crucial in differentiating the network configs, not to the vast bulk of con-
figuration information required to meet the syntactic requirements of a vendor’s
configuration language.

4 H. Nguyen et al.

A solution to this problem is the use of fixed templates. A typical configuration tem-
plate has relatively small amounts of crucial varying information inserted at the correct
point. This provides user with several benefits. From an operational viewpoint, we now
change a much smaller amount of data to describe a functioning system. Additionally,
an automatic generation mechanism can be made self documenting, so that the changes
made are much easier to track, and if necessary, reverse. But fixed templates can only
go so far. Most complex tasks are still configured manually. For example, network
resources such as IP address blocks and BGP community attributes are still manually
allocated. These tasks can quickly become complex for large networks.

This paper is one of the first steps towards fully automated configuration, generated
from a description of network capabilities. We describe AutoNetkit, which provides a
high-level approach to specifying network functionality. We have implemented an
automated mechanism to generate and deploy configurations for networks emulated
using the Netkit framework. The task is non-trivial, particularly for BGP (Border
Gateway Protocol) configuration, which is highly technical and non-transparent [8].
We plan to add support for other platforms in the future, such as Cisco IOS and Juni-
per Junos, described using the same high-level approach.

AutoNetkit enables Netkit users to create larger and more complex networks, easily
and quickly. It is written in Python, making it portable and easily extensible. It also
allows scripted creation of networks so that a series of networks can be created, and
tests run on each.

The results are not just useful for Netkit, they provide insights into the general
problem of automating network configuration for real networks. Furthermore, emu-
lations powered by AutoNetkit have important applications in operational networks.
By being able to construct a fundamental model of the key aspects of a network, we are
in a position to carry out tests on this network within an emulated environment. We can
also test proposed changes to our network, such as maintenance or upgrades, on an
emulated network which reflects our real network. We refer to this mirrored network
model as the shadow model. The shadow model of the network allows us to reserve
infrastructure for future development, test future growth options, and to determine the
outcome of failure scenarios. This is also of great benefit to operational staff; they can
have a much better idea of the performance of their network, under a wide variety of
scenarios, without needing to physically realise that scenario.

AutoNetkit is based on an emulation approach to network research. This differs
to simulation approaches; in our emulations we run virtual instances of real routers,
communicating through real routing protocols, whereas simulations instead approxi-
mate router behaviour [4]. At the other end of the spectrum, testbeds [13] provide
real hardware-based networks, and so are more realistic, but also more expensive and
less flexible. AutoNetkit aims to address the middle ground, allowing the user to
quickly and cheaply carry out realistic network research.

2 Background

2.1 Netkit

Netkit is an open source software package which simplifies the process of creating and
connecting virtual network devices using User Mode Linux (UML) [15]. UML allows

 How to Build Complex, Large-Scale Emulated Networks 5

multiple virtual Linux systems to be run on the same host Linux system, with each vir-
tual systems retaining standard Linux features. In particular, networking is configured
using standard tools. Additional software packages can be installed for extra features,
such as BIND for DNS services, or the Quagga routing suite. Quagga provides an im-
plementation of common routing protocols, allowing a Linux system to function as an
IP router.

Netkit provides a set of tools to manage the process of setting up and launching a
UML virtual system. Once an emulated network has been specified in a configura-
tion file, Netkit takes care of creating and launching the UML virtual systems. Typi-
cally, Netkit creates one virtual host for each router and launches routing services on
each of these routers. Each router has one or more virtual network interfaces that are
connected using virtual switches. These switches and the routing services running on
the routers allow emulations of large networks.

Netkit simplifies the process of launching the emulated network, including services
and virtual switches. However it does not provide tools to automate the configuration
of each network device. Netkit emulations can be extended beyond one physical host
machine, which we will describe in this paper.

Examples of Netkit networks. Figure 1 shows an example, drawn from the test
example given in [1], of a Netkit network which emulates a small Internet. To emu-
late this network Netkit requires a description of each network device and the links
between them. Routing requires a set of configuration files for each network device.
These describe interface configuration, such as IP addressing, and interior routing
protocols, such as IS-IS or OSPF. Border routers also require the BGP exterior rout-
ing protocols to be configured. The network in Figure 1 with only 14 routing devices
requires more than 500 lines of configuration code, most of which is described in an
arcane low-level router configuration language.

One of the strengths of emulation is to build networks larger than would be af-
fordable to construct in hardware. It is easy to conceive of networks with thousands of
devices and tens of thousands of lines of configuration code [17], but, at present,
emulating these networks is constrained by the configuration process. What is more,
many research projects require evaluations on multiple networks to test robustness
and flexibility. The complexity of device configuration means that creating a large-
scale network is a time consuming and error-prone process. This is true for both physi-
cal networks and emulated networks. Our tool simplifies this configuration process:
our large-scale example network consists of 527 routers connected by 1634 links, a
size which would be infeasible to manually generate.

Other Emulation Tools. VNUML [10] is a medium scale software emulator, similar
to Netkit, that uses a User-Mode Linux kernel. There are also other emulation tools
such as Einar [7]. As AutoNetkit has been designed to be a high-level auto-
configuration tool, independent of a specific emulation technique, it could be used in
these emulation environments with only minor modifications.

2.2 Router Configuration

Each equipment vendor has a specific configuration language used to configure their
routers. These languages differ between vendors; to configure the same feature on two

6 H. Nguyen et al.

Fig. 1. Small Internet Netkit Lab [1]

different routers may involve very different syntax. This requires an operator to
learn a new configuration language for each vendor, limits code portability, and
makes it difficult to manage a network containing routers from different vendors.

An example of a Quagga BGP configuration file is below, showing low level con-
figuration requirements. Quagga is an open source routing protocol suite [14], used
by Netkit. Quagga configuration syntax is similar to that used in Cisco routers, but
very different to Juniper router syntax. All network related numbers in these configu-
rations, such as IP addresses and AS numbers, must be consistent across all network
devices.

 How to Build Complex, Large-Scale Emulated Networks 7

router bgp 300
network 200.1.0.0/16

network 200.1.0.0/17
!
neighbor 11.0.0.10 remote-as 30
neighbor 11.0.0.10 description Router as30r1
neighbor 11.0.0.10 prefix-list mineOutOnly out
neighbor 11.0.0.10 prefix-list defaultIn in
!
ip prefix-list mineOutOnly permit 200.1.0.0/16
ip prefix-list mineOutOnly permit 200.1.0.0/17
ip prefix-list defaultIn permit 0.0.0.0/0

Common router configuration tasks include setting up each interface and configur-
ing the routing protocols used to exchange routing information. A correctly operat-
ing network requires each router’s configuration to be syntactically and semantically
correct with configurations consistent across the network. If these conditions are not
met, the network will not operate correctly. For example, the IP address at each end
of a point to point link must belong to the same subnet.

These configuration files are usually generated by hand — a slow process with the
time taken being roughly proportional to the number of devices in the network. Each
router must have its own configuration file, and manually generating each configura-
tion file is impractical for large networks. Template based configuration methods [2,8]
are an improvement, but still require network resources to be allocated. Efficiently
allocating network resources such as IP address blocks, BGP community attributes
can quickly become complex for large networks.

Our goal is to automate this configuration process. This is a complex problem for
a hardware device based network: hardware faults, device dependent configuration
languages, physical device connections, and multiple users accessing the system all
must be considered. Auto-configuration of a software based network is a more con-
strained problem. When using Netkit we are able to dictate the target platform, and
ensure that the underlying network connections meet the desired structure. Configu-
ration of emulated networks still present a number of configuration problems such as
routing and security policy implementation, automatic IP address allocation, which
will be discussed in this paper. Existing configuration tools for Netkit such as Net-
kit Interface Utility for Boring Basic Operations (NIUBBO) [19], do not provide
these features and only allow small networks with very basic routing options. Even
though languages such as RPSL [22] and its associated tool RtConfig [23] can be
used for complex BGP policy specification and configuration generation, they still
work at the device level. AutoNetkit aims at a higher level, being able to configure
networks from high-level concepts.

8 H. Nguyen et al.

3 AutoNetkit

AutoNetkit automates the process of creating a large and complex network. The
aim of AutoNetkit is to allow a user to say what they want to achieve with a
network, such as the business relationship to be expressed or the logical structure of
the network without requiring details of specific device configuration. Instead of
assigning specific values to configuration parameters of the devices, we want to be
able to express high-level concepts for the network such as: “There must be at
least one DNS server in the network”; “Business relationship with neighboring ASs
should be enforced”; and “OSPF link weights should be assigned using algorithm
ABC”.

Fig. 2. AutoNetkit System Overview

We adopt an approach inspired by [3]. The system is illustrated in Figure 2. The user
specifies a network model which describes the logical structure of the network and
the resources in the network such as devices, IP address blocks. In addition, the user
needs to specify the rules/policies for the network such as routing policies. The
rules/policies pull in fragments (small templates of configuration code) to imple-
ment the network. These components are described below. The system design al-
lows the use of plugins to interact with the network model. This may involve reading
and modifying network object attributes.

The AutoNetkit language is implemented as an object oriented language using Py-
thon [21]. Object orientated languages are well suited to configuration specification
as they allow natural expression of network devices as objects [6, 12]. To aid in de-
scribing the components of our approach we will use the simple, but non-trivial
network as in Figure 1. The AS level topology and BGP policies applied to these
networks are shown in Figure 3.

3.1 The Network Specification

The network model is specified by the network designer using the AutoNetkit lan-
guage. This model describes the resources, devices, and logical structure of the net-
work. The details of these objects are described below.

 How to Build Complex, Large-Scale Emulated Networks 9

Fig. 3. AS level topology showing high-level specification of desired inter-AS policies for
the network in Figure 1. Two types of business relationships are shown. Customer-provider
relationships are shown as the dashed line between two vertically adjacent nodes — the AS on
the lower layer is the customer and the AS on the upper layer is the provider. The peering
relationship is shown as the horizontal solid line between AS20 and AS30. The figure also shows
two other BGP policies: load balancing over multiple links, and a back-up link.

Resources in the network. Each network resource is represented by an object in the
AutoNetkit language, with attributes managed or modified by the network policies.
The two main resources are IP address blocks and devices. Examples of these are
provided below:

– IP address blocks;

Networks with IP address resource
AS1=Network(1,[’1.0.0.0/8’,’100.0.0.0/8’])
AS20=Network(20, [’20.0.0.0/8’])
AS100=Network(100, [’100.0.0.0/8’])
AS200=Network(200, [’200.1.0.0/16’])

– Devices (routers, switches, etc.).

AS1.add_router(’AS1R1’,’Quagga’,’Router 1’)

In the above example, each AS is given a set of one or more address blocks. These
are used to assign IP addresses to the interfaces in that AS. Each router is represented
by an object inside the AS object. In this example, a router object, AS1R1, is added
to an autonomous system, AS1, with the specified initial values assigned to the router
object attributes. During the configuration process, objects inside the AS are

10 H. Nguyen et al.

modified to satisfy user specified connectivity and policy requirements. For exam-
ple, interface objects will be added to the AS1R1 router object for connectivity
configuration and BGP objects will be added to this router object to implement busi-
ness relationships with other ASs.

Network Logical Structure. The user is also required to specify the logical structure
of the network, describing how the devices will be interconnected. This specification
may include details such as link capacity, and link weight. Link weights can be as-
signed to links or interfaces, and are used to control the path decisions made by rout-
ing protocols.

A link between routers in the same AS can be easily setup using the add link com-
mand in default mode, which takes 2 routers as parameters and creates a link between
them. It will automatically add an interface to each router and assign an appropriate IP
address to each interface.

add intra AS links
AS100.add_link(AS100R1, AS100R2)
AS100.add_link(AS100R1, AS100R3)

When creating a link that spans two autonomous systems, we use the add link com-
mand with specific options. If the remote autonomous system is managed by another
entity (such as another ISP), its configuration is outside of our control. In this case,
we cannot automatically assign the remote router an IP address, so we provide the
option for a user to choose to manually specify link IP address details. This configura-
tion flexibility is shown in the following example:

add inter AS links
AS30.add_link(AS30R1,AS300,AS300R1, constraints =
{"subnet":’11.0.0.8/30’,"int1ip":’11.0.0.10’,

"int2ip": ’11.0.0.9’})

We have described what is specified in the network model, but it is also important to
consider what is not specified. Everything in the network model is specified by the user.
For instance, the user indicates which routers are interconnected (although this may
be the output of a network generation program such as BRITE [16]). Hence, it is im-
portant to avoid specifying pieces of no interest to users, even though they may be
required in the actual network configuration.

It is common to implement a point-to-point link between two routers as a /30 subnet,
which provides a usable IP address for each end of the link. Each interface in a link
must be within the same subnet, but the choice of the subnet itself is often unimpor-
tant, provided that the allocation is not used again elsewhere in the network. It is a sim-
ple task for an auto-configuration tool to choose such addresses from allocated
blocks, saving the user from needless work in making specific allocations that they
are not concerned with. Automating allocation tasks also reduces the chance of bugs
due to human error.

Similarly, creating a link requires the interfaces on each end of the link to be con-
figured, but the specific settings are often unimportant, providing they are consistent
at both ends of the link. An example is routing policies, which are applied to an inter-
face. Automating allocation tasks is analogous to using a software compiler to handle

 How to Build Complex, Large-Scale Emulated Networks 11

low level resource allocation, freeing the programmer to write high-level code de-
scribing only the functions they are concerned with.

3.2 Resource Allocation

As discussed, the compiler must realise the high-level network model, converting it
into a detailed model based on the implementation details. IP addresses are allocated
by taking the pool of IP addresses specified when the AS object was created, dividing
them into the relevant size subnet, and then allocating an IP from this subnet to the
relevant interface. This automated process avoids conflicting IP addresses and en-
sures each interface has an IP address belonging to the same subnet.

There are some issues that need to be considered carefully in this step. For instance,
although not needed, it can make it easier for a user if this process is deterministic.
Determinism is the property where instantiating the same network twice will result in
the same resource allocations being made. However, changing a subset of the inputs
should not necessarily lead to a widespread change in the final allocation and we may
wish to limit the effect of change on the allocations in an instantiated network. We refer
to the property of an allocation scheme to limit unnecessary change as insensitivity. To
implement this property we use a sticky allocation mechanism.

Sticky allocation allows the allocation to a subset of nodes in the network to remain
constant in the face of change, unless the change will force a change in allocation,
either through address space exhaustion or the addition of links or hardware that di-
rectly connect to that subset. The major advantage of sticky allocation is that it limits
the number of configuration changes that are required on the target devices, and this
allows more efficient incremental improvements to be carried out in the network.
Neither of these features are required but they are desirable, as they improve effi-
ciency and make debugging easier. Our current tool makes deterministic and sticky
allocations.

We show part of the resource allocation for router AS20R1 in AS20 of the example
in Figure 1

eth0 20.255.255.253/30
eth1 11.0.0.6/30
lo 127.0.0.1
lo:1 1.1.1.1/30

The interfaces have been automatically configured, with their IP addresses either
assigned from the pool of available addresses given for that AS, or from the user’s
manually specified settings in the case of an inter AS link. The loop back interface lo:1
is also configured on the router for use by the BGP routing protocol.

3.3 Rule/Policy Specifications

Rules are used to describe high-level requirements placed on a network, and range
from routing policies to security and resiliency requirements. To define high-level
requirements, the user needs to specify which rules are going to apply to which ob-
jects inside the network as part of the input. Each rule is broken down further to a set
of smaller objects called fragments. A fragment is the smallest element that can be

12 H. Nguyen et al.

easily translated into device specific configuration code. Fragments are described in
more detail in the next section. A rule/policy is a precise statement of which frag-
ments will be applied to which device objects and the exact values of the attributes
that the fragment is going to give to the object. Rules are implemented in AutoNetkit
as objects. Typical rules are routing policies. For example, to specify the interior
gateway protocol (IGP) to be OSPF with configurable area information

Add IGP logic
scope={’type’:’router’,’select’:’all’}
parameters=[’Area’,’new’,1] # OSPF parameters
AS100.add_rule(’OSPF’,scope,para)

and to enforce business relationship with neighbour ASs, AS100 adds the peering()
policy to all of its sessions.

BGP policy for enforcing peering relationship
scope={’type’:’session’,’select’:’all’}
parameters={}
Rule = peering(scope,parameters)
AS100.add_BGP_policy(’Enforce business relationship’, Rule)

AutoNetkit has a library of rules (i.e., network services/ policies) implemented.
These include rules to set up DNS server, a large set of different BGP policies to main-
tain business relationship, contract obligations, security and back-up requirements.
The user needs to specifies in the rule specification which of these rules are going to be
used in each network. Each rule requires a “scope” and a “parameters” input. The
“scope” defines the BGP sessions that the policy applies to, and the “parameters”
field is used to provide special parameters to the policies.

3.4 Fragments

Many router configurations have a high degree of similarity, which allows for the
script based configuration methods discussed previously. It also simplifies the con-
figuration process, allowing most device specific configuration to be performed with
simple templates. These templates are filled in with the relevant values from a re-
source database, created based on the network model.

Some components of a router configuration are only needed on certain routers, e.g.,
we only require eBGP on edge routers. Simple templates are less useful in these
cases. Instead we use the concept of fragments [3]: small pieces of configuration
code, each typically controlling a single configuration aspect. Each fragment is de-
fined by the object attributes that it will creates or modifies.

Complex tasks require several fragments. AutoNetkit also provides an extensive li-
brary of fragments that can be used to construct the policies. These fragments can be
used to implement almost all realistic BGP policies including black hole, Martian filters,
and peering. For example, a peering policy can be realised by using one fragment to
mark all routes on ingress with a community that encodes the peering type of the BGP
session. On egress the routes are filtered based on the community tags and the peering
type of the session, using another fragment. The peering type, a parameter of the ses-
sion, determines which fragment (BGP statement) to use. Additional fragments can be

 How to Build Complex, Large-Scale Emulated Networks 13

used if complex traffic policies are implemented using the peering type. As discussed,
we have used these fragments to implement a library of BGP policies, including load
balancing and a back-up link, as per the example of Figure 1.

3.5 Plugins

AutoNetkit has been designed to be extensible, allowing the user to interact with the
network structure using plugins. We have implemented a plugin which exports the
network as a graph, where routers are represented by nodes and links by edges. Opera-
tions can be carried out on this graph, and the results applied back to the AutoNetkit
network objects. The NetworkX [18] Python package is used to represent and
analyse networks. This package includes common graph analysis functions such as
shortest path or resiliency algorithms, which can be used to study the network model
in AutoNetkit.

The graph structure allows existing research to be implemented in a Netkit network.
As an example we have implemented a standard traffic engineering algorithm. The
algorithm optimises link utilization (minimises congestion), by adapting the link
weights used by the network’s routing protocol to choose shortest paths [9]. The
result is that traffic is balanced across network paths (it may be surprising that this
simple form of traffic engineering is effective, but previous results [9] have shown it
can be almost as good as MPLS). Our implementation uses the network model de-
scribed above via the plugin architecture, as well as a user provided traffic matrix.
This algorithm is used to analyse and optimise a network created using AutoNetkit,
and apply the optimised weights to the network, where they are used to generate the
appropriate configuration file entries.

We have also used simple mathematical functions to deliver powerful network re-
sults. The NetworkX function to find the central node in a graph is used for optimal
server placement: the DNS server in each network can be automatically set to be the
central node in the network. AutoNetkit’s plugin framework allows users to easily ap-
ply mathematical research to networking, and then analyse the results in an emulated
environment. AutoNetkit includes tools to verify the correct application of these
weights, which we will describe later.

3.6 Compiler

The compiler produces configuration files for the Netkit devices, based on the net-
work description, the rule/policy specification, and the library of available rules and
fragments.

The compilation process starts by creating an object for each device declared in
the network specification. It then examines the rules, creating an object for each rule,
and attaching relevant device objects. The template implementation of each rule is
then read, and the fragment objects for that rule created. These fragment objects are
then attached to the appropriate device objects, as specified by the rule.

After the fragment objects have been attached to the device objects, the individual
device configurations take place. The compiler first configures interface objects,
assginging the IP address and network mask to each interface object, as per the re-
source allocation process described earlier. The router objects are then configured,

14 H. Nguyen et al.

with the internal routing protocols configured first using the IGP fragment objects, and
BGP using BGP fragments, if required.

Fragments within each device and across different devices may have a dependency
relationship: some fragments need to be applied before the others, and multiple frag-
ments can modify the same attribute in the device objects. This is especially the case for
BGP fragments. One of the most important tasks of the compiler is to resolve these
dependencies. AutoNetkit provides two simple methods to solve these dependency
problems. First, all fragments are given a unique sequence number, used to capture the
order dependency between fragments. A fragment with small sequence number is
always applied before a segment with larger sequence number. Second, after se-
quencing if two fragments still attempt to modify the same attribute, AutoNetkit
issues a warning and does not configure the device where conflict occurs. In this case
the user must manually resolve the conflict. While these two simple methods are suc-
cessful in resolving all test networks, more advanced methods are needed to resolve
complex dependencies. These are the topics of our future research.

Once the conflicts are resolved, the device objects are configured and written in
Quagga syntax to the configuration files, ready for deployment.

3.7 Deployment and Verification

AutoNetkit simplifies the process of automatically deploying the generated configu-
ration files to a Linux machine running Netkit. The deployment module copies across
the configuration files, stops any previous Netkit labs, starts the new lab, and verifies
that all hosts have been successfully started.

The deployment module can verify that the output of the optimisation plugin, de-
tailed previously, was successfully applied to the running network. It compares the
output of the NetworkX shortest paths algorithm for each source-destination pair in
the network, against the traceroute command output for the Netkit network each pair
in the network.

3.8 Emulation Scalability

The use of software to emulate a network simplifies some aspects of hardware net-
works, but also introduces new considerations. The most important is the resources
the virtual systems requires from the host system, including memory and processor
usage, which increase with emulated network size.

A typical Netkit virtual system requires a minimum of 6MB RAM from the physi-
cal host for the basic services required to run Linux, such as the kernel. This increases
to approximately 16 MB of RAM if the virtual system is to act as a router. More
memory are required to provide network monitoring tools, such as traceroute, ping,
and tcpdump. Packet inspection can be performed using tcpdump, but is more suitable
for debugging than large-scale traffic analysis: due to resource constraints, emulated
networks are better suited to testing protocols than large traffic flows.

Resource constraints limit the number of virtual systems that can be run on a
single Linux machine. To emulate large networks we run emulations on multiple
Linux machines, which are connected using vde_switch [5]. The size of the emulated
network is then limited only by number of physical Linux hosts available, rather than

 How to Build Complex, Large-Scale Emulated Networks 15

the resources of a single machine. This allows large-scale simulations to be deployed
using a number of inexpensive Linux machines. We have successfully used
vde_switch to scale Netkit emulated networks to several hundred virtual routers,
across multiple physical machines.

0 50 100
0

500

1000

1500

2000

2500

Number of Virtual Machines

M
em

or
y

(M
B

)

0 50 100
0

100

200

300

400

500

600

700

Number of Virtual Machines

A
dd

iti
on

al
 M

em
or

y
C

on
su

m
pt

io
n

(M
B

)

Fig. 4. Basic memory consumption with BGP and OSPF (left) and the additional memory con-
sumption with ping and tcpdump running inside the virtual machines (right)

Memory consumption on these virtual routers grows linearly with the size of the net-
work, for both case of with and without running applications. This is shown in Figure 4.
Note that the memory consumption also depends on the size of the data inside the appli-
cations. For example, large BGP tables can easily consume more than 16MB.

3.9 Visualization

AutoNetkit allows the user to plot their networks, providing visual confirmation of
designs and aiding in troubleshooting. The NetworkX graph representations discussed
previously are used with pydot [20], a library to plot NetworkX graphs using
Graphviz [11] graph visualisation software. We have made formatting customisations
to better suit the display of computer networks, which can be be seen in Figure 5. This
figure shows a section of the visualisation generated from AutoNetkit, based on the
lab described in Figure 1. Different link types can be seen; internal links are shown as
solid lines and external links are shown as dashed lines. Interface and subnet details
are also visible. Future work will add additional visualisation features.

4 AutoNetkit Performance: A Case Study

We have evaluated AutoNetkit performance in two areas: scalability, by generating a
large-scale test network, and ease of use, by comparing AutoNetkit to manually con-
figuring the demonstration network shown in Figure 1.

16 H. Nguyen et al.

Fig. 5. Visualisation output showing the topology for AS20 in Figure 1. IGP links are shown as
solid lines and eBGP links are shown as dashed lines. Resources such as interface numbers and
IP addresses have been automatically allocated by AutoNetkit.

A large-scale network can be quickly and easily. For instance, to configure a ran-
domly generated network of 100 ASs, with 527 routers connected by 1634 links, over
100,000 lines of device configuration code are needed. AutoNetkit only requires 50
lines of high-level code, consisting of loops to generate each AS, add routers to the
AS, and then interconnect these routers. Generating this network, including configura-
tion of OSPF, BGP, and DNS, is fast: AutoNetkit takes only 15 seconds on standard
desktop computer, with a 3 GHz Intel Core2 Duo CPU processor.

We also configured the Netkit demonstration network, shown in Figure 1. This net-
work may appear simple compared to large-scale networks, but still requires exten-
sive configuration, including OSPF, BGP, DNS, and appropriate resource allocations.
This adds a significant overhead to testing a simple network. Using AutoNetkit, the
network model and policies for the this network can be described in 100 lines of
AutoNetkit code, compared to 500 lines of device-specific configuration code. The
AutoNetkit code is high-level and descriptive, and allows the user to deal with their
network, not device configuration. It is also easy to alter the network: adding a link or
router is simple in AutoNetkit, a task which is tedious and error-prone when manually
creating configuration files.

5 Discussion

AutoNetkit achieves the goal of automating network configuration for Netkit, and
provides a number of benefits:

 How to Build Complex, Large-Scale Emulated Networks 17

– Scale at lower cost: the cost (in time) for configuring a large network is reduced, and
is sublinear (rather than the linear costs of generating the whole network effec-
tively by hand).

– Reliability: the reliability of emulations is improved, in the sense that we can
be more confident that the emulated network is exactly what we intended, i.e., there
are no misconfigurations that might stall routing, and hence change the perform-
ance of the network.

– Consistency: consistency is part of reliability (consistency across routers is needed),
but it also involves consistency between the network, and the operators view of the
network, which is critical for ongoing design, debugging, and transparency.

– Flexibility: our approach maintains the flexibility of Netkit to emulate complex
networks and protocols.

– Scripting: AutoNetkit is written in Python, and so can be easily scripted into larger
sets of experiments, for instance creating multiple instances of networks to com-
pare performance of different configuration.

Another way to view the activity is by analogy to programming. In the grim old
days, when programs were written in machine code, only a few gurus could program,
and they were highly specialized to particular machines. Programs were typically
very limited in size, and complexity. The advent of high-level programming languages
made programming a commodity skill, and separated the meaning of programs from
the particular hardware. Larger and more complex programs have resulted. More
recently, software-engineering and related programming tools including integrated
programming environments, standard portable APIs, and specification languages have
helped enable very large software projects, with what could be described as a produc-
tion line for code.

One view of AutoNetkit is as a high-level language and compiler for Netkit. Similar
to the benefit that high-level languages bring to programming, AutoNetkit can make
the network configuration process much easier, and enable emulations of large and
complex networks.

6 Conclusions and Future Work

We have developed AutoNetkit, a tool that allows a user to easily generate large-scale
emulated networks. AutoNetkit has been successfully used to generate a number
of test networks, including one of the principal Netkit test labs described in Figure 1.
AutoNetkit will be made available at http://bandicoot.maths.adelaide.
edu.au/AutoNetkit/

There are many additional features we intend to implement in the future. We plan
to extend AutoNetkit to other emulators and to real networks, including deployment
to hardware networks consisting of Cisco and Juniper devices. We will also imple-
ment additional features in AutoNetkit for other routing protocols, such as RIP and
IS-IS, support for MPLS, and filtering using Access Control Lists. It is important for
an auto-configuration tool to test generated configurations. We currently perform path
checking using traceroute, and will expand this verification in future AutoNetkit
development.

18 H. Nguyen et al.

References

1. Di Battista, G., Patrignani, M., Pizzonia, M., Ricci, F., Rimondini, M.: netkit-lab-bgp:
small-internet (May 2007), http://www.netkit.org/

2. Bellovin, S.M., Bush, R.: Configuration management and security. IEEE Journal on
Selected Areas in Communications 27(3), 268–274 (2009)

3. Bohm, H., Feldmann, A., Maennel, O., Reiser, C., Volk, R.: Design and realization of an
AS-wide inter-domain routing policy. Deustch Telekom Technical Report (2008)

4. Chen, J., Gupta, D., Vishwanath, K.V., Snoeren, A.C., Vahdat, A.: Routing in an Internet-
scale network emulator. In: Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), Citeseer (2004)

5. Davoli, R.: Vde: Virtual distributed ethernet. Technical Report UBLCS-2004-12, Univer-
sity of Bologna (June 2007)

6. Delaet, T., Joosen, W.: Podim: a language for high-level configuration management. In:
Proceedings of the 21st conference on Large Installation System Administration Confer-
ence, Berkeley, CA, pp. 261–273 (2007)

7. EINAR. Einar router simulator, http://www.isk.kth.se/proj/einar
8. Enck, W., McDaniel, P., Sen, S., Sebos, P., Spoerel, S., Greenberg, A., Rao, S., Aiello, W.:

Configuration management at massive scale: system design and experience. In: Proceed-
ings of the 2007 USENIX Annual Technical Conference, Santa Clara, CA, pp. 1–14 (June
2007)

9. Fortz, B., Thorup, M.: Internet traffic engineering by optimizing OSPF weights. In: IEEE
INFOCOM, vol. 2, pp. 519–528. Citeseer (2000)

10. Galan, F., Fernadez, D., Rui, a., Walid, O., de Miguel, T.: Use of virtualization tools in
computer network laboratories. In: Proc. International Conference on Infor- mation tech-
nology Based Higher Education and Training (2004)

11. Graphviz. Graph visualization software, http://www.graphviz.org/
12. Griffin, T.G., Bush, R.: Toward networks as formal objects. Position paper, private com-

munication (2003)
13. Huang, M.: VNET: PlanetLab virtualized network access. In: PlanetLab Design Note,

PDN-05- 029 (2005), https://www.planet-lab.org/doc/pdn
14. Ishiguro, K.: Quagga routing software, http://www.quagga.net
15. User Mode Linux. Uml, http://user-mode-linux.sourceforge.net/
16. Medina, A., Lakhina, A., Matta, I., Byers, J.: Brite: An approach to universal topology

generation. In: Proceedings of the International Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunications Systems- MASCOTS, Cincinnati, Ohio
(August 2001)

17. Muhlbauer, W., Feldmann, A., Maennel, O., Roughan, M., Uhlig, S.: Building an ASto-
pology model that captures route diversity. In: Proceedings of the ACM SIGCOMM 2006,
Pisa, Italy (2006)

18. NetworkX. High productivity software for complex networks,
http://networkx.lanl.gov

19. NIUBBO. Netkit interface utility for boring basic operations,
http://wiki.netkit.org/download/niubbo/niubbo-2.1.2.tar.gz

20. pydot. a python interface to graphviz’s dot language,
http://code.google.com/p/pydot/

21. Python. Python programming language – official website, http://www.python.org
22. RPSL. Routing policy specification language. RFC-2622
23. RtConfig. Rtconfig, http://irrtoolset.isc.org/wiki/RtConfig

	How to Build Complex, Large-Scale Emulated Networks
	Introduction
	Background
	Netkit
	Router Configuration

	AutoNetkit
	The Network Specification
	Resource Allocation
	Rule/Policy Specifications
	Fragments
	Plugins
	Compiler
	Deployment and Verification
	Emulation Scalability
	Visualization

	AutoNetkit Performance: A Case Study
	Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

